summaryrefslogtreecommitdiff
path: root/numpy/core
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/core')
-rw-r--r--numpy/core/_add_newdocs.py4
-rw-r--r--numpy/core/_methods.py71
-rw-r--r--numpy/core/arrayprint.py10
-rw-r--r--numpy/core/defchararray.py2
-rw-r--r--numpy/core/einsumfunc.py2
-rw-r--r--numpy/core/fromnumeric.py98
-rw-r--r--numpy/core/meson.build9
-rw-r--r--numpy/core/overrides.py14
-rw-r--r--numpy/core/setup.py60
-rw-r--r--numpy/core/shape_base.py11
-rw-r--r--numpy/core/src/common/simd/vec/memory.h14
-rw-r--r--numpy/core/src/common/ucsnarrow.h2
-rw-r--r--numpy/core/src/multiarray/array_coercion.c9
-rw-r--r--numpy/core/src/multiarray/buffer.c14
-rw-r--r--numpy/core/src/multiarray/calculation.c17
-rw-r--r--numpy/core/src/multiarray/convert.c3
-rw-r--r--numpy/core/src/multiarray/ctors.c100
-rw-r--r--numpy/core/src/multiarray/ctors.h10
-rw-r--r--numpy/core/src/multiarray/datetime_busday.c5
-rw-r--r--numpy/core/src/multiarray/methods.c14
-rw-r--r--numpy/core/src/multiarray/multiarraymodule.c142
-rw-r--r--numpy/core/src/multiarray/multiarraymodule.h1
-rw-r--r--numpy/core/src/multiarray/number.c72
-rw-r--r--numpy/core/src/npymath/npy_math_private.h4
m---------numpy/core/src/npysort/x86-simd-sort0
-rw-r--r--numpy/core/src/umath/override.c16
-rw-r--r--numpy/core/src/umath/override.h2
-rw-r--r--numpy/core/src/umath/ufunc_object.c9
-rw-r--r--numpy/core/tests/test_array_coercion.py18
-rw-r--r--numpy/core/tests/test_arrayprint.py42
-rw-r--r--numpy/core/tests/test_custom_dtypes.py6
-rw-r--r--numpy/core/tests/test_datetime.py24
-rw-r--r--numpy/core/tests/test_deprecations.py9
-rw-r--r--numpy/core/tests/test_dtype.py8
-rw-r--r--numpy/core/tests/test_mem_policy.py3
-rw-r--r--numpy/core/tests/test_multiarray.py104
-rw-r--r--numpy/core/tests/test_numeric.py61
-rw-r--r--numpy/core/tests/test_overrides.py32
-rw-r--r--numpy/core/tests/test_scalar_methods.py10
-rw-r--r--numpy/core/tests/test_ufunc.py18
-rw-r--r--numpy/core/tests/test_umath.py73
41 files changed, 714 insertions, 409 deletions
diff --git a/numpy/core/_add_newdocs.py b/numpy/core/_add_newdocs.py
index f2a2216c3..bd7c4f519 100644
--- a/numpy/core/_add_newdocs.py
+++ b/numpy/core/_add_newdocs.py
@@ -2935,7 +2935,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('T',
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array__',
- """ a.__array__([dtype], /) -> reference if type unchanged, copy otherwise.
+ """ a.__array__([dtype], /)
Returns either a new reference to self if dtype is not given or a new array
of provided data type if dtype is different from the current dtype of the
@@ -3008,7 +3008,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('__class_getitem__',
add_newdoc('numpy.core.multiarray', 'ndarray', ('__deepcopy__',
- """a.__deepcopy__(memo, /) -> Deep copy of array.
+ """a.__deepcopy__(memo, /)
Used if :func:`copy.deepcopy` is called on an array.
diff --git a/numpy/core/_methods.py b/numpy/core/_methods.py
index 040f02a9d..0fc070b34 100644
--- a/numpy/core/_methods.py
+++ b/numpy/core/_methods.py
@@ -87,79 +87,16 @@ def _count_reduce_items(arr, axis, keepdims=False, where=True):
keepdims)
return items
-# Numpy 1.17.0, 2019-02-24
-# Various clip behavior deprecations, marked with _clip_dep as a prefix.
-
-def _clip_dep_is_scalar_nan(a):
- # guarded to protect circular imports
- from numpy.core.fromnumeric import ndim
- if ndim(a) != 0:
- return False
- try:
- return um.isnan(a)
- except TypeError:
- return False
-
-def _clip_dep_is_byte_swapped(a):
- if isinstance(a, mu.ndarray):
- return not a.dtype.isnative
- return False
-
-def _clip_dep_invoke_with_casting(ufunc, *args, out=None, casting=None, **kwargs):
- # normal path
- if casting is not None:
- return ufunc(*args, out=out, casting=casting, **kwargs)
-
- # try to deal with broken casting rules
- try:
- return ufunc(*args, out=out, **kwargs)
- except _exceptions._UFuncOutputCastingError as e:
- # Numpy 1.17.0, 2019-02-24
- warnings.warn(
- "Converting the output of clip from {!r} to {!r} is deprecated. "
- "Pass `casting=\"unsafe\"` explicitly to silence this warning, or "
- "correct the type of the variables.".format(e.from_, e.to),
- DeprecationWarning,
- stacklevel=2
- )
- return ufunc(*args, out=out, casting="unsafe", **kwargs)
-
-def _clip(a, min=None, max=None, out=None, *, casting=None, **kwargs):
+def _clip(a, min=None, max=None, out=None, **kwargs):
if min is None and max is None:
raise ValueError("One of max or min must be given")
- # Numpy 1.17.0, 2019-02-24
- # This deprecation probably incurs a substantial slowdown for small arrays,
- # it will be good to get rid of it.
- if not _clip_dep_is_byte_swapped(a) and not _clip_dep_is_byte_swapped(out):
- using_deprecated_nan = False
- if _clip_dep_is_scalar_nan(min):
- min = -float('inf')
- using_deprecated_nan = True
- if _clip_dep_is_scalar_nan(max):
- max = float('inf')
- using_deprecated_nan = True
- if using_deprecated_nan:
- warnings.warn(
- "Passing `np.nan` to mean no clipping in np.clip has always "
- "been unreliable, and is now deprecated. "
- "In future, this will always return nan, like it already does "
- "when min or max are arrays that contain nan. "
- "To skip a bound, pass either None or an np.inf of an "
- "appropriate sign.",
- DeprecationWarning,
- stacklevel=2
- )
-
if min is None:
- return _clip_dep_invoke_with_casting(
- um.minimum, a, max, out=out, casting=casting, **kwargs)
+ return um.minimum(a, max, out=out, **kwargs)
elif max is None:
- return _clip_dep_invoke_with_casting(
- um.maximum, a, min, out=out, casting=casting, **kwargs)
+ return um.maximum(a, min, out=out, **kwargs)
else:
- return _clip_dep_invoke_with_casting(
- um.clip, a, min, max, out=out, casting=casting, **kwargs)
+ return um.clip(a, min, max, out=out, **kwargs)
def _mean(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
arr = asanyarray(a)
diff --git a/numpy/core/arrayprint.py b/numpy/core/arrayprint.py
index a243366b7..dcfb6e6a8 100644
--- a/numpy/core/arrayprint.py
+++ b/numpy/core/arrayprint.py
@@ -1428,6 +1428,10 @@ def dtype_is_implied(dtype):
# not just void types can be structured, and names are not part of the repr
if dtype.names is not None:
return False
+
+ # should care about endianness *unless size is 1* (e.g., int8, bool)
+ if not dtype.isnative:
+ return False
return dtype.type in _typelessdata
@@ -1453,10 +1457,14 @@ def dtype_short_repr(dtype):
return "'%s'" % str(dtype)
typename = dtype.name
+ if not dtype.isnative:
+ # deal with cases like dtype('<u2') that are identical to an
+ # established dtype (in this case uint16)
+ # except that they have a different endianness.
+ return "'%s'" % str(dtype)
# quote typenames which can't be represented as python variable names
if typename and not (typename[0].isalpha() and typename.isalnum()):
typename = repr(typename)
-
return typename
diff --git a/numpy/core/defchararray.py b/numpy/core/defchararray.py
index b1ed67690..11c5a30bf 100644
--- a/numpy/core/defchararray.py
+++ b/numpy/core/defchararray.py
@@ -278,7 +278,7 @@ def str_len(a):
See Also
--------
- builtins.len
+ len
Examples
--------
diff --git a/numpy/core/einsumfunc.py b/numpy/core/einsumfunc.py
index d6c5885b8..01966f0fe 100644
--- a/numpy/core/einsumfunc.py
+++ b/numpy/core/einsumfunc.py
@@ -728,7 +728,7 @@ def einsum_path(*operands, optimize='greedy', einsum_call=False):
* if False no optimization is taken
* if True defaults to the 'greedy' algorithm
* 'optimal' An algorithm that combinatorially explores all possible
- ways of contracting the listed tensors and choosest the least costly
+ ways of contracting the listed tensors and chooses the least costly
path. Scales exponentially with the number of terms in the
contraction.
* 'greedy' An algorithm that chooses the best pair contraction
diff --git a/numpy/core/fromnumeric.py b/numpy/core/fromnumeric.py
index 7ea2313d1..4608bc6de 100644
--- a/numpy/core/fromnumeric.py
+++ b/numpy/core/fromnumeric.py
@@ -238,24 +238,9 @@ def reshape(a, newshape, order='C'):
Notes
-----
- It is not always possible to change the shape of an array without
- copying the data. If you want an error to be raised when the data is copied,
- you should assign the new shape to the shape attribute of the array::
-
- >>> a = np.zeros((10, 2))
-
- # A transpose makes the array non-contiguous
- >>> b = a.T
-
- # Taking a view makes it possible to modify the shape without modifying
- # the initial object.
- >>> c = b.view()
- >>> c.shape = (20)
- Traceback (most recent call last):
- ...
- AttributeError: Incompatible shape for in-place modification. Use
- `.reshape()` to make a copy with the desired shape.
-
+ It is not always possible to change the shape of an array without copying
+ the data.
+
The `order` keyword gives the index ordering both for *fetching* the values
from `a`, and then *placing* the values into the output array.
For example, let's say you have an array:
@@ -438,7 +423,7 @@ def _repeat_dispatcher(a, repeats, axis=None):
@array_function_dispatch(_repeat_dispatcher)
def repeat(a, repeats, axis=None):
"""
- Repeat elements of an array.
+ Repeat each element of an array after themselves
Parameters
----------
@@ -3802,10 +3787,19 @@ def var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue, *,
# Aliases of other functions. Provided unique docstrings
-# are reference purposes only. Wherever possible,
+# are for reference purposes only. Wherever possible,
# avoid using them.
-@array_function_dispatch(_round_dispatcher)
+
+def _round__dispatcher(a, decimals=None, out=None):
+ # 2023-02-28, 1.25.0
+ warnings.warn("`round_` is deprecated as of NumPy 1.25.0, and will be "
+ "removed in NumPy 2.0. Please use `round` instead.",
+ DeprecationWarning, stacklevel=3)
+ return (a, out)
+
+
+@array_function_dispatch(_round__dispatcher)
def round_(a, decimals=0, out=None):
"""
Round an array to the given number of decimals.
@@ -3821,14 +3815,19 @@ def round_(a, decimals=0, out=None):
--------
around : equivalent function; see for details.
"""
- # 2023-02-28, 1.25.0
- warnings.warn("`round_` is deprecated as of NumPy 1.25.0, and will be "
- "removed in NumPy 2.0. Please use `round` instead.",
- DeprecationWarning, stacklevel=2)
return around(a, decimals=decimals, out=out)
-@array_function_dispatch(_prod_dispatcher, verify=False)
+def _product_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None,
+ initial=None, where=None):
+ # 2023-03-02, 1.25.0
+ warnings.warn("`product` is deprecated as of NumPy 1.25.0, and will be "
+ "removed in NumPy 2.0. Please use `prod` instead.",
+ DeprecationWarning, stacklevel=3)
+ return (a, out)
+
+
+@array_function_dispatch(_product_dispatcher, verify=False)
def product(*args, **kwargs):
"""
Return the product of array elements over a given axis.
@@ -3841,14 +3840,18 @@ def product(*args, **kwargs):
--------
prod : equivalent function; see for details.
"""
- # 2023-03-02, 1.25.0
- warnings.warn("`product` is deprecated as of NumPy 1.25.0, and will be "
- "removed in NumPy 2.0. Please use `prod` instead.",
- DeprecationWarning, stacklevel=2)
return prod(*args, **kwargs)
-@array_function_dispatch(_cumprod_dispatcher, verify=False)
+def _cumproduct_dispatcher(a, axis=None, dtype=None, out=None):
+ # 2023-03-02, 1.25.0
+ warnings.warn("`cumproduct` is deprecated as of NumPy 1.25.0, and will be "
+ "removed in NumPy 2.0. Please use `cumprod` instead.",
+ DeprecationWarning, stacklevel=3)
+ return (a, out)
+
+
+@array_function_dispatch(_cumproduct_dispatcher, verify=False)
def cumproduct(*args, **kwargs):
"""
Return the cumulative product over the given axis.
@@ -3861,14 +3864,19 @@ def cumproduct(*args, **kwargs):
--------
cumprod : equivalent function; see for details.
"""
- # 2023-03-02, 1.25.0
- warnings.warn("`cumproduct` is deprecated as of NumPy 1.25.0, and will be "
- "removed in NumPy 2.0. Please use `cumprod` instead.",
- DeprecationWarning, stacklevel=2)
return cumprod(*args, **kwargs)
-@array_function_dispatch(_any_dispatcher, verify=False)
+def _sometrue_dispatcher(a, axis=None, out=None, keepdims=None, *,
+ where=np._NoValue):
+ # 2023-03-02, 1.25.0
+ warnings.warn("`sometrue` is deprecated as of NumPy 1.25.0, and will be "
+ "removed in NumPy 2.0. Please use `any` instead.",
+ DeprecationWarning, stacklevel=3)
+ return (a, where, out)
+
+
+@array_function_dispatch(_sometrue_dispatcher, verify=False)
def sometrue(*args, **kwargs):
"""
Check whether some values are true.
@@ -3883,14 +3891,18 @@ def sometrue(*args, **kwargs):
--------
any : equivalent function; see for details.
"""
- # 2023-03-02, 1.25.0
- warnings.warn("`sometrue` is deprecated as of NumPy 1.25.0, and will be "
- "removed in NumPy 2.0. Please use `any` instead.",
- DeprecationWarning, stacklevel=2)
return any(*args, **kwargs)
-@array_function_dispatch(_all_dispatcher, verify=False)
+def _alltrue_dispatcher(a, axis=None, out=None, keepdims=None, *, where=None):
+ # 2023-03-02, 1.25.0
+ warnings.warn("`alltrue` is deprecated as of NumPy 1.25.0, and will be "
+ "removed in NumPy 2.0. Please use `all` instead.",
+ DeprecationWarning, stacklevel=3)
+ return (a, where, out)
+
+
+@array_function_dispatch(_alltrue_dispatcher, verify=False)
def alltrue(*args, **kwargs):
"""
Check if all elements of input array are true.
@@ -3903,8 +3915,4 @@ def alltrue(*args, **kwargs):
--------
numpy.all : Equivalent function; see for details.
"""
- # 2023-03-02, 1.25.0
- warnings.warn("`alltrue` is deprecated as of NumPy 1.25.0, and will be "
- "removed in NumPy 2.0. Please use `all` instead.",
- DeprecationWarning, stacklevel=2)
return all(*args, **kwargs)
diff --git a/numpy/core/meson.build b/numpy/core/meson.build
index 646dc0597..e968fb336 100644
--- a/numpy/core/meson.build
+++ b/numpy/core/meson.build
@@ -83,6 +83,9 @@ if use_svml
error('Missing the `SVML` git submodule! Run `git submodule update --init` to fix this.')
endif
endif
+if not fs.exists('src/npysort/x86-simd-sort/README.md')
+ error('Missing the `x86-simd-sort` git submodule! Run `git submodule update --init` to fix this.')
+endif
# Check sizes of types. Note, some of these landed in config.h before, but were
# unused. So clean that up and only define the NPY_SIZEOF flavors rather than
@@ -109,7 +112,7 @@ cdata.set('NPY_SIZEOF_PY_LONG_LONG',
if cc.has_header('complex.h')
cdata.set10('HAVE_COMPLEX_H', true)
cdata.set10('NPY_USE_C99_COMPLEX', true)
- if cc.get_id() == 'msvc'
+ if cc.get_argument_syntax() == 'msvc'
complex_types_to_check = [
['NPY_HAVE_COMPLEX_FLOAT', 'NPY_SIZEOF_COMPLEX_FLOAT', '_Fcomplex', 'float'],
['NPY_HAVE_COMPLEX_DOUBLE', 'NPY_SIZEOF_COMPLEX_DOUBLE', '_Dcomplex', 'double'],
@@ -258,7 +261,7 @@ else
# function is not available in CI. For the latter there is a fallback path,
# but that is broken because we don't have the exact long double
# representation checks.
- if cc.get_id() != 'msvc'
+ if cc.get_argument_syntax() != 'msvc'
cdata.set10('HAVE_STRTOLD_L', false)
endif
endif
@@ -565,7 +568,7 @@ c_args_common = [
cpp_args_common = c_args_common + [
'-D__STDC_VERSION__=0', # for compatibility with C headers
]
-if cc.get_id() != 'msvc'
+if cc.get_argument_syntax() != 'msvc'
cpp_args_common += [
'-fno-exceptions', # no exception support
'-fno-rtti', # no runtime type information
diff --git a/numpy/core/overrides.py b/numpy/core/overrides.py
index e93ef5d88..6403e65b0 100644
--- a/numpy/core/overrides.py
+++ b/numpy/core/overrides.py
@@ -11,9 +11,6 @@ from numpy.core._multiarray_umath import (
ARRAY_FUNCTIONS = set()
-ARRAY_FUNCTION_ENABLED = bool(
- int(os.environ.get('NUMPY_EXPERIMENTAL_ARRAY_FUNCTION', 1)))
-
array_function_like_doc = (
"""like : array_like, optional
Reference object to allow the creation of arrays which are not
@@ -140,17 +137,8 @@ def array_function_dispatch(dispatcher=None, module=None, verify=True,
Returns
-------
Function suitable for decorating the implementation of a NumPy function.
- """
-
- if not ARRAY_FUNCTION_ENABLED:
- def decorator(implementation):
- if docs_from_dispatcher:
- add_docstring(implementation, dispatcher.__doc__)
- if module is not None:
- implementation.__module__ = module
- return implementation
- return decorator
+ """
def decorator(implementation):
if verify:
if dispatcher is not None:
diff --git a/numpy/core/setup.py b/numpy/core/setup.py
index 77e1ebf99..680c2a5f6 100644
--- a/numpy/core/setup.py
+++ b/numpy/core/setup.py
@@ -20,7 +20,7 @@ from setup_common import * # noqa: F403
NPY_RELAXED_STRIDES_CHECKING = (os.environ.get('NPY_RELAXED_STRIDES_CHECKING', "1") != "0")
if not NPY_RELAXED_STRIDES_CHECKING:
raise SystemError(
- "Support for NPY_RELAXED_STRIDES_CHECKING=0 has been remove as of "
+ "Support for NPY_RELAXED_STRIDES_CHECKING=0 has been removed as of "
"NumPy 1.23. This error will eventually be removed entirely.")
# Put NPY_RELAXED_STRIDES_DEBUG=1 in the environment if you want numpy to use a
@@ -79,11 +79,13 @@ def can_link_svml():
and "linux" in platform
and sys.maxsize > 2**31)
-def check_svml_submodule(svmlpath):
- if not os.path.exists(svmlpath + "/README.md"):
- raise RuntimeError("Missing `SVML` submodule! Run `git submodule "
- "update --init` to fix this.")
- return True
+def check_git_submodules():
+ out = os.popen("git submodule status")
+ modules = out.readlines()
+ for submodule in modules:
+ if (submodule.strip()[0] == "-"):
+ raise RuntimeError("git submodules are not initialized."
+ "Please run `git submodule update --init` to fix this.")
def pythonlib_dir():
"""return path where libpython* is."""
@@ -403,7 +405,6 @@ def configuration(parent_package='',top_path=None):
exec_mod_from_location)
from numpy.distutils.system_info import (get_info, blas_opt_info,
lapack_opt_info)
- from numpy.distutils.ccompiler_opt import NPY_CXX_FLAGS
from numpy.version import release as is_released
config = Configuration('core', parent_package, top_path)
@@ -414,6 +415,8 @@ def configuration(parent_package='',top_path=None):
# actual C API VERSION. Will raise a MismatchCAPIError if so.
check_api_version(C_API_VERSION, codegen_dir)
+ check_git_submodules()
+
generate_umath_py = join(codegen_dir, 'generate_umath.py')
n = dot_join(config.name, 'generate_umath')
generate_umath = exec_mod_from_location('_'.join(n.split('.')),
@@ -654,44 +657,6 @@ def configuration(parent_package='',top_path=None):
# but we cannot use add_installed_pkg_config here either, so we only
# update the substitution dictionary during npymath build
config_cmd = config.get_config_cmd()
- # Check that the toolchain works, to fail early if it doesn't
- # (avoid late errors with MATHLIB which are confusing if the
- # compiler does not work).
- for lang, test_code, note in (
- ('c', 'int main(void) { return 0;}', ''),
- ('c++', (
- 'int main(void)'
- '{ auto x = 0.0; return static_cast<int>(x); }'
- ), (
- 'note: A compiler with support for C++11 language '
- 'features is required.'
- )
- ),
- ):
- is_cpp = lang == 'c++'
- if is_cpp:
- # this a workaround to get rid of invalid c++ flags
- # without doing big changes to config.
- # c tested first, compiler should be here
- bk_c = config_cmd.compiler
- config_cmd.compiler = bk_c.cxx_compiler()
-
- # Check that Linux compiler actually support the default flags
- if hasattr(config_cmd.compiler, 'compiler'):
- config_cmd.compiler.compiler.extend(NPY_CXX_FLAGS)
- config_cmd.compiler.compiler_so.extend(NPY_CXX_FLAGS)
-
- st = config_cmd.try_link(test_code, lang=lang)
- if not st:
- # rerun the failing command in verbose mode
- config_cmd.compiler.verbose = True
- config_cmd.try_link(test_code, lang=lang)
- raise RuntimeError(
- f"Broken toolchain: cannot link a simple {lang.upper()} "
- f"program. {note}"
- )
- if is_cpp:
- config_cmd.compiler = bk_c
mlibs = check_mathlib(config_cmd)
posix_mlib = ' '.join(['-l%s' % l for l in mlibs])
@@ -1036,7 +1001,7 @@ def configuration(parent_package='',top_path=None):
# after all maintainable code.
svml_filter = (
)
- if can_link_svml() and check_svml_submodule(svml_path):
+ if can_link_svml():
svml_objs = glob.glob(svml_path + '/**/*.s', recursive=True)
svml_objs = [o for o in svml_objs if not o.endswith(svml_filter)]
@@ -1063,8 +1028,7 @@ def configuration(parent_package='',top_path=None):
common_deps,
libraries=['npymath'],
extra_objects=svml_objs,
- extra_info=extra_info,
- extra_cxx_compile_args=NPY_CXX_FLAGS)
+ extra_info=extra_info)
#######################################################################
# umath_tests module #
diff --git a/numpy/core/shape_base.py b/numpy/core/shape_base.py
index 56c5a70f2..250fffd42 100644
--- a/numpy/core/shape_base.py
+++ b/numpy/core/shape_base.py
@@ -283,9 +283,6 @@ def vstack(tup, *, dtype=None, casting="same_kind"):
[6]])
"""
- if not overrides.ARRAY_FUNCTION_ENABLED:
- # reject non-sequences (and make tuple)
- tup = _arrays_for_stack_dispatcher(tup)
arrs = atleast_2d(*tup)
if not isinstance(arrs, list):
arrs = [arrs]
@@ -352,10 +349,6 @@ def hstack(tup, *, dtype=None, casting="same_kind"):
[3, 6]])
"""
- if not overrides.ARRAY_FUNCTION_ENABLED:
- # reject non-sequences (and make tuple)
- tup = _arrays_for_stack_dispatcher(tup)
-
arrs = atleast_1d(*tup)
if not isinstance(arrs, list):
arrs = [arrs]
@@ -447,10 +440,6 @@ def stack(arrays, axis=0, out=None, *, dtype=None, casting="same_kind"):
[3, 6]])
"""
- if not overrides.ARRAY_FUNCTION_ENABLED:
- # reject non-sequences (and make tuple)
- arrays = _arrays_for_stack_dispatcher(arrays)
-
arrays = [asanyarray(arr) for arr in arrays]
if not arrays:
raise ValueError('need at least one array to stack')
diff --git a/numpy/core/src/common/simd/vec/memory.h b/numpy/core/src/common/simd/vec/memory.h
index de78d02e3..1ad39cead 100644
--- a/numpy/core/src/common/simd/vec/memory.h
+++ b/numpy/core/src/common/simd/vec/memory.h
@@ -205,9 +205,9 @@ NPY_FINLINE npyv_s32 npyv_load_till_s32(const npy_int32 *ptr, npy_uintp nlane, n
assert(nlane > 0);
npyv_s32 vfill = npyv_setall_s32(fill);
#ifdef NPY_HAVE_VX
- const unsigned blane = (unsigned short)nlane;
+ const unsigned blane = (nlane > 4) ? 4 : nlane;
const npyv_u32 steps = npyv_set_u32(0, 1, 2, 3);
- const npyv_u32 vlane = npyv_setall_u32((unsigned)blane);
+ const npyv_u32 vlane = npyv_setall_u32(blane);
const npyv_b32 mask = vec_cmpgt(vlane, steps);
npyv_s32 a = vec_load_len(ptr, blane*4-1);
return vec_sel(vfill, a, mask);
@@ -233,8 +233,8 @@ NPY_FINLINE npyv_s32 npyv_load_till_s32(const npy_int32 *ptr, npy_uintp nlane, n
NPY_FINLINE npyv_s32 npyv_load_tillz_s32(const npy_int32 *ptr, npy_uintp nlane)
{
#ifdef NPY_HAVE_VX
- unsigned blane = ((unsigned short)nlane)*4 - 1;
- return vec_load_len(ptr, blane);
+ unsigned blane = (nlane > 4) ? 4 : nlane;
+ return vec_load_len(ptr, blane*4-1);
#else
return npyv_load_till_s32(ptr, nlane, 0);
#endif
@@ -252,7 +252,7 @@ NPY_FINLINE npyv_s64 npyv_load_till_s64(const npy_int64 *ptr, npy_uintp nlane, n
NPY_FINLINE npyv_s64 npyv_load_tillz_s64(const npy_int64 *ptr, npy_uintp nlane)
{
#ifdef NPY_HAVE_VX
- unsigned blane = (unsigned short)nlane;
+ unsigned blane = (nlane > 2) ? 2 : nlane;
return vec_load_len((const signed long long*)ptr, blane*8-1);
#else
return npyv_load_till_s64(ptr, nlane, 0);
@@ -354,7 +354,7 @@ NPY_FINLINE void npyv_store_till_s32(npy_int32 *ptr, npy_uintp nlane, npyv_s32 a
{
assert(nlane > 0);
#ifdef NPY_HAVE_VX
- unsigned blane = (unsigned short)nlane;
+ unsigned blane = (nlane > 4) ? 4 : nlane;
vec_store_len(a, ptr, blane*4-1);
#else
switch(nlane) {
@@ -378,7 +378,7 @@ NPY_FINLINE void npyv_store_till_s64(npy_int64 *ptr, npy_uintp nlane, npyv_s64 a
{
assert(nlane > 0);
#ifdef NPY_HAVE_VX
- unsigned blane = (unsigned short)nlane;
+ unsigned blane = (nlane > 2) ? 2 : nlane;
vec_store_len(a, (signed long long*)ptr, blane*8-1);
#else
if (nlane == 1) {
diff --git a/numpy/core/src/common/ucsnarrow.h b/numpy/core/src/common/ucsnarrow.h
index 6fe157199..4b17a2809 100644
--- a/numpy/core/src/common/ucsnarrow.h
+++ b/numpy/core/src/common/ucsnarrow.h
@@ -2,6 +2,6 @@
#define NUMPY_CORE_SRC_COMMON_NPY_UCSNARROW_H_
NPY_NO_EXPORT PyUnicodeObject *
-PyUnicode_FromUCS4(char *src, Py_ssize_t size, int swap, int align);
+PyUnicode_FromUCS4(char const *src, Py_ssize_t size, int swap, int align);
#endif /* NUMPY_CORE_SRC_COMMON_NPY_UCSNARROW_H_ */
diff --git a/numpy/core/src/multiarray/array_coercion.c b/numpy/core/src/multiarray/array_coercion.c
index d6bee1a7b..d55a5752b 100644
--- a/numpy/core/src/multiarray/array_coercion.c
+++ b/numpy/core/src/multiarray/array_coercion.c
@@ -878,7 +878,8 @@ find_descriptor_from_array(
* means that legacy behavior is used: The dtype instances "S0", "U0", and
* "V0" are converted to mean the DType classes instead.
* When dtype != NULL, this path is ignored, and the function does nothing
- * unless descr == NULL.
+ * unless descr == NULL. If both descr and dtype are null, it returns the
+ * descriptor for the array.
*
* This function is identical to normal casting using only the dtype, however,
* it supports inspecting the elements when the array has object dtype
@@ -927,7 +928,7 @@ PyArray_AdaptDescriptorToArray(
/* This is an object array but contained no elements, use default */
new_descr = NPY_DT_CALL_default_descr(dtype);
}
- Py_DECREF(dtype);
+ Py_XDECREF(dtype);
return new_descr;
}
@@ -1280,7 +1281,9 @@ PyArray_DiscoverDTypeAndShape(
}
if (requested_descr != NULL) {
- assert(fixed_DType == NPY_DTYPE(requested_descr));
+ if (fixed_DType != NULL) {
+ assert(fixed_DType == NPY_DTYPE(requested_descr));
+ }
/* The output descriptor must be the input. */
Py_INCREF(requested_descr);
*out_descr = requested_descr;
diff --git a/numpy/core/src/multiarray/buffer.c b/numpy/core/src/multiarray/buffer.c
index 76652550a..c9d881e16 100644
--- a/numpy/core/src/multiarray/buffer.c
+++ b/numpy/core/src/multiarray/buffer.c
@@ -17,6 +17,7 @@
#include "numpyos.h"
#include "arrayobject.h"
#include "scalartypes.h"
+#include "dtypemeta.h"
/*************************************************************************
**************** Implement Buffer Protocol ****************************
@@ -417,9 +418,16 @@ _buffer_format_string(PyArray_Descr *descr, _tmp_string_t *str,
break;
}
default:
- PyErr_Format(PyExc_ValueError,
- "cannot include dtype '%c' in a buffer",
- descr->type);
+ if (NPY_DT_is_legacy(NPY_DTYPE(descr))) {
+ PyErr_Format(PyExc_ValueError,
+ "cannot include dtype '%c' in a buffer",
+ descr->type);
+ }
+ else {
+ PyErr_Format(PyExc_ValueError,
+ "cannot include dtype '%s' in a buffer",
+ ((PyTypeObject*)NPY_DTYPE(descr))->tp_name);
+ }
return -1;
}
}
diff --git a/numpy/core/src/multiarray/calculation.c b/numpy/core/src/multiarray/calculation.c
index a985a2308..62a994c64 100644
--- a/numpy/core/src/multiarray/calculation.c
+++ b/numpy/core/src/multiarray/calculation.c
@@ -7,6 +7,7 @@
#include "numpy/arrayobject.h"
#include "lowlevel_strided_loops.h"
+#include "dtypemeta.h"
#include "npy_config.h"
@@ -50,7 +51,7 @@ _PyArray_ArgMinMaxCommon(PyArrayObject *op,
int axis_copy = axis;
npy_intp _shape_buf[NPY_MAXDIMS];
npy_intp *out_shape;
- // Keep the number of dimensions and shape of
+ // Keep the number of dimensions and shape of
// original array. Helps when `keepdims` is True.
npy_intp* original_op_shape = PyArray_DIMS(op);
int out_ndim = PyArray_NDIM(op);
@@ -87,9 +88,13 @@ _PyArray_ArgMinMaxCommon(PyArrayObject *op,
op = ap;
}
- /* Will get native-byte order contiguous copy. */
- ap = (PyArrayObject *)PyArray_ContiguousFromAny((PyObject *)op,
- PyArray_DESCR(op)->type_num, 1, 0);
+ // Will get native-byte order contiguous copy.
+ PyArray_Descr *descr = NPY_DT_CALL_ensure_canonical(PyArray_DESCR(op));
+ if (descr == NULL) {
+ return NULL;
+ }
+ ap = (PyArrayObject *)PyArray_FromArray(op, descr, NPY_ARRAY_DEFAULT);
+
Py_DECREF(op);
if (ap == NULL) {
return NULL;
@@ -106,9 +111,9 @@ _PyArray_ArgMinMaxCommon(PyArrayObject *op,
for (int i = 0; i < out_ndim; i++) {
out_shape[i] = 1;
}
- }
+ }
else {
- /*
+ /*
* While `ap` may be transposed, we can ignore this for `out` because the
* transpose only reorders the size 1 `axis` (not changing memory layout).
*/
diff --git a/numpy/core/src/multiarray/convert.c b/numpy/core/src/multiarray/convert.c
index e99bc3fe4..9e0c9fb60 100644
--- a/numpy/core/src/multiarray/convert.c
+++ b/numpy/core/src/multiarray/convert.c
@@ -21,6 +21,7 @@
#include "convert.h"
#include "array_coercion.h"
+#include "refcount.h"
int
fallocate(int fd, int mode, off_t offset, off_t len);
@@ -416,7 +417,7 @@ PyArray_FillWithScalar(PyArrayObject *arr, PyObject *obj)
descr, value);
if (PyDataType_REFCHK(descr)) {
- PyArray_Item_XDECREF(value, descr);
+ PyArray_ClearBuffer(descr, value, 0, 1, 1);
}
PyMem_FREE(value_buffer_heap);
return retcode;
diff --git a/numpy/core/src/multiarray/ctors.c b/numpy/core/src/multiarray/ctors.c
index 38af60427..a6335c783 100644
--- a/numpy/core/src/multiarray/ctors.c
+++ b/numpy/core/src/multiarray/ctors.c
@@ -1605,6 +1605,37 @@ NPY_NO_EXPORT PyObject *
PyArray_FromAny(PyObject *op, PyArray_Descr *newtype, int min_depth,
int max_depth, int flags, PyObject *context)
{
+ npy_dtype_info dt_info = {NULL, NULL};
+
+ int res = PyArray_ExtractDTypeAndDescriptor(
+ newtype, &dt_info.descr, &dt_info.dtype);
+
+ Py_XDECREF(newtype);
+
+ if (res < 0) {
+ Py_XDECREF(dt_info.descr);
+ Py_XDECREF(dt_info.dtype);
+ return NULL;
+ }
+
+ PyObject* ret = PyArray_FromAny_int(op, dt_info.descr, dt_info.dtype,
+ min_depth, max_depth, flags, context);
+
+ Py_XDECREF(dt_info.descr);
+ Py_XDECREF(dt_info.dtype);
+ return ret;
+}
+
+/*
+ * Internal version of PyArray_FromAny that accepts a dtypemeta. Borrows
+ * references to the descriptor and dtype.
+ */
+
+NPY_NO_EXPORT PyObject *
+PyArray_FromAny_int(PyObject *op, PyArray_Descr *in_descr,
+ PyArray_DTypeMeta *in_DType, int min_depth, int max_depth,
+ int flags, PyObject *context)
+{
/*
* This is the main code to make a NumPy array from a Python
* Object. It is called from many different places.
@@ -1620,26 +1651,15 @@ PyArray_FromAny(PyObject *op, PyArray_Descr *newtype, int min_depth,
return NULL;
}
- PyArray_Descr *fixed_descriptor;
- PyArray_DTypeMeta *fixed_DType;
- if (PyArray_ExtractDTypeAndDescriptor(newtype,
- &fixed_descriptor, &fixed_DType) < 0) {
- Py_XDECREF(newtype);
- return NULL;
- }
- Py_XDECREF(newtype);
-
ndim = PyArray_DiscoverDTypeAndShape(op,
- NPY_MAXDIMS, dims, &cache, fixed_DType, fixed_descriptor, &dtype,
+ NPY_MAXDIMS, dims, &cache, in_DType, in_descr, &dtype,
flags & NPY_ARRAY_ENSURENOCOPY);
- Py_XDECREF(fixed_descriptor);
- Py_XDECREF(fixed_DType);
if (ndim < 0) {
return NULL;
}
- if (NPY_UNLIKELY(fixed_descriptor != NULL && PyDataType_HASSUBARRAY(dtype))) {
+ if (NPY_UNLIKELY(in_descr != NULL && PyDataType_HASSUBARRAY(dtype))) {
/*
* When a subarray dtype was passed in, its dimensions are appended
* to the array dimension (causing a dimension mismatch).
@@ -1737,7 +1757,7 @@ PyArray_FromAny(PyObject *op, PyArray_Descr *newtype, int min_depth,
}
else if (cache == NULL && PyArray_IsScalar(op, Void) &&
!(((PyVoidScalarObject *)op)->flags & NPY_ARRAY_OWNDATA) &&
- newtype == NULL) {
+ ((in_descr == NULL) && (in_DType == NULL))) {
/*
* Special case, we return a *view* into void scalars, mainly to
* allow things similar to the "reversed" assignment:
@@ -1768,7 +1788,7 @@ PyArray_FromAny(PyObject *op, PyArray_Descr *newtype, int min_depth,
return NULL;
}
- if (cache == NULL && newtype != NULL &&
+ if (cache == NULL && in_descr != NULL &&
PyDataType_ISSIGNED(dtype) &&
PyArray_IsScalar(op, Generic)) {
assert(ndim == 0);
@@ -1899,7 +1919,6 @@ PyArray_FromAny(PyObject *op, PyArray_Descr *newtype, int min_depth,
* NPY_ARRAY_FORCECAST will cause a cast to occur regardless of whether or not
* it is safe.
*
- * context is passed through to PyArray_GetArrayParamsFromObject
*/
/*NUMPY_API
@@ -1909,24 +1928,57 @@ NPY_NO_EXPORT PyObject *
PyArray_CheckFromAny(PyObject *op, PyArray_Descr *descr, int min_depth,
int max_depth, int requires, PyObject *context)
{
+ npy_dtype_info dt_info = {NULL, NULL};
+
+ int res = PyArray_ExtractDTypeAndDescriptor(
+ descr, &dt_info.descr, &dt_info.dtype);
+
+ Py_XDECREF(descr);
+
+ if (res < 0) {
+ Py_XDECREF(dt_info.descr);
+ Py_XDECREF(dt_info.dtype);
+ return NULL;
+ }
+
+ PyObject* ret = PyArray_CheckFromAny_int(
+ op, dt_info.descr, dt_info.dtype, min_depth, max_depth, requires,
+ context);
+
+ Py_XDECREF(dt_info.descr);
+ Py_XDECREF(dt_info.dtype);
+ return ret;
+}
+
+/*
+ * Internal version of PyArray_CheckFromAny that accepts a dtypemeta. Borrows
+ * references to the descriptor and dtype.
+ */
+
+NPY_NO_EXPORT PyObject *
+PyArray_CheckFromAny_int(PyObject *op, PyArray_Descr *in_descr,
+ PyArray_DTypeMeta *in_DType, int min_depth,
+ int max_depth, int requires, PyObject *context)
+{
PyObject *obj;
if (requires & NPY_ARRAY_NOTSWAPPED) {
- if (!descr && PyArray_Check(op) &&
+ if (!in_descr && PyArray_Check(op) &&
PyArray_ISBYTESWAPPED((PyArrayObject* )op)) {
- descr = PyArray_DescrNew(PyArray_DESCR((PyArrayObject *)op));
- if (descr == NULL) {
+ in_descr = PyArray_DescrNew(PyArray_DESCR((PyArrayObject *)op));
+ if (in_descr == NULL) {
return NULL;
}
}
- else if (descr && !PyArray_ISNBO(descr->byteorder)) {
- PyArray_DESCR_REPLACE(descr);
+ else if (in_descr && !PyArray_ISNBO(in_descr->byteorder)) {
+ PyArray_DESCR_REPLACE(in_descr);
}
- if (descr && descr->byteorder != NPY_IGNORE) {
- descr->byteorder = NPY_NATIVE;
+ if (in_descr && in_descr->byteorder != NPY_IGNORE) {
+ in_descr->byteorder = NPY_NATIVE;
}
}
- obj = PyArray_FromAny(op, descr, min_depth, max_depth, requires, context);
+ obj = PyArray_FromAny_int(op, in_descr, in_DType, min_depth,
+ max_depth, requires, context);
if (obj == NULL) {
return NULL;
}
diff --git a/numpy/core/src/multiarray/ctors.h b/numpy/core/src/multiarray/ctors.h
index 98160b1cc..22020e26a 100644
--- a/numpy/core/src/multiarray/ctors.h
+++ b/numpy/core/src/multiarray/ctors.h
@@ -36,10 +36,20 @@ _array_from_array_like(PyObject *op,
int never_copy);
NPY_NO_EXPORT PyObject *
+PyArray_FromAny_int(PyObject *op, PyArray_Descr *in_descr,
+ PyArray_DTypeMeta *in_DType, int min_depth, int max_depth,
+ int flags, PyObject *context);
+
+NPY_NO_EXPORT PyObject *
PyArray_FromAny(PyObject *op, PyArray_Descr *newtype, int min_depth,
int max_depth, int flags, PyObject *context);
NPY_NO_EXPORT PyObject *
+PyArray_CheckFromAny_int(PyObject *op, PyArray_Descr *in_descr,
+ PyArray_DTypeMeta *in_DType, int min_depth,
+ int max_depth, int requires, PyObject *context);
+
+NPY_NO_EXPORT PyObject *
PyArray_CheckFromAny(PyObject *op, PyArray_Descr *descr, int min_depth,
int max_depth, int requires, PyObject *context);
diff --git a/numpy/core/src/multiarray/datetime_busday.c b/numpy/core/src/multiarray/datetime_busday.c
index d3e9e1451..93ed0972e 100644
--- a/numpy/core/src/multiarray/datetime_busday.c
+++ b/numpy/core/src/multiarray/datetime_busday.c
@@ -365,6 +365,7 @@ apply_business_day_count(npy_datetime date_begin, npy_datetime date_end,
npy_datetime *holidays_begin, npy_datetime *holidays_end)
{
npy_int64 count, whole_weeks;
+
int day_of_week = 0;
int swapped = 0;
@@ -386,6 +387,10 @@ apply_business_day_count(npy_datetime date_begin, npy_datetime date_end,
date_begin = date_end;
date_end = tmp;
swapped = 1;
+ // we swapped date_begin and date_end, so we need to correct for the
+ // original date_end that should not be included. gh-23197
+ date_begin++;
+ date_end++;
}
/* Remove any earlier holidays */
diff --git a/numpy/core/src/multiarray/methods.c b/numpy/core/src/multiarray/methods.c
index f518f3a02..93b290020 100644
--- a/numpy/core/src/multiarray/methods.c
+++ b/numpy/core/src/multiarray/methods.c
@@ -28,6 +28,7 @@
#include "strfuncs.h"
#include "array_assign.h"
#include "npy_dlpack.h"
+#include "multiarraymodule.h"
#include "methods.h"
#include "alloc.h"
@@ -1102,7 +1103,7 @@ any_array_ufunc_overrides(PyObject *args, PyObject *kwds)
int nin, nout;
PyObject *out_kwd_obj;
PyObject *fast;
- PyObject **in_objs, **out_objs;
+ PyObject **in_objs, **out_objs, *where_obj;
/* check inputs */
nin = PyTuple_Size(args);
@@ -1133,6 +1134,17 @@ any_array_ufunc_overrides(PyObject *args, PyObject *kwds)
}
}
Py_DECREF(out_kwd_obj);
+ /* check where if it exists */
+ where_obj = PyDict_GetItemWithError(kwds, npy_ma_str_where);
+ if (where_obj == NULL) {
+ if (PyErr_Occurred()) {
+ return -1;
+ }
+ } else {
+ if (PyUFunc_HasOverride(where_obj)){
+ return 1;
+ }
+ }
return 0;
}
diff --git a/numpy/core/src/multiarray/multiarraymodule.c b/numpy/core/src/multiarray/multiarraymodule.c
index e85f8affa..98ca15ac4 100644
--- a/numpy/core/src/multiarray/multiarraymodule.c
+++ b/numpy/core/src/multiarray/multiarraymodule.c
@@ -1042,12 +1042,11 @@ PyArray_MatrixProduct2(PyObject *op1, PyObject *op2, PyArrayObject* out)
#endif
if (PyArray_NDIM(ap1) == 0 || PyArray_NDIM(ap2) == 0) {
- result = (PyArray_NDIM(ap1) == 0 ? ap1 : ap2);
- result = (PyArrayObject *)Py_TYPE(result)->tp_as_number->nb_multiply(
- (PyObject *)ap1, (PyObject *)ap2);
+ PyObject *mul_res = PyObject_CallFunctionObjArgs(
+ n_ops.multiply, ap1, ap2, out, NULL);
Py_DECREF(ap1);
Py_DECREF(ap2);
- return (PyObject *)result;
+ return mul_res;
}
l = PyArray_DIMS(ap1)[PyArray_NDIM(ap1) - 1];
if (PyArray_NDIM(ap2) > 1) {
@@ -1635,25 +1634,35 @@ _prepend_ones(PyArrayObject *arr, int nd, int ndmin, NPY_ORDER order)
((order) == NPY_CORDER && PyArray_IS_C_CONTIGUOUS(op)) || \
((order) == NPY_FORTRANORDER && PyArray_IS_F_CONTIGUOUS(op)))
+
static inline PyObject *
_array_fromobject_generic(
- PyObject *op, PyArray_Descr *type, _PyArray_CopyMode copy, NPY_ORDER order,
- npy_bool subok, int ndmin)
+ PyObject *op, PyArray_Descr *in_descr, PyArray_DTypeMeta *in_DType,
+ _PyArray_CopyMode copy, NPY_ORDER order, npy_bool subok, int ndmin)
{
PyArrayObject *oparr = NULL, *ret = NULL;
PyArray_Descr *oldtype = NULL;
int nd, flags = 0;
+ /* Hold on to `in_descr` as `dtype`, since we may also set it below. */
+ Py_XINCREF(in_descr);
+ PyArray_Descr *dtype = in_descr;
+
if (ndmin > NPY_MAXDIMS) {
PyErr_Format(PyExc_ValueError,
"ndmin bigger than allowable number of dimensions "
"NPY_MAXDIMS (=%d)", NPY_MAXDIMS);
- return NULL;
+ goto finish;
}
/* fast exit if simple call */
if (PyArray_CheckExact(op) || (subok && PyArray_Check(op))) {
oparr = (PyArrayObject *)op;
- if (type == NULL) {
+
+ if (dtype == NULL && in_DType == NULL) {
+ /*
+ * User did not ask for a specific dtype instance or class. So
+ * we can return either self or a copy.
+ */
if (copy != NPY_COPY_ALWAYS && STRIDING_OK(oparr, order)) {
ret = oparr;
Py_INCREF(ret);
@@ -1663,17 +1672,30 @@ _array_fromobject_generic(
if (copy == NPY_COPY_NEVER) {
PyErr_SetString(PyExc_ValueError,
"Unable to avoid copy while creating a new array.");
- return NULL;
+ goto finish;
}
ret = (PyArrayObject *)PyArray_NewCopy(oparr, order);
goto finish;
}
}
+ else if (dtype == NULL) {
+ /*
+ * If the user passed a DType class but not a dtype instance,
+ * we must use `PyArray_AdaptDescriptorToArray` to find the
+ * correct dtype instance.
+ * Even if the fast-path doesn't work we will use this.
+ */
+ dtype = PyArray_AdaptDescriptorToArray(oparr, in_DType, NULL);
+ if (dtype == NULL) {
+ goto finish;
+ }
+ }
+
/* One more chance for faster exit if user specified the dtype. */
oldtype = PyArray_DESCR(oparr);
- if (PyArray_EquivTypes(oldtype, type)) {
+ if (PyArray_EquivTypes(oldtype, dtype)) {
if (copy != NPY_COPY_ALWAYS && STRIDING_OK(oparr, order)) {
- if (oldtype == type) {
+ if (oldtype == dtype) {
Py_INCREF(op);
ret = oparr;
}
@@ -1681,10 +1703,10 @@ _array_fromobject_generic(
/* Create a new PyArrayObject from the caller's
* PyArray_Descr. Use the reference `op` as the base
* object. */
- Py_INCREF(type);
+ Py_INCREF(dtype);
ret = (PyArrayObject *)PyArray_NewFromDescrAndBase(
Py_TYPE(op),
- type,
+ dtype,
PyArray_NDIM(oparr),
PyArray_DIMS(oparr),
PyArray_STRIDES(oparr),
@@ -1700,10 +1722,10 @@ _array_fromobject_generic(
if (copy == NPY_COPY_NEVER) {
PyErr_SetString(PyExc_ValueError,
"Unable to avoid copy while creating a new array.");
- return NULL;
+ goto finish;
}
ret = (PyArrayObject *)PyArray_NewCopy(oparr, order);
- if (oldtype == type || ret == NULL) {
+ if (oldtype == dtype || ret == NULL) {
goto finish;
}
Py_INCREF(oldtype);
@@ -1734,11 +1756,13 @@ _array_fromobject_generic(
}
flags |= NPY_ARRAY_FORCECAST;
- Py_XINCREF(type);
- ret = (PyArrayObject *)PyArray_CheckFromAny(op, type,
- 0, 0, flags, NULL);
+
+ ret = (PyArrayObject *)PyArray_CheckFromAny_int(
+ op, dtype, in_DType, 0, 0, flags, NULL);
finish:
+ Py_XDECREF(dtype);
+
if (ret == NULL) {
return NULL;
}
@@ -1765,7 +1789,7 @@ array_array(PyObject *NPY_UNUSED(ignored),
npy_bool subok = NPY_FALSE;
_PyArray_CopyMode copy = NPY_COPY_ALWAYS;
int ndmin = 0;
- PyArray_Descr *type = NULL;
+ npy_dtype_info dt_info = {NULL, NULL};
NPY_ORDER order = NPY_KEEPORDER;
PyObject *like = Py_None;
NPY_PREPARE_ARGPARSER;
@@ -1773,21 +1797,23 @@ array_array(PyObject *NPY_UNUSED(ignored),
if (len_args != 1 || (kwnames != NULL)) {
if (npy_parse_arguments("array", args, len_args, kwnames,
"object", NULL, &op,
- "|dtype", &PyArray_DescrConverter2, &type,
+ "|dtype", &PyArray_DTypeOrDescrConverterOptional, &dt_info,
"$copy", &PyArray_CopyConverter, &copy,
"$order", &PyArray_OrderConverter, &order,
"$subok", &PyArray_BoolConverter, &subok,
"$ndmin", &PyArray_PythonPyIntFromInt, &ndmin,
"$like", NULL, &like,
NULL, NULL, NULL) < 0) {
- Py_XDECREF(type);
+ Py_XDECREF(dt_info.descr);
+ Py_XDECREF(dt_info.dtype);
return NULL;
}
if (like != Py_None) {
PyObject *deferred = array_implement_c_array_function_creation(
"array", like, NULL, NULL, args, len_args, kwnames);
if (deferred != Py_NotImplemented) {
- Py_XDECREF(type);
+ Py_XDECREF(dt_info.descr);
+ Py_XDECREF(dt_info.dtype);
return deferred;
}
}
@@ -1798,8 +1824,9 @@ array_array(PyObject *NPY_UNUSED(ignored),
}
PyObject *res = _array_fromobject_generic(
- op, type, copy, order, subok, ndmin);
- Py_XDECREF(type);
+ op, dt_info.descr, dt_info.dtype, copy, order, subok, ndmin);
+ Py_XDECREF(dt_info.descr);
+ Py_XDECREF(dt_info.dtype);
return res;
}
@@ -1808,7 +1835,7 @@ array_asarray(PyObject *NPY_UNUSED(ignored),
PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames)
{
PyObject *op;
- PyArray_Descr *type = NULL;
+ npy_dtype_info dt_info = {NULL, NULL};
NPY_ORDER order = NPY_KEEPORDER;
PyObject *like = Py_None;
NPY_PREPARE_ARGPARSER;
@@ -1816,18 +1843,20 @@ array_asarray(PyObject *NPY_UNUSED(ignored),
if (len_args != 1 || (kwnames != NULL)) {
if (npy_parse_arguments("asarray", args, len_args, kwnames,
"a", NULL, &op,
- "|dtype", &PyArray_DescrConverter2, &type,
+ "|dtype", &PyArray_DTypeOrDescrConverterOptional, &dt_info,
"|order", &PyArray_OrderConverter, &order,
"$like", NULL, &like,
NULL, NULL, NULL) < 0) {
- Py_XDECREF(type);
+ Py_XDECREF(dt_info.descr);
+ Py_XDECREF(dt_info.dtype);
return NULL;
}
if (like != Py_None) {
PyObject *deferred = array_implement_c_array_function_creation(
"asarray", like, NULL, NULL, args, len_args, kwnames);
if (deferred != Py_NotImplemented) {
- Py_XDECREF(type);
+ Py_XDECREF(dt_info.descr);
+ Py_XDECREF(dt_info.dtype);
return deferred;
}
}
@@ -1837,8 +1866,9 @@ array_asarray(PyObject *NPY_UNUSED(ignored),
}
PyObject *res = _array_fromobject_generic(
- op, type, NPY_FALSE, order, NPY_FALSE, 0);
- Py_XDECREF(type);
+ op, dt_info.descr, dt_info.dtype, NPY_FALSE, order, NPY_FALSE, 0);
+ Py_XDECREF(dt_info.descr);
+ Py_XDECREF(dt_info.dtype);
return res;
}
@@ -1847,7 +1877,7 @@ array_asanyarray(PyObject *NPY_UNUSED(ignored),
PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames)
{
PyObject *op;
- PyArray_Descr *type = NULL;
+ npy_dtype_info dt_info = {NULL, NULL};
NPY_ORDER order = NPY_KEEPORDER;
PyObject *like = Py_None;
NPY_PREPARE_ARGPARSER;
@@ -1855,18 +1885,20 @@ array_asanyarray(PyObject *NPY_UNUSED(ignored),
if (len_args != 1 || (kwnames != NULL)) {
if (npy_parse_arguments("asanyarray", args, len_args, kwnames,
"a", NULL, &op,
- "|dtype", &PyArray_DescrConverter2, &type,
+ "|dtype", &PyArray_DTypeOrDescrConverterOptional, &dt_info,
"|order", &PyArray_OrderConverter, &order,
"$like", NULL, &like,
NULL, NULL, NULL) < 0) {
- Py_XDECREF(type);
+ Py_XDECREF(dt_info.descr);
+ Py_XDECREF(dt_info.dtype);
return NULL;
}
if (like != Py_None) {
PyObject *deferred = array_implement_c_array_function_creation(
"asanyarray", like, NULL, NULL, args, len_args, kwnames);
if (deferred != Py_NotImplemented) {
- Py_XDECREF(type);
+ Py_XDECREF(dt_info.descr);
+ Py_XDECREF(dt_info.dtype);
return deferred;
}
}
@@ -1876,8 +1908,9 @@ array_asanyarray(PyObject *NPY_UNUSED(ignored),
}
PyObject *res = _array_fromobject_generic(
- op, type, NPY_FALSE, order, NPY_TRUE, 0);
- Py_XDECREF(type);
+ op, dt_info.descr, dt_info.dtype, NPY_FALSE, order, NPY_TRUE, 0);
+ Py_XDECREF(dt_info.descr);
+ Py_XDECREF(dt_info.dtype);
return res;
}
@@ -1887,24 +1920,26 @@ array_ascontiguousarray(PyObject *NPY_UNUSED(ignored),
PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames)
{
PyObject *op;
- PyArray_Descr *type = NULL;
+ npy_dtype_info dt_info = {NULL, NULL};
PyObject *like = Py_None;
NPY_PREPARE_ARGPARSER;
if (len_args != 1 || (kwnames != NULL)) {
if (npy_parse_arguments("ascontiguousarray", args, len_args, kwnames,
"a", NULL, &op,
- "|dtype", &PyArray_DescrConverter2, &type,
+ "|dtype", &PyArray_DTypeOrDescrConverterOptional, &dt_info,
"$like", NULL, &like,
NULL, NULL, NULL) < 0) {
- Py_XDECREF(type);
+ Py_XDECREF(dt_info.descr);
+ Py_XDECREF(dt_info.dtype);
return NULL;
}
if (like != Py_None) {
PyObject *deferred = array_implement_c_array_function_creation(
"ascontiguousarray", like, NULL, NULL, args, len_args, kwnames);
if (deferred != Py_NotImplemented) {
- Py_XDECREF(type);
+ Py_XDECREF(dt_info.descr);
+ Py_XDECREF(dt_info.dtype);
return deferred;
}
}
@@ -1914,8 +1949,10 @@ array_ascontiguousarray(PyObject *NPY_UNUSED(ignored),
}
PyObject *res = _array_fromobject_generic(
- op, type, NPY_FALSE, NPY_CORDER, NPY_FALSE, 1);
- Py_XDECREF(type);
+ op, dt_info.descr, dt_info.dtype, NPY_FALSE, NPY_CORDER, NPY_FALSE,
+ 1);
+ Py_XDECREF(dt_info.descr);
+ Py_XDECREF(dt_info.dtype);
return res;
}
@@ -1925,24 +1962,26 @@ array_asfortranarray(PyObject *NPY_UNUSED(ignored),
PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames)
{
PyObject *op;
- PyArray_Descr *type = NULL;
+ npy_dtype_info dt_info = {NULL, NULL};
PyObject *like = Py_None;
NPY_PREPARE_ARGPARSER;
if (len_args != 1 || (kwnames != NULL)) {
if (npy_parse_arguments("asfortranarray", args, len_args, kwnames,
"a", NULL, &op,
- "|dtype", &PyArray_DescrConverter2, &type,
+ "|dtype", &PyArray_DTypeOrDescrConverterOptional, &dt_info,
"$like", NULL, &like,
NULL, NULL, NULL) < 0) {
- Py_XDECREF(type);
+ Py_XDECREF(dt_info.descr);
+ Py_XDECREF(dt_info.dtype);
return NULL;
}
if (like != Py_None) {
PyObject *deferred = array_implement_c_array_function_creation(
"asfortranarray", like, NULL, NULL, args, len_args, kwnames);
if (deferred != Py_NotImplemented) {
- Py_XDECREF(type);
+ Py_XDECREF(dt_info.descr);
+ Py_XDECREF(dt_info.dtype);
return deferred;
}
}
@@ -1952,8 +1991,10 @@ array_asfortranarray(PyObject *NPY_UNUSED(ignored),
}
PyObject *res = _array_fromobject_generic(
- op, type, NPY_FALSE, NPY_FORTRANORDER, NPY_FALSE, 1);
- Py_XDECREF(type);
+ op, dt_info.descr, dt_info.dtype, NPY_FALSE, NPY_FORTRANORDER,
+ NPY_FALSE, 1);
+ Py_XDECREF(dt_info.descr);
+ Py_XDECREF(dt_info.dtype);
return res;
}
@@ -4843,6 +4884,7 @@ NPY_VISIBILITY_HIDDEN PyObject * npy_ma_str_axis1 = NULL;
NPY_VISIBILITY_HIDDEN PyObject * npy_ma_str_axis2 = NULL;
NPY_VISIBILITY_HIDDEN PyObject * npy_ma_str_like = NULL;
NPY_VISIBILITY_HIDDEN PyObject * npy_ma_str_numpy = NULL;
+NPY_VISIBILITY_HIDDEN PyObject * npy_ma_str_where = NULL;
static int
intern_strings(void)
@@ -4899,6 +4941,10 @@ intern_strings(void)
if (npy_ma_str_numpy == NULL) {
return -1;
}
+ npy_ma_str_where = PyUnicode_InternFromString("where");
+ if (npy_ma_str_where == NULL) {
+ return -1;
+ }
return 0;
}
diff --git a/numpy/core/src/multiarray/multiarraymodule.h b/numpy/core/src/multiarray/multiarraymodule.h
index 992acd09f..9ba2a1831 100644
--- a/numpy/core/src/multiarray/multiarraymodule.h
+++ b/numpy/core/src/multiarray/multiarraymodule.h
@@ -16,5 +16,6 @@ NPY_VISIBILITY_HIDDEN extern PyObject * npy_ma_str_axis1;
NPY_VISIBILITY_HIDDEN extern PyObject * npy_ma_str_axis2;
NPY_VISIBILITY_HIDDEN extern PyObject * npy_ma_str_like;
NPY_VISIBILITY_HIDDEN extern PyObject * npy_ma_str_numpy;
+NPY_VISIBILITY_HIDDEN extern PyObject * npy_ma_str_where;
#endif /* NUMPY_CORE_SRC_MULTIARRAY_MULTIARRAYMODULE_H_ */
diff --git a/numpy/core/src/multiarray/number.c b/numpy/core/src/multiarray/number.c
index 2e25152d5..c208fb203 100644
--- a/numpy/core/src/multiarray/number.c
+++ b/numpy/core/src/multiarray/number.c
@@ -53,6 +53,8 @@ static PyObject *
array_inplace_remainder(PyArrayObject *m1, PyObject *m2);
static PyObject *
array_inplace_power(PyArrayObject *a1, PyObject *o2, PyObject *NPY_UNUSED(modulo));
+static PyObject *
+array_inplace_matrix_multiply(PyArrayObject *m1, PyObject *m2);
/*
* Dictionary can contain any of the numeric operations, by name.
@@ -339,7 +341,6 @@ array_divmod(PyObject *m1, PyObject *m2)
return PyArray_GenericBinaryFunction(m1, m2, n_ops.divmod);
}
-/* Need this to be version dependent on account of the slot check */
static PyObject *
array_matrix_multiply(PyObject *m1, PyObject *m2)
{
@@ -348,13 +349,70 @@ array_matrix_multiply(PyObject *m1, PyObject *m2)
}
static PyObject *
-array_inplace_matrix_multiply(
- PyArrayObject *NPY_UNUSED(m1), PyObject *NPY_UNUSED(m2))
+array_inplace_matrix_multiply(PyArrayObject *self, PyObject *other)
{
- PyErr_SetString(PyExc_TypeError,
- "In-place matrix multiplication is not (yet) supported. "
- "Use 'a = a @ b' instead of 'a @= b'.");
- return NULL;
+ static PyObject *AxisError_cls = NULL;
+ npy_cache_import("numpy.exceptions", "AxisError", &AxisError_cls);
+ if (AxisError_cls == NULL) {
+ return NULL;
+ }
+
+ INPLACE_GIVE_UP_IF_NEEDED(self, other,
+ nb_inplace_matrix_multiply, array_inplace_matrix_multiply);
+
+ /*
+ * Unlike `matmul(a, b, out=a)` we ensure that the result is not broadcast
+ * if the result without `out` would have less dimensions than `a`.
+ * Since the signature of matmul is '(n?,k),(k,m?)->(n?,m?)' this is the
+ * case exactly when the second operand has both core dimensions.
+ *
+ * The error here will be confusing, but for now, we enforce this by
+ * passing the correct `axes=`.
+ */
+ static PyObject *axes_1d_obj_kwargs = NULL;
+ static PyObject *axes_2d_obj_kwargs = NULL;
+ if (NPY_UNLIKELY(axes_1d_obj_kwargs == NULL)) {
+ axes_1d_obj_kwargs = Py_BuildValue(
+ "{s, [(i), (i, i), (i)]}", "axes", -1, -2, -1, -1);
+ if (axes_1d_obj_kwargs == NULL) {
+ return NULL;
+ }
+ }
+ if (NPY_UNLIKELY(axes_2d_obj_kwargs == NULL)) {
+ axes_2d_obj_kwargs = Py_BuildValue(
+ "{s, [(i, i), (i, i), (i, i)]}", "axes", -2, -1, -2, -1, -2, -1);
+ if (axes_2d_obj_kwargs == NULL) {
+ return NULL;
+ }
+ }
+
+ PyObject *args = PyTuple_Pack(3, self, other, self);
+ if (args == NULL) {
+ return NULL;
+ }
+ PyObject *kwargs;
+ if (PyArray_NDIM(self) == 1) {
+ kwargs = axes_1d_obj_kwargs;
+ }
+ else {
+ kwargs = axes_2d_obj_kwargs;
+ }
+ PyObject *res = PyObject_Call(n_ops.matmul, args, kwargs);
+ Py_DECREF(args);
+
+ if (res == NULL) {
+ /*
+ * AxisError should indicate that the axes argument didn't work out
+ * which should mean the second operand not being 2 dimensional.
+ */
+ if (PyErr_ExceptionMatches(AxisError_cls)) {
+ PyErr_SetString(PyExc_ValueError,
+ "inplace matrix multiplication requires the first operand to "
+ "have at least one and the second at least two dimensions.");
+ }
+ }
+
+ return res;
}
/*
diff --git a/numpy/core/src/npymath/npy_math_private.h b/numpy/core/src/npymath/npy_math_private.h
index a474b3de3..20c94f98a 100644
--- a/numpy/core/src/npymath/npy_math_private.h
+++ b/numpy/core/src/npymath/npy_math_private.h
@@ -21,6 +21,7 @@
#include <Python.h>
#ifdef __cplusplus
#include <cmath>
+#include <complex>
using std::isgreater;
using std::isless;
#else
@@ -494,8 +495,9 @@ do { \
* Microsoft C defines _MSC_VER
* Intel compiler does not use MSVC complex types, but defines _MSC_VER by
* default.
+ * since c++17 msvc is no longer support them.
*/
-#if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
+#if !defined(__cplusplus) && defined(_MSC_VER) && !defined(__INTEL_COMPILER)
typedef union {
npy_cdouble npy_z;
_Dcomplex c99_z;
diff --git a/numpy/core/src/npysort/x86-simd-sort b/numpy/core/src/npysort/x86-simd-sort
-Subproject 7d7591cf5927e83e4a1e7c4b6f2c4dc91a97889
+Subproject 58501d026a390895f7fd7ebbe0fb7aea55055ad
diff --git a/numpy/core/src/umath/override.c b/numpy/core/src/umath/override.c
index d247c2639..167164163 100644
--- a/numpy/core/src/umath/override.c
+++ b/numpy/core/src/umath/override.c
@@ -23,18 +23,19 @@
* Returns -1 on failure.
*/
static int
-get_array_ufunc_overrides(PyObject *in_args, PyObject *out_args,
+get_array_ufunc_overrides(PyObject *in_args, PyObject *out_args, PyObject *wheremask_obj,
PyObject **with_override, PyObject **methods)
{
int i;
int num_override_args = 0;
- int narg, nout;
+ int narg, nout, nwhere;
narg = (int)PyTuple_GET_SIZE(in_args);
/* It is valid for out_args to be NULL: */
nout = (out_args != NULL) ? (int)PyTuple_GET_SIZE(out_args) : 0;
+ nwhere = (wheremask_obj != NULL) ? 1: 0;
- for (i = 0; i < narg + nout; ++i) {
+ for (i = 0; i < narg + nout + nwhere; ++i) {
PyObject *obj;
int j;
int new_class = 1;
@@ -42,9 +43,12 @@ get_array_ufunc_overrides(PyObject *in_args, PyObject *out_args,
if (i < narg) {
obj = PyTuple_GET_ITEM(in_args, i);
}
- else {
+ else if (i < narg + nout){
obj = PyTuple_GET_ITEM(out_args, i - narg);
}
+ else {
+ obj = wheremask_obj;
+ }
/*
* Have we seen this class before? If so, ignore.
*/
@@ -208,7 +212,7 @@ copy_positional_args_to_kwargs(const char **keywords,
*/
NPY_NO_EXPORT int
PyUFunc_CheckOverride(PyUFuncObject *ufunc, char *method,
- PyObject *in_args, PyObject *out_args,
+ PyObject *in_args, PyObject *out_args, PyObject *wheremask_obj,
PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames,
PyObject **result)
{
@@ -227,7 +231,7 @@ PyUFunc_CheckOverride(PyUFuncObject *ufunc, char *method,
* Check inputs for overrides
*/
num_override_args = get_array_ufunc_overrides(
- in_args, out_args, with_override, array_ufunc_methods);
+ in_args, out_args, wheremask_obj, with_override, array_ufunc_methods);
if (num_override_args == -1) {
goto fail;
}
diff --git a/numpy/core/src/umath/override.h b/numpy/core/src/umath/override.h
index 4e9a323ca..20621bb19 100644
--- a/numpy/core/src/umath/override.h
+++ b/numpy/core/src/umath/override.h
@@ -6,7 +6,7 @@
NPY_NO_EXPORT int
PyUFunc_CheckOverride(PyUFuncObject *ufunc, char *method,
- PyObject *in_args, PyObject *out_args,
+ PyObject *in_args, PyObject *out_args, PyObject *wheremask_obj,
PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames,
PyObject **result);
diff --git a/numpy/core/src/umath/ufunc_object.c b/numpy/core/src/umath/ufunc_object.c
index a159003de..d4aced05f 100644
--- a/numpy/core/src/umath/ufunc_object.c
+++ b/numpy/core/src/umath/ufunc_object.c
@@ -4071,7 +4071,7 @@ PyUFunc_GenericReduction(PyUFuncObject *ufunc,
/* We now have all the information required to check for Overrides */
PyObject *override = NULL;
int errval = PyUFunc_CheckOverride(ufunc, _reduce_type[operation],
- full_args.in, full_args.out, args, len_args, kwnames, &override);
+ full_args.in, full_args.out, wheremask_obj, args, len_args, kwnames, &override);
if (errval) {
return NULL;
}
@@ -4843,7 +4843,7 @@ ufunc_generic_fastcall(PyUFuncObject *ufunc,
/* We now have all the information required to check for Overrides */
PyObject *override = NULL;
errval = PyUFunc_CheckOverride(ufunc, method,
- full_args.in, full_args.out,
+ full_args.in, full_args.out, where_obj,
args, len_args, kwnames, &override);
if (errval) {
goto fail;
@@ -5935,6 +5935,9 @@ trivial_at_loop(PyArrayMethodObject *ufuncimpl, NPY_ARRAYMETHOD_FLAGS flags,
res = ufuncimpl->contiguous_indexed_loop(
context, args, inner_size, steps, NULL);
+ if (args[2] != NULL) {
+ args[2] += (*inner_size) * steps[2];
+ }
} while (res == 0 && iter->outer_next(iter->outer));
if (res == 0 && !(flags & NPY_METH_NO_FLOATINGPOINT_ERRORS)) {
@@ -6261,7 +6264,7 @@ ufunc_at(PyUFuncObject *ufunc, PyObject *args)
return NULL;
}
errval = PyUFunc_CheckOverride(ufunc, "at",
- args, NULL, NULL, 0, NULL, &override);
+ args, NULL, NULL, NULL, 0, NULL, &override);
if (errval) {
return NULL;
diff --git a/numpy/core/tests/test_array_coercion.py b/numpy/core/tests/test_array_coercion.py
index 0ba736c05..aeddac585 100644
--- a/numpy/core/tests/test_array_coercion.py
+++ b/numpy/core/tests/test_array_coercion.py
@@ -1,6 +1,6 @@
"""
Tests for array coercion, mainly through testing `np.array` results directly.
-Note that other such tests exist e.g. in `test_api.py` and many corner-cases
+Note that other such tests exist, e.g., in `test_api.py` and many corner-cases
are tested (sometimes indirectly) elsewhere.
"""
@@ -20,8 +20,8 @@ from numpy.testing import (
def arraylikes():
"""
Generator for functions converting an array into various array-likes.
- If full is True (default) includes array-likes not capable of handling
- all dtypes
+ If full is True (default) it includes array-likes not capable of handling
+ all dtypes.
"""
# base array:
def ndarray(a):
@@ -40,8 +40,8 @@ def arraylikes():
class _SequenceLike():
# We are giving a warning that array-like's were also expected to be
- # sequence-like in `np.array([array_like])`, this can be removed
- # when the deprecation exired (started NumPy 1.20)
+ # sequence-like in `np.array([array_like])`. This can be removed
+ # when the deprecation expired (started NumPy 1.20).
def __len__(self):
raise TypeError
@@ -161,6 +161,8 @@ class TestStringDiscovery:
# A nested array is also discovered correctly
arr = np.array(obj, dtype="O")
assert np.array(arr, dtype="S").dtype == expected
+ # Also if we use the dtype class
+ assert np.array(arr, dtype=type(expected)).dtype == expected
# Check that .astype() behaves identical
assert arr.astype("S").dtype == expected
# The DType class is accepted by `.astype()`
@@ -259,7 +261,7 @@ class TestScalarDiscovery:
@pytest.mark.parametrize("scalar", scalar_instances())
def test_scalar_coercion(self, scalar):
# This tests various scalar coercion paths, mainly for the numerical
- # types. It includes some paths not directly related to `np.array`
+ # types. It includes some paths not directly related to `np.array`.
if isinstance(scalar, np.inexact):
# Ensure we have a full-precision number if available
scalar = type(scalar)((scalar * 2)**0.5)
@@ -294,7 +296,7 @@ class TestScalarDiscovery:
* `np.array(scalar, dtype=dtype)`
* `np.empty((), dtype=dtype)[()] = scalar`
* `np.array(scalar).astype(dtype)`
- should behave the same. The only exceptions are paramteric dtypes
+ should behave the same. The only exceptions are parametric dtypes
(mainly datetime/timedelta without unit) and void without fields.
"""
dtype = cast_to.dtype # use to parametrize only the target dtype
@@ -386,7 +388,7 @@ class TestScalarDiscovery:
"""
dtype = np.dtype(dtype)
- # This is a special case using casting logic. It warns for the NaN
+ # This is a special case using casting logic. It warns for the NaN
# but allows the cast (giving undefined behaviour).
with np.errstate(invalid="ignore"):
coerced = np.array(scalar, dtype=dtype)
diff --git a/numpy/core/tests/test_arrayprint.py b/numpy/core/tests/test_arrayprint.py
index f1883f703..372cb8d41 100644
--- a/numpy/core/tests/test_arrayprint.py
+++ b/numpy/core/tests/test_arrayprint.py
@@ -9,6 +9,7 @@ from numpy.testing import (
assert_, assert_equal, assert_raises, assert_warns, HAS_REFCOUNT,
assert_raises_regex,
)
+from numpy.core.arrayprint import _typelessdata
import textwrap
class TestArrayRepr:
@@ -796,6 +797,47 @@ class TestPrintOptions:
array(['1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1'],
dtype='{}')""".format(styp)))
+ @pytest.mark.parametrize(
+ ['native'],
+ [
+ ('bool',),
+ ('uint8',),
+ ('uint16',),
+ ('uint32',),
+ ('uint64',),
+ ('int8',),
+ ('int16',),
+ ('int32',),
+ ('int64',),
+ ('float16',),
+ ('float32',),
+ ('float64',),
+ ('U1',), # 4-byte width string
+ ],
+ )
+ def test_dtype_endianness_repr(self, native):
+ '''
+ there was an issue where
+ repr(array([0], dtype='<u2')) and repr(array([0], dtype='>u2'))
+ both returned the same thing:
+ array([0], dtype=uint16)
+ even though their dtypes have different endianness.
+ '''
+ native_dtype = np.dtype(native)
+ non_native_dtype = native_dtype.newbyteorder()
+ non_native_repr = repr(np.array([1], non_native_dtype))
+ native_repr = repr(np.array([1], native_dtype))
+ # preserve the sensible default of only showing dtype if nonstandard
+ assert ('dtype' in native_repr) ^ (native_dtype in _typelessdata),\
+ ("an array's repr should show dtype if and only if the type "
+ 'of the array is NOT one of the standard types '
+ '(e.g., int32, bool, float64).')
+ if non_native_dtype.itemsize > 1:
+ # if the type is >1 byte, the non-native endian version
+ # must show endianness.
+ assert non_native_repr != native_repr
+ assert f"dtype='{non_native_dtype.byteorder}" in non_native_repr
+
def test_linewidth_repr(self):
a = np.full(7, fill_value=2)
np.set_printoptions(linewidth=17)
diff --git a/numpy/core/tests/test_custom_dtypes.py b/numpy/core/tests/test_custom_dtypes.py
index 1a34c6fa3..da6a4bd50 100644
--- a/numpy/core/tests/test_custom_dtypes.py
+++ b/numpy/core/tests/test_custom_dtypes.py
@@ -229,6 +229,12 @@ class TestSFloat:
expected = arr.astype(SF(1.)) # above will have discovered 1. scaling
assert_array_equal(res.view(np.float64), expected.view(np.float64))
+ def test_creation_class(self):
+ arr1 = np.array([1., 2., 3.], dtype=SF)
+ assert arr1.dtype == SF(1.)
+ arr2 = np.array([1., 2., 3.], dtype=SF(1.))
+ assert_array_equal(arr1.view(np.float64), arr2.view(np.float64))
+
def test_type_pickle():
# can't actually unpickle, but we can pickle (if in namespace)
diff --git a/numpy/core/tests/test_datetime.py b/numpy/core/tests/test_datetime.py
index 2b56d4824..547ebf9d6 100644
--- a/numpy/core/tests/test_datetime.py
+++ b/numpy/core/tests/test_datetime.py
@@ -2330,16 +2330,23 @@ class TestDateTime:
assert_equal(np.busday_count('2011-01-01', dates, busdaycal=bdd),
np.arange(366))
# Returns negative value when reversed
+ # -1 since the '2011-01-01' is not a busday
assert_equal(np.busday_count(dates, '2011-01-01', busdaycal=bdd),
- -np.arange(366))
+ -np.arange(366) - 1)
+ # 2011-12-31 is a saturday
dates = np.busday_offset('2011-12-31', -np.arange(366),
roll='forward', busdaycal=bdd)
+ # only the first generated date is in the future of 2011-12-31
+ expected = np.arange(366)
+ expected[0] = -1
assert_equal(np.busday_count(dates, '2011-12-31', busdaycal=bdd),
- np.arange(366))
+ expected)
# Returns negative value when reversed
+ expected = -np.arange(366)+1
+ expected[0] = 0
assert_equal(np.busday_count('2011-12-31', dates, busdaycal=bdd),
- -np.arange(366))
+ expected)
# Can't supply both a weekmask/holidays and busdaycal
assert_raises(ValueError, np.busday_offset, '2012-01-03', '2012-02-03',
@@ -2352,6 +2359,17 @@ class TestDateTime:
# Returns negative value when reversed
assert_equal(np.busday_count('2011-04', '2011-03', weekmask='Mon'), -4)
+ sunday = np.datetime64('2023-03-05')
+ monday = sunday + 1
+ friday = sunday + 5
+ saturday = sunday + 6
+ assert_equal(np.busday_count(sunday, monday), 0)
+ assert_equal(np.busday_count(monday, sunday), -1)
+
+ assert_equal(np.busday_count(friday, saturday), 1)
+ assert_equal(np.busday_count(saturday, friday), 0)
+
+
def test_datetime_is_busday(self):
holidays = ['2011-01-01', '2011-10-10', '2011-11-11', '2011-11-24',
'2011-12-25', '2011-05-30', '2011-02-21', '2011-01-17',
diff --git a/numpy/core/tests/test_deprecations.py b/numpy/core/tests/test_deprecations.py
index 96ae4b2a8..b92a20a12 100644
--- a/numpy/core/tests/test_deprecations.py
+++ b/numpy/core/tests/test_deprecations.py
@@ -922,3 +922,12 @@ class TestFromnumeric(_DeprecationTestCase):
# 2023-03-02, 1.25.0
def test_alltrue(self):
self.assert_deprecated(lambda: np.alltrue(np.array([True, False])))
+
+
+class TestMathAlias(_DeprecationTestCase):
+ # Deprecated in Numpy 1.25, 2023-04-06
+ def test_deprecated_np_math(self):
+ self.assert_deprecated(lambda: np.math)
+
+ def test_deprecated_np_lib_math(self):
+ self.assert_deprecated(lambda: np.lib.math)
diff --git a/numpy/core/tests/test_dtype.py b/numpy/core/tests/test_dtype.py
index 9b44367e6..f764a4daa 100644
--- a/numpy/core/tests/test_dtype.py
+++ b/numpy/core/tests/test_dtype.py
@@ -1833,7 +1833,6 @@ class TestUserDType:
create_custom_field_dtype(blueprint, mytype, 2)
-@pytest.mark.skipif(sys.version_info < (3, 9), reason="Requires python 3.9")
class TestClassGetItem:
def test_dtype(self) -> None:
alias = np.dtype[Any]
@@ -1866,10 +1865,3 @@ def test_result_type_integers_and_unitless_timedelta64():
td = np.timedelta64(4)
result = np.result_type(0, td)
assert_dtype_equal(result, td.dtype)
-
-
-@pytest.mark.skipif(sys.version_info >= (3, 9), reason="Requires python 3.8")
-def test_class_getitem_38() -> None:
- match = "Type subscription requires python >= 3.9"
- with pytest.raises(TypeError, match=match):
- np.dtype[Any]
diff --git a/numpy/core/tests/test_mem_policy.py b/numpy/core/tests/test_mem_policy.py
index 79abdbf1e..d5dfbc38b 100644
--- a/numpy/core/tests/test_mem_policy.py
+++ b/numpy/core/tests/test_mem_policy.py
@@ -5,7 +5,7 @@ import pytest
import numpy as np
import threading
import warnings
-from numpy.testing import extbuild, assert_warns, IS_WASM, IS_MUSL
+from numpy.testing import extbuild, assert_warns, IS_WASM
import sys
@@ -358,7 +358,6 @@ def test_thread_locality(get_module):
assert np.core.multiarray.get_handler_name() == orig_policy_name
-@pytest.mark.xfail(IS_MUSL, reason="gh23050")
@pytest.mark.slow
def test_new_policy(get_module):
a = np.arange(10)
diff --git a/numpy/core/tests/test_multiarray.py b/numpy/core/tests/test_multiarray.py
index ac4bd42d3..4a064827d 100644
--- a/numpy/core/tests/test_multiarray.py
+++ b/numpy/core/tests/test_multiarray.py
@@ -1,3 +1,5 @@
+from __future__ import annotations
+
import collections.abc
import tempfile
import sys
@@ -1194,6 +1196,17 @@ class TestCreation:
expected = expected * (arr.nbytes // len(expected))
assert arr.tobytes() == expected
+ @pytest.mark.parametrize("func", [
+ np.array, np.asarray, np.asanyarray, np.ascontiguousarray,
+ np.asfortranarray])
+ def test_creation_from_dtypemeta(self, func):
+ dtype = np.dtype('i')
+ arr1 = func([1, 2, 3], dtype=dtype)
+ arr2 = func([1, 2, 3], dtype=type(dtype))
+ assert_array_equal(arr1, arr2)
+ assert arr2.dtype == dtype
+
+
class TestStructured:
def test_subarray_field_access(self):
a = np.zeros((3, 5), dtype=[('a', ('i4', (2, 2)))])
@@ -3718,7 +3731,7 @@ class TestBinop:
'and': (np.bitwise_and, True, int),
'xor': (np.bitwise_xor, True, int),
'or': (np.bitwise_or, True, int),
- 'matmul': (np.matmul, False, float),
+ 'matmul': (np.matmul, True, float),
# 'ge': (np.less_equal, False),
# 'gt': (np.less, False),
# 'le': (np.greater_equal, False),
@@ -6662,6 +6675,22 @@ class TestDot:
r = np.empty((1024, 32), dtype=int)
assert_raises(ValueError, dot, f, v, r)
+ def test_dot_out_result(self):
+ x = np.ones((), dtype=np.float16)
+ y = np.ones((5,), dtype=np.float16)
+ z = np.zeros((5,), dtype=np.float16)
+ res = x.dot(y, out=z)
+ assert np.array_equal(res, y)
+ assert np.array_equal(z, y)
+
+ def test_dot_out_aliasing(self):
+ x = np.ones((), dtype=np.float16)
+ y = np.ones((5,), dtype=np.float16)
+ z = np.zeros((5,), dtype=np.float16)
+ res = x.dot(y, out=z)
+ z[0] = 2
+ assert np.array_equal(res, z)
+
def test_dot_array_order(self):
a = np.array([[1, 2], [3, 4]], order='C')
b = np.array([[1, 2], [3, 4]], order='F')
@@ -7169,16 +7198,69 @@ class TestMatmulOperator(MatmulCommon):
assert_raises(TypeError, self.matmul, np.void(b'abc'), np.void(b'abc'))
assert_raises(TypeError, self.matmul, np.arange(10), np.void(b'abc'))
-def test_matmul_inplace():
- # It would be nice to support in-place matmul eventually, but for now
- # we don't have a working implementation, so better just to error out
- # and nudge people to writing "a = a @ b".
- a = np.eye(3)
- b = np.eye(3)
- assert_raises(TypeError, a.__imatmul__, b)
- import operator
- assert_raises(TypeError, operator.imatmul, a, b)
- assert_raises(TypeError, exec, "a @= b", globals(), locals())
+
+class TestMatmulInplace:
+ DTYPES = {}
+ for i in MatmulCommon.types:
+ for j in MatmulCommon.types:
+ if np.can_cast(j, i):
+ DTYPES[f"{i}-{j}"] = (np.dtype(i), np.dtype(j))
+
+ @pytest.mark.parametrize("dtype1,dtype2", DTYPES.values(), ids=DTYPES)
+ def test_basic(self, dtype1: np.dtype, dtype2: np.dtype) -> None:
+ a = np.arange(10).reshape(5, 2).astype(dtype1)
+ a_id = id(a)
+ b = np.ones((2, 2), dtype=dtype2)
+
+ ref = a @ b
+ a @= b
+
+ assert id(a) == a_id
+ assert a.dtype == dtype1
+ assert a.shape == (5, 2)
+ if dtype1.kind in "fc":
+ np.testing.assert_allclose(a, ref)
+ else:
+ np.testing.assert_array_equal(a, ref)
+
+ SHAPES = {
+ "2d_large": ((10**5, 10), (10, 10)),
+ "3d_large": ((10**4, 10, 10), (1, 10, 10)),
+ "1d": ((3,), (3,)),
+ "2d_1d": ((3, 3), (3,)),
+ "1d_2d": ((3,), (3, 3)),
+ "2d_broadcast": ((3, 3), (3, 1)),
+ "2d_broadcast_reverse": ((1, 3), (3, 3)),
+ "3d_broadcast1": ((3, 3, 3), (1, 3, 1)),
+ "3d_broadcast2": ((3, 3, 3), (1, 3, 3)),
+ "3d_broadcast3": ((3, 3, 3), (3, 3, 1)),
+ "3d_broadcast_reverse1": ((1, 3, 3), (3, 3, 3)),
+ "3d_broadcast_reverse2": ((3, 1, 3), (3, 3, 3)),
+ "3d_broadcast_reverse3": ((1, 1, 3), (3, 3, 3)),
+ }
+
+ @pytest.mark.parametrize("a_shape,b_shape", SHAPES.values(), ids=SHAPES)
+ def test_shapes(self, a_shape: tuple[int, ...], b_shape: tuple[int, ...]):
+ a_size = np.prod(a_shape)
+ a = np.arange(a_size).reshape(a_shape).astype(np.float64)
+ a_id = id(a)
+
+ b_size = np.prod(b_shape)
+ b = np.arange(b_size).reshape(b_shape)
+
+ ref = a @ b
+ if ref.shape != a_shape:
+ with pytest.raises(ValueError):
+ a @= b
+ return
+ else:
+ a @= b
+
+ assert id(a) == a_id
+ assert a.dtype.type == np.float64
+ assert a.shape == a_shape
+ np.testing.assert_allclose(a, ref)
+
def test_matmul_axes():
a = np.arange(3*4*5).reshape(3, 4, 5)
diff --git a/numpy/core/tests/test_numeric.py b/numpy/core/tests/test_numeric.py
index f81f563cd..832a47c92 100644
--- a/numpy/core/tests/test_numeric.py
+++ b/numpy/core/tests/test_numeric.py
@@ -1824,20 +1824,11 @@ class TestClip:
self.nr = 5
self.nc = 3
- def fastclip(self, a, m, M, out=None, casting=None):
- if out is None:
- if casting is None:
- return a.clip(m, M)
- else:
- return a.clip(m, M, casting=casting)
- else:
- if casting is None:
- return a.clip(m, M, out)
- else:
- return a.clip(m, M, out, casting=casting)
+ def fastclip(self, a, m, M, out=None, **kwargs):
+ return a.clip(m, M, out=out, **kwargs)
def clip(self, a, m, M, out=None):
- # use slow-clip
+ # use a.choose to verify fastclip result
selector = np.less(a, m) + 2*np.greater(a, M)
return selector.choose((a, m, M), out=out)
@@ -1993,14 +1984,13 @@ class TestClip:
ac = np.zeros(a.shape, dtype=np.int32)
act = ac.copy()
if casting is None:
- with assert_warns(DeprecationWarning):
- # NumPy 1.17.0, 2018-02-24 - casting is unsafe
+ with pytest.raises(TypeError):
self.fastclip(a, m, M, ac, casting=casting)
else:
# explicitly passing "unsafe" will silence warning
self.fastclip(a, m, M, ac, casting=casting)
- self.clip(a, m, M, act)
- assert_array_strict_equal(ac, act)
+ self.clip(a, m, M, act)
+ assert_array_strict_equal(ac, act)
def test_simple_int64_out(self):
# Test native int32 input with int32 scalar min/max and int64 out.
@@ -2020,9 +2010,7 @@ class TestClip:
M = np.float64(1)
ac = np.zeros(a.shape, dtype=np.int32)
act = ac.copy()
- with assert_warns(DeprecationWarning):
- # NumPy 1.17.0, 2018-02-24 - casting is unsafe
- self.fastclip(a, m, M, ac)
+ self.fastclip(a, m, M, out=ac, casting="unsafe")
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
@@ -2033,9 +2021,7 @@ class TestClip:
M = 2.0
ac = np.zeros(a.shape, dtype=np.int32)
act = ac.copy()
- with assert_warns(DeprecationWarning):
- # NumPy 1.17.0, 2018-02-24 - casting is unsafe
- self.fastclip(a, m, M, ac)
+ self.fastclip(a, m, M, out=ac, casting="unsafe")
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
@@ -2211,9 +2197,7 @@ class TestClip:
M = np.float64(2)
ac = np.zeros(a.shape, dtype=np.int32)
act = ac.copy()
- with assert_warns(DeprecationWarning):
- # NumPy 1.17.0, 2018-02-24 - casting is unsafe
- self.fastclip(a, m, M, ac)
+ self.fastclip(a, m, M, out=ac, casting="unsafe")
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
@@ -2235,9 +2219,7 @@ class TestClip:
M = np.float64(1)
ac = np.zeros(a.shape, dtype=np.int32)
act = ac.copy()
- with assert_warns(DeprecationWarning):
- # NumPy 1.17.0, 2018-02-24 - casting is unsafe
- self.fastclip(a, m, M, ac)
+ self.fastclip(a, m, M, out=ac, casting="unsafe")
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
@@ -2248,9 +2230,7 @@ class TestClip:
M = 2.0
ac = np.zeros(a.shape, dtype=np.int32)
act = ac.copy()
- with assert_warns(DeprecationWarning):
- # NumPy 1.17.0, 2018-02-24 - casting is unsafe
- self.fastclip(a, m, M, ac)
+ self.fastclip(a, m, M, out=ac, casting="unsafe")
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
@@ -2303,16 +2283,11 @@ class TestClip:
def test_clip_nan(self):
d = np.arange(7.)
- with assert_warns(DeprecationWarning):
- assert_equal(d.clip(min=np.nan), d)
- with assert_warns(DeprecationWarning):
- assert_equal(d.clip(max=np.nan), d)
- with assert_warns(DeprecationWarning):
- assert_equal(d.clip(min=np.nan, max=np.nan), d)
- with assert_warns(DeprecationWarning):
- assert_equal(d.clip(min=-2, max=np.nan), d)
- with assert_warns(DeprecationWarning):
- assert_equal(d.clip(min=np.nan, max=10), d)
+ assert_equal(d.clip(min=np.nan), np.nan)
+ assert_equal(d.clip(max=np.nan), np.nan)
+ assert_equal(d.clip(min=np.nan, max=np.nan), np.nan)
+ assert_equal(d.clip(min=-2, max=np.nan), np.nan)
+ assert_equal(d.clip(min=np.nan, max=10), np.nan)
def test_object_clip(self):
a = np.arange(10, dtype=object)
@@ -2364,16 +2339,12 @@ class TestClip:
actual = np.clip(arr, amin, amax)
assert_equal(actual, exp)
- @pytest.mark.xfail(reason="no scalar nan propagation yet",
- raises=AssertionError,
- strict=True)
@pytest.mark.parametrize("arr, amin, amax", [
# problematic scalar nan case from hypothesis
(np.zeros(10, dtype=np.int64),
np.array(np.nan),
np.zeros(10, dtype=np.int32)),
])
- @pytest.mark.filterwarnings("ignore::DeprecationWarning")
def test_clip_scalar_nan_propagation(self, arr, amin, amax):
# enforcement of scalar nan propagation for comparisons
# called through clip()
diff --git a/numpy/core/tests/test_overrides.py b/numpy/core/tests/test_overrides.py
index 90d917701..25f551f6f 100644
--- a/numpy/core/tests/test_overrides.py
+++ b/numpy/core/tests/test_overrides.py
@@ -10,16 +10,11 @@ from numpy.testing import (
assert_, assert_equal, assert_raises, assert_raises_regex)
from numpy.core.overrides import (
_get_implementing_args, array_function_dispatch,
- verify_matching_signatures, ARRAY_FUNCTION_ENABLED)
+ verify_matching_signatures)
from numpy.compat import pickle
import pytest
-requires_array_function = pytest.mark.skipif(
- not ARRAY_FUNCTION_ENABLED,
- reason="__array_function__ dispatch not enabled.")
-
-
def _return_not_implemented(self, *args, **kwargs):
return NotImplemented
@@ -150,7 +145,6 @@ class TestGetImplementingArgs:
class TestNDArrayArrayFunction:
- @requires_array_function
def test_method(self):
class Other:
@@ -209,7 +203,6 @@ class TestNDArrayArrayFunction:
args=(array,), kwargs={})
-@requires_array_function
class TestArrayFunctionDispatch:
def test_pickle(self):
@@ -248,8 +241,20 @@ class TestArrayFunctionDispatch:
with assert_raises_regex(TypeError, 'no implementation found'):
dispatched_one_arg(array)
+ def test_where_dispatch(self):
+
+ class DuckArray:
+ def __array_function__(self, ufunc, method, *inputs, **kwargs):
+ return "overridden"
+
+ array = np.array(1)
+ duck_array = DuckArray()
+
+ result = np.std(array, where=duck_array)
+
+ assert_equal(result, "overridden")
+
-@requires_array_function
class TestVerifyMatchingSignatures:
def test_verify_matching_signatures(self):
@@ -302,7 +307,6 @@ def _new_duck_type_and_implements():
return (MyArray, implements)
-@requires_array_function
class TestArrayFunctionImplementation:
def test_one_arg(self):
@@ -472,7 +476,6 @@ class TestNumPyFunctions:
signature = inspect.signature(np.sum)
assert_('axis' in signature.parameters)
- @requires_array_function
def test_override_sum(self):
MyArray, implements = _new_duck_type_and_implements()
@@ -482,7 +485,6 @@ class TestNumPyFunctions:
assert_equal(np.sum(MyArray()), 'yes')
- @requires_array_function
def test_sum_on_mock_array(self):
# We need a proxy for mocks because __array_function__ is only looked
@@ -503,7 +505,6 @@ class TestNumPyFunctions:
np.sum, (ArrayProxy,), (proxy,), {})
proxy.value.__array__.assert_not_called()
- @requires_array_function
def test_sum_forwarding_implementation(self):
class MyArray(np.ndarray):
@@ -555,7 +556,6 @@ class TestArrayLike:
def func_args(*args, **kwargs):
return args, kwargs
- @requires_array_function
def test_array_like_not_implemented(self):
self.add_method('array', self.MyArray)
@@ -588,7 +588,6 @@ class TestArrayLike:
@pytest.mark.parametrize('function, args, kwargs', _array_tests)
@pytest.mark.parametrize('numpy_ref', [True, False])
- @requires_array_function
def test_array_like(self, function, args, kwargs, numpy_ref):
self.add_method('array', self.MyArray)
self.add_method(function, self.MyArray)
@@ -621,7 +620,6 @@ class TestArrayLike:
@pytest.mark.parametrize('function, args, kwargs', _array_tests)
@pytest.mark.parametrize('ref', [1, [1], "MyNoArrayFunctionArray"])
- @requires_array_function
def test_no_array_function_like(self, function, args, kwargs, ref):
self.add_method('array', self.MyNoArrayFunctionArray)
self.add_method(function, self.MyNoArrayFunctionArray)
@@ -663,7 +661,6 @@ class TestArrayLike:
assert type(array_like) is self.MyArray
assert array_like.function is self.MyArray.fromfile
- @requires_array_function
def test_exception_handling(self):
self.add_method('array', self.MyArray, enable_value_error=True)
@@ -692,7 +689,6 @@ class TestArrayLike:
assert_equal(array_like, expected)
-@requires_array_function
def test_function_like():
# We provide a `__get__` implementation, make sure it works
assert type(np.mean) is np.core._multiarray_umath._ArrayFunctionDispatcher
diff --git a/numpy/core/tests/test_scalar_methods.py b/numpy/core/tests/test_scalar_methods.py
index 4f57c94c0..18a7bc828 100644
--- a/numpy/core/tests/test_scalar_methods.py
+++ b/numpy/core/tests/test_scalar_methods.py
@@ -1,7 +1,6 @@
"""
Test the scalar constructors, which also do type-coercion
"""
-import sys
import fractions
import platform
import types
@@ -134,7 +133,6 @@ class TestIsInteger:
assert not value.is_integer()
-@pytest.mark.skipif(sys.version_info < (3, 9), reason="Requires python 3.9")
class TestClassGetItem:
@pytest.mark.parametrize("cls", [
np.number,
@@ -188,14 +186,6 @@ class TestClassGetItem:
assert np.number[Any]
-@pytest.mark.skipif(sys.version_info >= (3, 9), reason="Requires python 3.8")
-@pytest.mark.parametrize("cls", [np.number, np.complexfloating, np.int64])
-def test_class_getitem_38(cls: Type[np.number]) -> None:
- match = "Type subscription requires python >= 3.9"
- with pytest.raises(TypeError, match=match):
- cls[Any]
-
-
class TestBitCount:
# derived in part from the cpython test "test_bit_count"
diff --git a/numpy/core/tests/test_ufunc.py b/numpy/core/tests/test_ufunc.py
index 498a654c8..71af2ccb7 100644
--- a/numpy/core/tests/test_ufunc.py
+++ b/numpy/core/tests/test_ufunc.py
@@ -2054,6 +2054,17 @@ class TestUfunc:
# If it is [-1, -1, -1, -100, 0] then the regular strided loop was used
assert np.all(arr == [-1, -1, -1, -200, -1])
+ def test_ufunc_at_large(self):
+ # issue gh-23457
+ indices = np.zeros(8195, dtype=np.int16)
+ b = np.zeros(8195, dtype=float)
+ b[0] = 10
+ b[1] = 5
+ b[8192:] = 100
+ a = np.zeros(1, dtype=float)
+ np.add.at(a, indices, b)
+ assert a[0] == b.sum()
+
def test_cast_index_fastpath(self):
arr = np.zeros(10)
values = np.ones(100000)
@@ -2956,3 +2967,10 @@ class TestLowlevelAPIAccess:
with pytest.raises(TypeError):
# cannot call it a second time:
np.negative._get_strided_loop(call_info)
+
+ def test_long_arrays(self):
+ t = np.zeros((1029, 917), dtype=np.single)
+ t[0][0] = 1
+ t[28][414] = 1
+ tc = np.cos(t)
+ assert_equal(tc[0][0], tc[28][414])
diff --git a/numpy/core/tests/test_umath.py b/numpy/core/tests/test_umath.py
index 13f7375c2..0ed64d72a 100644
--- a/numpy/core/tests/test_umath.py
+++ b/numpy/core/tests/test_umath.py
@@ -3497,6 +3497,79 @@ class TestSpecialMethods:
assert_raises(ValueError, np.modf, a, out=('one', 'two', 'three'))
assert_raises(ValueError, np.modf, a, out=('one',))
+ def test_ufunc_override_where(self):
+
+ class OverriddenArrayOld(np.ndarray):
+
+ def _unwrap(self, objs):
+ cls = type(self)
+ result = []
+ for obj in objs:
+ if isinstance(obj, cls):
+ obj = np.array(obj)
+ elif type(obj) != np.ndarray:
+ return NotImplemented
+ result.append(obj)
+ return result
+
+ def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
+
+ inputs = self._unwrap(inputs)
+ if inputs is NotImplemented:
+ return NotImplemented
+
+ kwargs = kwargs.copy()
+ if "out" in kwargs:
+ kwargs["out"] = self._unwrap(kwargs["out"])
+ if kwargs["out"] is NotImplemented:
+ return NotImplemented
+
+ r = super().__array_ufunc__(ufunc, method, *inputs, **kwargs)
+ if r is not NotImplemented:
+ r = r.view(type(self))
+
+ return r
+
+ class OverriddenArrayNew(OverriddenArrayOld):
+ def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
+
+ kwargs = kwargs.copy()
+ if "where" in kwargs:
+ kwargs["where"] = self._unwrap((kwargs["where"], ))
+ if kwargs["where"] is NotImplemented:
+ return NotImplemented
+ else:
+ kwargs["where"] = kwargs["where"][0]
+
+ r = super().__array_ufunc__(ufunc, method, *inputs, **kwargs)
+ if r is not NotImplemented:
+ r = r.view(type(self))
+
+ return r
+
+ ufunc = np.negative
+
+ array = np.array([1, 2, 3])
+ where = np.array([True, False, True])
+ expected = ufunc(array, where=where)
+
+ with pytest.raises(TypeError):
+ ufunc(array, where=where.view(OverriddenArrayOld))
+
+ result_1 = ufunc(
+ array,
+ where=where.view(OverriddenArrayNew)
+ )
+ assert isinstance(result_1, OverriddenArrayNew)
+ assert np.all(np.array(result_1) == expected, where=where)
+
+ result_2 = ufunc(
+ array.view(OverriddenArrayNew),
+ where=where.view(OverriddenArrayNew)
+ )
+ assert isinstance(result_2, OverriddenArrayNew)
+ assert np.all(np.array(result_2) == expected, where=where)
+
def test_ufunc_override_exception(self):
class A: