summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_nanfunctions.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/tests/test_nanfunctions.py')
-rw-r--r--numpy/lib/tests/test_nanfunctions.py420
1 files changed, 246 insertions, 174 deletions
diff --git a/numpy/lib/tests/test_nanfunctions.py b/numpy/lib/tests/test_nanfunctions.py
index 35ae86c20..06c0953b5 100644
--- a/numpy/lib/tests/test_nanfunctions.py
+++ b/numpy/lib/tests/test_nanfunctions.py
@@ -5,7 +5,7 @@ import warnings
import numpy as np
from numpy.testing import (
run_module_suite, TestCase, assert_, assert_equal, assert_almost_equal,
- assert_raises, assert_array_equal
+ assert_no_warnings, assert_raises, assert_array_equal, suppress_warnings
)
@@ -22,6 +22,18 @@ _rdat = [np.array([0.6244, 0.2692, 0.0116, 0.1170]),
np.array([0.1042, -0.5954]),
np.array([0.1610, 0.1859, 0.3146])]
+# Rows of _ndat with nans converted to ones
+_ndat_ones = np.array([[0.6244, 1.0, 0.2692, 0.0116, 1.0, 0.1170],
+ [0.5351, -0.9403, 1.0, 0.2100, 0.4759, 0.2833],
+ [1.0, 1.0, 1.0, 0.1042, 1.0, -0.5954],
+ [0.1610, 1.0, 1.0, 0.1859, 0.3146, 1.0]])
+
+# Rows of _ndat with nans converted to zeros
+_ndat_zeros = np.array([[0.6244, 0.0, 0.2692, 0.0116, 0.0, 0.1170],
+ [0.5351, -0.9403, 0.0, 0.2100, 0.4759, 0.2833],
+ [0.0, 0.0, 0.0, 0.1042, 0.0, -0.5954],
+ [0.1610, 0.0, 0.0, 0.1859, 0.3146, 0.0]])
+
class TestNanFunctions_MinMax(TestCase):
@@ -155,8 +167,8 @@ class TestNanFunctions_ArgminArgmax(TestCase):
def test_result_values(self):
for f, fcmp in zip(self.nanfuncs, [np.greater, np.less]):
for row in _ndat:
- with warnings.catch_warnings(record=True):
- warnings.simplefilter('always')
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning, "invalid value encountered in")
ind = f(row)
val = row[ind]
# comparing with NaN is tricky as the result
@@ -236,6 +248,21 @@ class TestNanFunctions_IntTypes(TestCase):
for mat in self.integer_arrays():
assert_equal(np.nansum(mat), tgt)
+ def test_nanprod(self):
+ tgt = np.prod(self.mat)
+ for mat in self.integer_arrays():
+ assert_equal(np.nanprod(mat), tgt)
+
+ def test_nancumsum(self):
+ tgt = np.cumsum(self.mat)
+ for mat in self.integer_arrays():
+ assert_equal(np.nancumsum(mat), tgt)
+
+ def test_nancumprod(self):
+ tgt = np.cumprod(self.mat)
+ for mat in self.integer_arrays():
+ assert_equal(np.nancumprod(mat), tgt)
+
def test_nanmean(self):
tgt = np.mean(self.mat)
for mat in self.integer_arrays():
@@ -260,70 +287,108 @@ class TestNanFunctions_IntTypes(TestCase):
assert_equal(np.nanstd(mat, ddof=1), tgt)
-class TestNanFunctions_Sum(TestCase):
-
+class SharedNanFunctionsTestsMixin(object):
def test_mutation(self):
# Check that passed array is not modified.
ndat = _ndat.copy()
- np.nansum(ndat)
- assert_equal(ndat, _ndat)
+ for f in self.nanfuncs:
+ f(ndat)
+ assert_equal(ndat, _ndat)
def test_keepdims(self):
mat = np.eye(3)
- for axis in [None, 0, 1]:
- tgt = np.sum(mat, axis=axis, keepdims=True)
- res = np.nansum(mat, axis=axis, keepdims=True)
- assert_(res.ndim == tgt.ndim)
+ for nf, rf in zip(self.nanfuncs, self.stdfuncs):
+ for axis in [None, 0, 1]:
+ tgt = rf(mat, axis=axis, keepdims=True)
+ res = nf(mat, axis=axis, keepdims=True)
+ assert_(res.ndim == tgt.ndim)
def test_out(self):
mat = np.eye(3)
- resout = np.zeros(3)
- tgt = np.sum(mat, axis=1)
- res = np.nansum(mat, axis=1, out=resout)
- assert_almost_equal(res, resout)
- assert_almost_equal(res, tgt)
+ for nf, rf in zip(self.nanfuncs, self.stdfuncs):
+ resout = np.zeros(3)
+ tgt = rf(mat, axis=1)
+ res = nf(mat, axis=1, out=resout)
+ assert_almost_equal(res, resout)
+ assert_almost_equal(res, tgt)
def test_dtype_from_dtype(self):
mat = np.eye(3)
codes = 'efdgFDG'
- for c in codes:
- tgt = np.sum(mat, dtype=np.dtype(c), axis=1).dtype.type
- res = np.nansum(mat, dtype=np.dtype(c), axis=1).dtype.type
- assert_(res is tgt)
- # scalar case
- tgt = np.sum(mat, dtype=np.dtype(c), axis=None).dtype.type
- res = np.nansum(mat, dtype=np.dtype(c), axis=None).dtype.type
- assert_(res is tgt)
+ for nf, rf in zip(self.nanfuncs, self.stdfuncs):
+ for c in codes:
+ with suppress_warnings() as sup:
+ if nf in {np.nanstd, np.nanvar} and c in 'FDG':
+ # Giving the warning is a small bug, see gh-8000
+ sup.filter(np.ComplexWarning)
+ tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type
+ res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type
+ assert_(res is tgt)
+ # scalar case
+ tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type
+ res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type
+ assert_(res is tgt)
def test_dtype_from_char(self):
mat = np.eye(3)
codes = 'efdgFDG'
- for c in codes:
- tgt = np.sum(mat, dtype=c, axis=1).dtype.type
- res = np.nansum(mat, dtype=c, axis=1).dtype.type
- assert_(res is tgt)
- # scalar case
- tgt = np.sum(mat, dtype=c, axis=None).dtype.type
- res = np.nansum(mat, dtype=c, axis=None).dtype.type
- assert_(res is tgt)
+ for nf, rf in zip(self.nanfuncs, self.stdfuncs):
+ for c in codes:
+ with suppress_warnings() as sup:
+ if nf in {np.nanstd, np.nanvar} and c in 'FDG':
+ # Giving the warning is a small bug, see gh-8000
+ sup.filter(np.ComplexWarning)
+ tgt = rf(mat, dtype=c, axis=1).dtype.type
+ res = nf(mat, dtype=c, axis=1).dtype.type
+ assert_(res is tgt)
+ # scalar case
+ tgt = rf(mat, dtype=c, axis=None).dtype.type
+ res = nf(mat, dtype=c, axis=None).dtype.type
+ assert_(res is tgt)
def test_dtype_from_input(self):
codes = 'efdgFDG'
- for c in codes:
- mat = np.eye(3, dtype=c)
- tgt = np.sum(mat, axis=1).dtype.type
- res = np.nansum(mat, axis=1).dtype.type
- assert_(res is tgt)
- # scalar case
- tgt = np.sum(mat, axis=None).dtype.type
- res = np.nansum(mat, axis=None).dtype.type
- assert_(res is tgt)
+ for nf, rf in zip(self.nanfuncs, self.stdfuncs):
+ for c in codes:
+ mat = np.eye(3, dtype=c)
+ tgt = rf(mat, axis=1).dtype.type
+ res = nf(mat, axis=1).dtype.type
+ assert_(res is tgt, "res %s, tgt %s" % (res, tgt))
+ # scalar case
+ tgt = rf(mat, axis=None).dtype.type
+ res = nf(mat, axis=None).dtype.type
+ assert_(res is tgt)
def test_result_values(self):
- tgt = [np.sum(d) for d in _rdat]
- res = np.nansum(_ndat, axis=1)
+ for nf, rf in zip(self.nanfuncs, self.stdfuncs):
+ tgt = [rf(d) for d in _rdat]
+ res = nf(_ndat, axis=1)
assert_almost_equal(res, tgt)
+ def test_scalar(self):
+ for f in self.nanfuncs:
+ assert_(f(0.) == 0.)
+
+ def test_matrices(self):
+ # Check that it works and that type and
+ # shape are preserved
+ mat = np.matrix(np.eye(3))
+ for f in self.nanfuncs:
+ res = f(mat, axis=0)
+ assert_(isinstance(res, np.matrix))
+ assert_(res.shape == (1, 3))
+ res = f(mat, axis=1)
+ assert_(isinstance(res, np.matrix))
+ assert_(res.shape == (3, 1))
+ res = f(mat)
+ assert_(np.isscalar(res))
+
+
+class TestNanFunctions_SumProd(TestCase, SharedNanFunctionsTestsMixin):
+
+ nanfuncs = [np.nansum, np.nanprod]
+ stdfuncs = [np.sum, np.prod]
+
def test_allnans(self):
# Check for FutureWarning
with warnings.catch_warnings(record=True) as w:
@@ -340,113 +405,118 @@ class TestNanFunctions_Sum(TestCase):
assert_(len(w) == 0, 'unwanted warning raised')
def test_empty(self):
- mat = np.zeros((0, 3))
- tgt = [0]*3
- res = np.nansum(mat, axis=0)
- assert_equal(res, tgt)
- tgt = []
- res = np.nansum(mat, axis=1)
- assert_equal(res, tgt)
- tgt = 0
- res = np.nansum(mat, axis=None)
- assert_equal(res, tgt)
+ for f, tgt_value in zip([np.nansum, np.nanprod], [0, 1]):
+ mat = np.zeros((0, 3))
+ tgt = [tgt_value]*3
+ res = f(mat, axis=0)
+ assert_equal(res, tgt)
+ tgt = []
+ res = f(mat, axis=1)
+ assert_equal(res, tgt)
+ tgt = tgt_value
+ res = f(mat, axis=None)
+ assert_equal(res, tgt)
- def test_scalar(self):
- assert_(np.nansum(0.) == 0.)
+
+class TestNanFunctions_CumSumProd(TestCase, SharedNanFunctionsTestsMixin):
+
+ nanfuncs = [np.nancumsum, np.nancumprod]
+ stdfuncs = [np.cumsum, np.cumprod]
+
+ def test_allnans(self):
+ for f, tgt_value in zip(self.nanfuncs, [0, 1]):
+ # Unlike other nan-functions, sum/prod/cumsum/cumprod don't warn on all nan input
+ with assert_no_warnings():
+ res = f([np.nan]*3, axis=None)
+ tgt = tgt_value*np.ones((3))
+ assert_(np.array_equal(res, tgt), 'result is not %s * np.ones((3))' % (tgt_value))
+ # Check scalar
+ res = f(np.nan)
+ tgt = tgt_value*np.ones((1))
+ assert_(np.array_equal(res, tgt), 'result is not %s * np.ones((1))' % (tgt_value))
+ # Check there is no warning for not all-nan
+ f([0]*3, axis=None)
+
+ def test_empty(self):
+ for f, tgt_value in zip(self.nanfuncs, [0, 1]):
+ mat = np.zeros((0, 3))
+ tgt = tgt_value*np.ones((0, 3))
+ res = f(mat, axis=0)
+ assert_equal(res, tgt)
+ tgt = mat
+ res = f(mat, axis=1)
+ assert_equal(res, tgt)
+ tgt = np.zeros((0))
+ res = f(mat, axis=None)
+ assert_equal(res, tgt)
+
+ def test_keepdims(self):
+ for f, g in zip(self.nanfuncs, self.stdfuncs):
+ mat = np.eye(3)
+ for axis in [None, 0, 1]:
+ tgt = f(mat, axis=axis, out=None)
+ res = g(mat, axis=axis, out=None)
+ assert_(res.ndim == tgt.ndim)
+
+ for f in self.nanfuncs:
+ d = np.ones((3, 5, 7, 11))
+ # Randomly set some elements to NaN:
+ rs = np.random.RandomState(0)
+ d[rs.rand(*d.shape) < 0.5] = np.nan
+ res = f(d, axis=None)
+ assert_equal(res.shape, (1155,))
+ for axis in np.arange(4):
+ res = f(d, axis=axis)
+ assert_equal(res.shape, (3, 5, 7, 11))
def test_matrices(self):
# Check that it works and that type and
# shape are preserved
mat = np.matrix(np.eye(3))
- res = np.nansum(mat, axis=0)
- assert_(isinstance(res, np.matrix))
- assert_(res.shape == (1, 3))
- res = np.nansum(mat, axis=1)
- assert_(isinstance(res, np.matrix))
- assert_(res.shape == (3, 1))
- res = np.nansum(mat)
- assert_(np.isscalar(res))
+ for f in self.nanfuncs:
+ for axis in np.arange(2):
+ res = f(mat, axis=axis)
+ assert_(isinstance(res, np.matrix))
+ assert_(res.shape == (3, 3))
+ res = f(mat)
+ assert_(res.shape == (1, 3*3))
+
+ def test_result_values(self):
+ for axis in (-2, -1, 0, 1, None):
+ tgt = np.cumprod(_ndat_ones, axis=axis)
+ res = np.nancumprod(_ndat, axis=axis)
+ assert_almost_equal(res, tgt)
+ tgt = np.cumsum(_ndat_zeros,axis=axis)
+ res = np.nancumsum(_ndat, axis=axis)
+ assert_almost_equal(res, tgt)
+
+ def test_out(self):
+ mat = np.eye(3)
+ for nf, rf in zip(self.nanfuncs, self.stdfuncs):
+ resout = np.eye(3)
+ for axis in (-2, -1, 0, 1):
+ tgt = rf(mat, axis=axis)
+ res = nf(mat, axis=axis, out=resout)
+ assert_almost_equal(res, resout)
+ assert_almost_equal(res, tgt)
-class TestNanFunctions_MeanVarStd(TestCase):
+class TestNanFunctions_MeanVarStd(TestCase, SharedNanFunctionsTestsMixin):
nanfuncs = [np.nanmean, np.nanvar, np.nanstd]
stdfuncs = [np.mean, np.var, np.std]
- def test_mutation(self):
- # Check that passed array is not modified.
- ndat = _ndat.copy()
- for f in self.nanfuncs:
- f(ndat)
- assert_equal(ndat, _ndat)
-
def test_dtype_error(self):
for f in self.nanfuncs:
- for dtype in [np.bool_, np.int_, np.object]:
- assert_raises(TypeError, f, _ndat, axis=1, dtype=np.int)
+ for dtype in [np.bool_, np.int_, np.object_]:
+ assert_raises(TypeError, f, _ndat, axis=1, dtype=dtype)
def test_out_dtype_error(self):
for f in self.nanfuncs:
- for dtype in [np.bool_, np.int_, np.object]:
+ for dtype in [np.bool_, np.int_, np.object_]:
out = np.empty(_ndat.shape[0], dtype=dtype)
assert_raises(TypeError, f, _ndat, axis=1, out=out)
- def test_keepdims(self):
- mat = np.eye(3)
- for nf, rf in zip(self.nanfuncs, self.stdfuncs):
- for axis in [None, 0, 1]:
- tgt = rf(mat, axis=axis, keepdims=True)
- res = nf(mat, axis=axis, keepdims=True)
- assert_(res.ndim == tgt.ndim)
-
- def test_out(self):
- mat = np.eye(3)
- for nf, rf in zip(self.nanfuncs, self.stdfuncs):
- resout = np.zeros(3)
- tgt = rf(mat, axis=1)
- res = nf(mat, axis=1, out=resout)
- assert_almost_equal(res, resout)
- assert_almost_equal(res, tgt)
-
- def test_dtype_from_dtype(self):
- mat = np.eye(3)
- codes = 'efdgFDG'
- for nf, rf in zip(self.nanfuncs, self.stdfuncs):
- for c in codes:
- tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type
- res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type
- assert_(res is tgt)
- # scalar case
- tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type
- res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type
- assert_(res is tgt)
-
- def test_dtype_from_char(self):
- mat = np.eye(3)
- codes = 'efdgFDG'
- for nf, rf in zip(self.nanfuncs, self.stdfuncs):
- for c in codes:
- tgt = rf(mat, dtype=c, axis=1).dtype.type
- res = nf(mat, dtype=c, axis=1).dtype.type
- assert_(res is tgt)
- # scalar case
- tgt = rf(mat, dtype=c, axis=None).dtype.type
- res = nf(mat, dtype=c, axis=None).dtype.type
- assert_(res is tgt)
-
- def test_dtype_from_input(self):
- codes = 'efdgFDG'
- for nf, rf in zip(self.nanfuncs, self.stdfuncs):
- for c in codes:
- mat = np.eye(3, dtype=c)
- tgt = rf(mat, axis=1).dtype.type
- res = nf(mat, axis=1).dtype.type
- assert_(res is tgt, "res %s, tgt %s" % (res, tgt))
- # scalar case
- tgt = rf(mat, axis=None).dtype.type
- res = nf(mat, axis=None).dtype.type
- assert_(res is tgt)
-
def test_ddof(self):
nanfuncs = [np.nanvar, np.nanstd]
stdfuncs = [np.var, np.std]
@@ -462,22 +532,16 @@ class TestNanFunctions_MeanVarStd(TestCase):
dsize = [len(d) for d in _rdat]
for nf, rf in zip(nanfuncs, stdfuncs):
for ddof in range(5):
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always')
+ with suppress_warnings() as sup:
+ sup.record(RuntimeWarning)
+ sup.filter(np.ComplexWarning)
tgt = [ddof >= d for d in dsize]
res = nf(_ndat, axis=1, ddof=ddof)
assert_equal(np.isnan(res), tgt)
if any(tgt):
- assert_(len(w) == 1)
- assert_(issubclass(w[0].category, RuntimeWarning))
+ assert_(len(sup.log) == 1)
else:
- assert_(len(w) == 0)
-
- def test_result_values(self):
- for nf, rf in zip(self.nanfuncs, self.stdfuncs):
- tgt = [rf(d) for d in _rdat]
- res = nf(_ndat, axis=1)
- assert_almost_equal(res, tgt)
+ assert_(len(sup.log) == 0)
def test_allnans(self):
mat = np.array([np.nan]*9).reshape(3, 3)
@@ -508,24 +572,6 @@ class TestNanFunctions_MeanVarStd(TestCase):
assert_equal(f(mat, axis=axis), np.zeros([]))
assert_(len(w) == 0)
- def test_scalar(self):
- for f in self.nanfuncs:
- assert_(f(0.) == 0.)
-
- def test_matrices(self):
- # Check that it works and that type and
- # shape are preserved
- mat = np.matrix(np.eye(3))
- for f in self.nanfuncs:
- res = f(mat, axis=0)
- assert_(isinstance(res, np.matrix))
- assert_(res.shape == (1, 3))
- res = f(mat, axis=1)
- assert_(isinstance(res, np.matrix))
- assert_(res.shape == (3, 1))
- res = f(mat)
- assert_(np.isscalar(res))
-
class TestNanFunctions_Median(TestCase):
@@ -547,8 +593,8 @@ class TestNanFunctions_Median(TestCase):
w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
w = w.astype(np.intp)
d[tuple(w)] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always', RuntimeWarning)
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning)
res = np.nanmedian(d, axis=None, keepdims=True)
assert_equal(res.shape, (1, 1, 1, 1))
res = np.nanmedian(d, axis=(0, 1), keepdims=True)
@@ -604,21 +650,20 @@ class TestNanFunctions_Median(TestCase):
def test_allnans(self):
mat = np.array([np.nan]*9).reshape(3, 3)
for axis in [None, 0, 1]:
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always')
+ with suppress_warnings() as sup:
+ sup.record(RuntimeWarning)
+
assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
if axis is None:
- assert_(len(w) == 1)
+ assert_(len(sup.log) == 1)
else:
- assert_(len(w) == 3)
- assert_(issubclass(w[0].category, RuntimeWarning))
+ assert_(len(sup.log) == 3)
# Check scalar
assert_(np.isnan(np.nanmedian(np.nan)))
if axis is None:
- assert_(len(w) == 2)
+ assert_(len(sup.log) == 2)
else:
- assert_(len(w) == 4)
- assert_(issubclass(w[0].category, RuntimeWarning))
+ assert_(len(sup.log) == 4)
def test_empty(self):
mat = np.zeros((0, 3))
@@ -646,8 +691,8 @@ class TestNanFunctions_Median(TestCase):
assert_raises(ValueError, np.nanmedian, d, axis=(1, 1))
def test_float_special(self):
- with warnings.catch_warnings(record=True):
- warnings.simplefilter('ignore', RuntimeWarning)
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning)
a = np.array([[np.inf, np.nan], [np.nan, np.nan]])
assert_equal(np.nanmedian(a, axis=0), [np.inf, np.nan])
assert_equal(np.nanmedian(a, axis=1), [np.inf, np.nan])
@@ -684,8 +729,8 @@ class TestNanFunctions_Percentile(TestCase):
w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
w = w.astype(np.intp)
d[tuple(w)] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always', RuntimeWarning)
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning)
res = np.nanpercentile(d, 90, axis=None, keepdims=True)
assert_equal(res.shape, (1, 1, 1, 1))
res = np.nanpercentile(d, 90, axis=(0, 1), keepdims=True)
@@ -721,7 +766,8 @@ class TestNanFunctions_Percentile(TestCase):
tgt = [np.percentile(d, 28) for d in _rdat]
res = np.nanpercentile(_ndat, 28, axis=1)
assert_almost_equal(res, tgt)
- tgt = [np.percentile(d, (28, 98)) for d in _rdat]
+ # Transpose the array to fit the output convention of numpy.percentile
+ tgt = np.transpose([np.percentile(d, (28, 98)) for d in _rdat])
res = np.nanpercentile(_ndat, (28, 98), axis=1)
assert_almost_equal(res, tgt)
@@ -769,6 +815,32 @@ class TestNanFunctions_Percentile(TestCase):
assert_raises(IndexError, np.nanpercentile, d, q=5, axis=(0, 4))
assert_raises(ValueError, np.nanpercentile, d, q=5, axis=(1, 1))
+ def test_multiple_percentiles(self):
+ perc = [50, 100]
+ mat = np.ones((4, 3))
+ nan_mat = np.nan * mat
+ # For checking consistency in higher dimensional case
+ large_mat = np.ones((3, 4, 5))
+ large_mat[:, 0:2:4, :] = 0
+ large_mat[:, :, 3:] *= 2
+ for axis in [None, 0, 1]:
+ for keepdim in [False, True]:
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning, "All-NaN slice encountered")
+ val = np.percentile(mat, perc, axis=axis, keepdims=keepdim)
+ nan_val = np.nanpercentile(nan_mat, perc, axis=axis,
+ keepdims=keepdim)
+ assert_equal(nan_val.shape, val.shape)
+
+ val = np.percentile(large_mat, perc, axis=axis,
+ keepdims=keepdim)
+ nan_val = np.nanpercentile(large_mat, perc, axis=axis,
+ keepdims=keepdim)
+ assert_equal(nan_val, val)
+
+ megamat = np.ones((3, 4, 5, 6))
+ assert_equal(np.nanpercentile(megamat, perc, axis=(1, 2)).shape, (2, 3, 6))
+
if __name__ == "__main__":
run_module_suite()