diff options
Diffstat (limited to 'numpy/lib/tests/test_nanfunctions.py')
-rw-r--r-- | numpy/lib/tests/test_nanfunctions.py | 55 |
1 files changed, 55 insertions, 0 deletions
diff --git a/numpy/lib/tests/test_nanfunctions.py b/numpy/lib/tests/test_nanfunctions.py index 504372faf..da2d0cc52 100644 --- a/numpy/lib/tests/test_nanfunctions.py +++ b/numpy/lib/tests/test_nanfunctions.py @@ -1,8 +1,10 @@ from __future__ import division, absolute_import, print_function import warnings +import pytest import numpy as np +from numpy.lib.nanfunctions import _nan_mask, _replace_nan from numpy.testing import ( assert_, assert_equal, assert_almost_equal, assert_no_warnings, assert_raises, assert_array_equal, suppress_warnings @@ -925,3 +927,56 @@ class TestNanFunctions_Quantile(object): p = p.tolist() np.nanquantile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, p0) + +@pytest.mark.parametrize("arr, expected", [ + # array of floats with some nans + (np.array([np.nan, 5.0, np.nan, np.inf]), + np.array([False, True, False, True])), + # int64 array that can't possibly have nans + (np.array([1, 5, 7, 9], dtype=np.int64), + True), + # bool array that can't possibly have nans + (np.array([False, True, False, True]), + True), + # 2-D complex array with nans + (np.array([[np.nan, 5.0], + [np.nan, np.inf]], dtype=np.complex64), + np.array([[False, True], + [False, True]])), + ]) +def test__nan_mask(arr, expected): + for out in [None, np.empty(arr.shape, dtype=np.bool_)]: + actual = _nan_mask(arr, out=out) + assert_equal(actual, expected) + # the above won't distinguish between True proper + # and an array of True values; we want True proper + # for types that can't possibly contain NaN + if type(expected) is not np.ndarray: + assert actual is True + + +def test__replace_nan(): + """ Test that _replace_nan returns the original array if there are no + NaNs, not a copy. + """ + for dtype in [np.bool, np.int32, np.int64]: + arr = np.array([0, 1], dtype=dtype) + result, mask = _replace_nan(arr, 0) + assert mask is None + # do not make a copy if there are no nans + assert result is arr + + for dtype in [np.float32, np.float64]: + arr = np.array([0, 1], dtype=dtype) + result, mask = _replace_nan(arr, 2) + assert (mask == False).all() + # mask is not None, so we make a copy + assert result is not arr + assert_equal(result, arr) + + arr_nan = np.array([0, 1, np.nan], dtype=dtype) + result_nan, mask_nan = _replace_nan(arr_nan, 2) + assert_equal(mask_nan, np.array([False, False, True])) + assert result_nan is not arr_nan + assert_equal(result_nan, np.array([0, 1, 2])) + assert np.isnan(arr_nan[-1]) |