diff options
author | pierregm <pierregm@localhost> | 2009-01-19 21:22:52 +0000 |
---|---|---|
committer | pierregm <pierregm@localhost> | 2009-01-19 21:22:52 +0000 |
commit | 8bd6c70d47e16fd81c8e3aefd4b2ec6dd90f38d6 (patch) | |
tree | d3042373968e32f0daffa3cdef6049d7c34b029a /numpy/lib/tests/test_io.py | |
parent | 065626fa64df3eb51f6cb5eafcb466818ebb621d (diff) | |
download | numpy-8bd6c70d47e16fd81c8e3aefd4b2ec6dd90f38d6.tar.gz |
* lib : introduced _iotools
* lib.io : introduced genfromtxt, ndfromtxt, mafromtxt, recfromtxt, recfromcsv.
Diffstat (limited to 'numpy/lib/tests/test_io.py')
-rw-r--r-- | numpy/lib/tests/test_io.py | 358 |
1 files changed, 357 insertions, 1 deletions
diff --git a/numpy/lib/tests/test_io.py b/numpy/lib/tests/test_io.py index 6ccfa818c..58eb7f129 100644 --- a/numpy/lib/tests/test_io.py +++ b/numpy/lib/tests/test_io.py @@ -1,5 +1,8 @@ -from numpy.testing import * + import numpy as np +import numpy.ma as ma +from numpy.ma.testutils import * + import StringIO from tempfile import NamedTemporaryFile @@ -355,5 +358,358 @@ class Testfromregex(TestCase): assert_array_equal(x, a) +#####-------------------------------------------------------------------------- + + +class TestFromTxt(TestCase): + # + def test_record(self): + "Test w/ explicit dtype" + data = StringIO.StringIO('1 2\n3 4') +# data.seek(0) + test = np.ndfromtxt(data, dtype=[('x', np.int32), ('y', np.int32)]) + control = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) + assert_equal(test, control) + # + data = StringIO.StringIO('M 64.0 75.0\nF 25.0 60.0') +# data.seek(0) + descriptor = {'names': ('gender','age','weight'), + 'formats': ('S1', 'i4', 'f4')} + control = np.array([('M', 64.0, 75.0), ('F', 25.0, 60.0)], + dtype=descriptor) + test = np.ndfromtxt(data, dtype=descriptor) + assert_equal(test, control) + + def test_array(self): + "Test outputing a standard ndarray" + data = StringIO.StringIO('1 2\n3 4') + control = np.array([[1,2],[3,4]], dtype=int) + test = np.ndfromtxt(data, dtype=int) + assert_array_equal(test, control) + # + data.seek(0) + control = np.array([[1,2],[3,4]], dtype=float) + test = np.loadtxt(data, dtype=float) + assert_array_equal(test, control) + + def test_1D(self): + "Test squeezing to 1D" + control = np.array([1, 2, 3, 4], int) + # + data = StringIO.StringIO('1\n2\n3\n4\n') + test = np.ndfromtxt(data, dtype=int) + assert_array_equal(test, control) + # + data = StringIO.StringIO('1,2,3,4\n') + test = np.ndfromtxt(data, dtype=int, delimiter=',') + assert_array_equal(test, control) + + def test_comments(self): + "Test the stripping of comments" + control = np.array([1, 2, 3, 5], int) + # Comment on its own line + data = StringIO.StringIO('# comment\n1,2,3,5\n') + test = np.ndfromtxt(data, dtype=int, delimiter=',', comments='#') + assert_equal(test, control) + # Comment at the end of a line + data = StringIO.StringIO('1,2,3,5# comment\n') + test = np.ndfromtxt(data, dtype=int, delimiter=',', comments='#') + assert_equal(test, control) + + def test_skiprows(self): + "Test row skipping" + control = np.array([1, 2, 3, 5], int) + # + data = StringIO.StringIO('comment\n1,2,3,5\n') + test = np.ndfromtxt(data, dtype=int, delimiter=',', skiprows=1) + assert_equal(test, control) + # + data = StringIO.StringIO('# comment\n1,2,3,5\n') + test = np.loadtxt(data, dtype=int, delimiter=',', skiprows=1) + assert_equal(test, control) + + def test_header(self): + "Test retrieving a header" + data = StringIO.StringIO('gender age weight\nM 64.0 75.0\nF 25.0 60.0') + test = np.ndfromtxt(data, dtype=None, names=True) + control = {'gender': np.array(['M', 'F']), + 'age': np.array([64.0, 25.0]), + 'weight': np.array([75.0, 60.0])} + assert_equal(test['gender'], control['gender']) + assert_equal(test['age'], control['age']) + assert_equal(test['weight'], control['weight']) + + def test_auto_dtype(self): + "Test the automatic definition of the output dtype" + data = StringIO.StringIO('A 64 75.0 3+4j True\nBCD 25 60.0 5+6j False') + test = np.ndfromtxt(data, dtype=None) + control = [np.array(['A', 'BCD']), + np.array([64, 25]), + np.array([75.0, 60.0]), + np.array([3+4j, 5+6j]), + np.array([True, False]),] + assert_equal(test.dtype.names, ['f0','f1','f2','f3','f4']) + for (i, ctrl) in enumerate(control): + assert_equal(test['f%i' % i], ctrl) + + + def test_auto_dtype_uniform(self): + "Tests whether the output dtype can be uniformized" + data = StringIO.StringIO('1 2 3 4\n5 6 7 8\n') + test = np.ndfromtxt(data, dtype=None) + control = np.array([[1,2,3,4],[5,6,7,8]]) + assert_equal(test, control) + + + def test_fancy_dtype(self): + "Check that a nested dtype isn't MIA" + data = StringIO.StringIO('1,2,3.0\n4,5,6.0\n') + fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])]) + test = np.ndfromtxt(data, dtype=fancydtype, delimiter=',') + control = np.array([(1,(2,3.0)),(4,(5,6.0))], dtype=fancydtype) + assert_equal(test, control) + + + def test_names_overwrite(self): + "Test overwriting the names of the dtype" + descriptor = {'names': ('g','a','w'), + 'formats': ('S1', 'i4', 'f4')} + data = StringIO.StringIO('M 64.0 75.0\nF 25.0 60.0') + names = ('gender','age','weight') + test = np.ndfromtxt(data, dtype=descriptor, names=names) + descriptor['names'] = names + control = np.array([('M', 64.0, 75.0), + ('F', 25.0, 60.0)], dtype=descriptor) + assert_equal(test, control) + + + def test_autonames_and_usecols(self): + "Tests names and usecols" + data = StringIO.StringIO('A B C D\n aaaa 121 45 9.1') + test = np.ndfromtxt(data, usecols=('A', 'C', 'D'), + names=True, dtype=None) + control = np.array(('aaaa', 45, 9.1), + dtype=[('A', '|S4'), ('C', int), ('D', float)]) + assert_equal(test, control) + + + def test_converters_with_usecols(self): + "Test the combination user-defined converters and usecol" + data = StringIO.StringIO('1,2,3,,5\n6,7,8,9,10\n') + test = np.ndfromtxt(data, dtype=int, delimiter=',', + converters={3:lambda s: int(s or -999)}, + usecols=(1, 3, )) + control = np.array([[2, -999], [7, 9]], int) + assert_equal(test, control) + + def test_converters_with_usecols_and_names(self): + "Tests names and usecols" + data = StringIO.StringIO('A B C D\n aaaa 121 45 9.1') + test = np.ndfromtxt(data, usecols=('A', 'C', 'D'), names=True, + dtype=None, converters={'C':lambda s: 2 * int(s)}) + control = np.array(('aaaa', 90, 9.1), + dtype=[('A', '|S4'), ('C', int), ('D', float)]) + assert_equal(test, control) + + + def test_unused_converter(self): + "Test whether unused converters are forgotten" + data = StringIO.StringIO("1 21\n 3 42\n") + test = np.ndfromtxt(data, usecols=(1,), + converters={0: lambda s: int(s, 16)}) + assert_equal(test, [21, 42]) + # + data.seek(0) + test = np.ndfromtxt(data, usecols=(1,), + converters={1: lambda s: int(s, 16)}) + assert_equal(test, [33, 66]) + + + def test_dtype_with_converters(self): + dstr = "2009; 23; 46" + test = np.ndfromtxt(StringIO.StringIO(dstr,), + delimiter=";", dtype=float, converters={0:str}) + control = np.array([('2009', 23., 46)], + dtype=[('f0','|S4'), ('f1', float), ('f2', float)]) + assert_equal(test, control) + test = np.ndfromtxt(StringIO.StringIO(dstr,), + delimiter=";", dtype=float, converters={0:float}) + control = np.array([2009., 23., 46],) + assert_equal(test, control) + + + def test_spacedelimiter(self): + "Test space delimiter" + data = StringIO.StringIO("1 2 3 4 5\n6 7 8 9 10") + test = np.ndfromtxt(data) + control = np.array([[ 1., 2., 3., 4., 5.], + [ 6., 7., 8., 9.,10.]]) + assert_equal(test, control) + + + def test_missing(self): + data = StringIO.StringIO('1,2,3,,5\n') + test = np.ndfromtxt(data, dtype=int, delimiter=',', \ + converters={3:lambda s: int(s or -999)}) + control = np.array([1, 2, 3, -999, 5], int) + assert_equal(test, control) + + + def test_usecols(self): + "Test the selection of columns" + # Select 1 column + control = np.array( [[1, 2], [3, 4]], float) + data = StringIO.StringIO() + np.savetxt(data, control) + data.seek(0) + test = np.ndfromtxt(data, dtype=float, usecols=(1,)) + assert_equal(test, control[:, 1]) + # + control = np.array( [[1, 2, 3], [3, 4, 5]], float) + data = StringIO.StringIO() + np.savetxt(data, control) + data.seek(0) + test = np.ndfromtxt(data, dtype=float, usecols=(1, 2)) + assert_equal(test, control[:, 1:]) + # Testing with arrays instead of tuples. + data.seek(0) + test = np.ndfromtxt(data, dtype=float, usecols=np.array([1, 2])) + assert_equal(test, control[:, 1:]) + # Checking with dtypes defined converters. + data = StringIO.StringIO("""JOE 70.1 25.3\nBOB 60.5 27.9""") + names = ['stid', 'temp'] + dtypes = ['S4', 'f8'] + test = np.ndfromtxt(data, usecols=(0, 2), dtype=zip(names, dtypes)) + assert_equal(test['stid'], ["JOE", "BOB"]) + assert_equal(test['temp'], [25.3, 27.9]) + + + def test_empty_file(self): + "Test that an empty file raises the proper exception" + data = StringIO.StringIO() + assert_raises(IOError, np.ndfromtxt, data) + + + def test_fancy_dtype_alt(self): + "Check that a nested dtype isn't MIA" + data = StringIO.StringIO('1,2,3.0\n4,5,6.0\n') + fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])]) + test = np.mafromtxt(data, dtype=fancydtype, delimiter=',') + control = ma.array([(1,(2,3.0)),(4,(5,6.0))], dtype=fancydtype) + assert_equal(test, control) + + + def test_withmissing(self): + data = StringIO.StringIO('A,B\n0,1\n2,N/A') + test = np.mafromtxt(data, dtype=None, delimiter=',', missing='N/A', + names=True) + control = ma.array([(0, 1), (2, -1)], + mask=[(False, False), (False, True)], + dtype=[('A', np.int), ('B', np.int)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + # + data.seek(0) + test = np.mafromtxt(data, delimiter=',', missing='N/A', names=True) + control = ma.array([(0, 1), (2, -1)], + mask=[[False, False], [False, True]],) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + + + def test_user_missing_values(self): + datastr ="A, B, C\n0, 0., 0j\n1, N/A, 1j\n-9, 2.2, N/A\n3, -99, 3j" + data = StringIO.StringIO(datastr) + basekwargs = dict(dtype=None, delimiter=',', names=True, missing='N/A') + mdtype = [('A', int), ('B', float), ('C', complex)] + # + test = np.mafromtxt(data, **basekwargs) + control = ma.array([( 0, 0.0, 0j), (1, -999, 1j), + ( -9, 2.2, -999j), (3, -99, 3j)], + mask=[(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)], + dtype=mdtype) + assert_equal(test, control) + # + data.seek(0) + test = np.mafromtxt(data, + missing_values={0:-9, 1:-99, 2:-999j}, **basekwargs) + control = ma.array([( 0, 0.0, 0j), (1, -999, 1j), + ( -9, 2.2, -999j), (3, -99, 3j)], + mask=[(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 0)], + dtype=mdtype) + assert_equal(test, control) + # + data.seek(0) + test = np.mafromtxt(data, + missing_values={0:-9, 'B':-99, 'C':-999j}, + **basekwargs) + control = ma.array([( 0, 0.0, 0j), (1, -999, 1j), + ( -9, 2.2, -999j), (3, -99, 3j)], + mask=[(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 0)], + dtype=mdtype) + assert_equal(test, control) + + + def test_withmissing_float(self): + data = StringIO.StringIO('A,B\n0,1.5\n2,-999.00') + test = np.mafromtxt(data, dtype=None, delimiter=',', missing='-999.0', + names=True,) + control = ma.array([(0, 1.5), (2, -1.)], + mask=[(False, False), (False, True)], + dtype=[('A', np.int), ('B', np.float)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + + + def test_recfromtxt(self): + # + data = StringIO.StringIO('A,B\n0,1\n2,3') + test = np.recfromtxt(data, delimiter=',', missing='N/A', names=True) + control = np.array([(0, 1), (2, 3)], + dtype=[('A', np.int), ('B', np.int)]) + self.failUnless(isinstance(test, np.recarray)) + assert_equal(test, control) + # + data = StringIO.StringIO('A,B\n0,1\n2,N/A') + test = np.recfromtxt(data, dtype=None, delimiter=',', missing='N/A', + names=True, usemask=True) + control = ma.array([(0, 1), (2, -1)], + mask=[(False, False), (False, True)], + dtype=[('A', np.int), ('B', np.int)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + assert_equal(test.A, [0, 2]) + + + def test_recfromcsv(self): + # + data = StringIO.StringIO('A,B\n0,1\n2,3') + test = np.recfromcsv(data, missing='N/A', + names=True, case_sensitive=True) + control = np.array([(0, 1), (2, 3)], + dtype=[('A', np.int), ('B', np.int)]) + self.failUnless(isinstance(test, np.recarray)) + assert_equal(test, control) + # + data = StringIO.StringIO('A,B\n0,1\n2,N/A') + test = np.recfromcsv(data, dtype=None, missing='N/A', + names=True, case_sensitive=True, usemask=True) + control = ma.array([(0, 1), (2, -1)], + mask=[(False, False), (False, True)], + dtype=[('A', np.int), ('B', np.int)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + assert_equal(test.A, [0, 2]) + # + data = StringIO.StringIO('A,B\n0,1\n2,3') + test = np.recfromcsv(data, missing='N/A',) + control = np.array([(0, 1), (2, 3)], + dtype=[('a', np.int), ('b', np.int)]) + self.failUnless(isinstance(test, np.recarray)) + assert_equal(test, control) + + + + if __name__ == "__main__": run_module_suite() |