summaryrefslogtreecommitdiff
path: root/numpy/add_newdocs.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/add_newdocs.py')
-rw-r--r--numpy/add_newdocs.py45
1 files changed, 31 insertions, 14 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py
index 457c04803..7dd8c5649 100644
--- a/numpy/add_newdocs.py
+++ b/numpy/add_newdocs.py
@@ -885,7 +885,7 @@ add_newdoc('numpy.core.multiarray', 'zeros',
>>> np.zeros(5)
array([ 0., 0., 0., 0., 0.])
- >>> np.zeros((5,), dtype=numpy.int)
+ >>> np.zeros((5,), dtype=np.int)
array([0, 0, 0, 0, 0])
>>> np.zeros((2, 1))
@@ -2063,6 +2063,14 @@ add_newdoc('numpy.core', 'einsum',
``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``. The examples
below have corresponding `einsum` calls with the two parameter methods.
+ .. versionadded:: 1.10.0
+
+ Views returned from einsum are now writeable whenever the input array
+ is writeable. For example, ``np.einsum('ijk...->kji...', a)`` will now
+ have the same effect as ``np.swapaxes(a, 0, 2)`` and
+ ``np.einsum('ii->i', a)`` will return a writeable view of the diagonal
+ of a 2D array.
+
Examples
--------
>>> a = np.arange(25).reshape(5,5)
@@ -2172,6 +2180,14 @@ add_newdoc('numpy.core', 'einsum',
array([[10, 28, 46, 64],
[13, 40, 67, 94]])
+ >>> # since version 1.10.0
+ >>> a = np.zeros((3, 3))
+ >>> np.einsum('ii->i', a)[:] = 1
+ >>> a
+ array([[ 1., 0., 0.],
+ [ 0., 1., 0.],
+ [ 0., 0., 1.]])
+
""")
add_newdoc('numpy.core', 'vdot',
@@ -4613,7 +4629,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('view',
>>> print x
[(1, 20) (3, 4)]
- Using a view to convert an array to a record array:
+ Using a view to convert an array to a recarray:
>>> z = x.view(np.recarray)
>>> z.a
@@ -4816,11 +4832,11 @@ add_newdoc('numpy.core.umath', 'seterrobj',
##############################################################################
#
-# lib._compiled_base functions
+# compiled_base functions
#
##############################################################################
-add_newdoc('numpy.lib._compiled_base', 'digitize',
+add_newdoc('numpy.core.multiarray', 'digitize',
"""
digitize(x, bins, right=False)
@@ -4900,7 +4916,7 @@ add_newdoc('numpy.lib._compiled_base', 'digitize',
array([1, 3, 3, 4, 5])
""")
-add_newdoc('numpy.lib._compiled_base', 'bincount',
+add_newdoc('numpy.core.multiarray', 'bincount',
"""
bincount(x, weights=None, minlength=None)
@@ -4973,7 +4989,7 @@ add_newdoc('numpy.lib._compiled_base', 'bincount',
""")
-add_newdoc('numpy.lib._compiled_base', 'ravel_multi_index',
+add_newdoc('numpy.core.multiarray', 'ravel_multi_index',
"""
ravel_multi_index(multi_index, dims, mode='raise', order='C')
@@ -5030,7 +5046,7 @@ add_newdoc('numpy.lib._compiled_base', 'ravel_multi_index',
1621
""")
-add_newdoc('numpy.lib._compiled_base', 'unravel_index',
+add_newdoc('numpy.core.multiarray', 'unravel_index',
"""
unravel_index(indices, dims, order='C')
@@ -5073,7 +5089,7 @@ add_newdoc('numpy.lib._compiled_base', 'unravel_index',
""")
-add_newdoc('numpy.lib._compiled_base', 'add_docstring',
+add_newdoc('numpy.core.multiarray', 'add_docstring',
"""
add_docstring(obj, docstring)
@@ -5083,7 +5099,7 @@ add_newdoc('numpy.lib._compiled_base', 'add_docstring',
raise a TypeError
""")
-add_newdoc('numpy.lib._compiled_base', 'add_newdoc_ufunc',
+add_newdoc('numpy.core.umath', '_add_newdoc_ufunc',
"""
add_ufunc_docstring(ufunc, new_docstring)
@@ -5109,7 +5125,7 @@ add_newdoc('numpy.lib._compiled_base', 'add_newdoc_ufunc',
and then throwing away the ufunc.
""")
-add_newdoc('numpy.lib._compiled_base', 'packbits',
+add_newdoc('numpy.core.multiarray', 'packbits',
"""
packbits(myarray, axis=None)
@@ -5153,7 +5169,7 @@ add_newdoc('numpy.lib._compiled_base', 'packbits',
""")
-add_newdoc('numpy.lib._compiled_base', 'unpackbits',
+add_newdoc('numpy.core.multiarray', 'unpackbits',
"""
unpackbits(myarray, axis=None)
@@ -5859,17 +5875,18 @@ add_newdoc('numpy.core.multiarray', 'dtype',
>>> np.dtype(np.int16)
dtype('int16')
- Record, one field name 'f1', containing int16:
+ Structured type, one field name 'f1', containing int16:
>>> np.dtype([('f1', np.int16)])
dtype([('f1', '<i2')])
- Record, one field named 'f1', in itself containing a record with one field:
+ Structured type, one field named 'f1', in itself containing a structured
+ type with one field:
>>> np.dtype([('f1', [('f1', np.int16)])])
dtype([('f1', [('f1', '<i2')])])
- Record, two fields: the first field contains an unsigned int, the
+ Structured type, two fields: the first field contains an unsigned int, the
second an int32:
>>> np.dtype([('f1', np.uint), ('f2', np.int32)])