summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_nanfunctions.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/tests/test_nanfunctions.py')
-rw-r--r--numpy/lib/tests/test_nanfunctions.py55
1 files changed, 55 insertions, 0 deletions
diff --git a/numpy/lib/tests/test_nanfunctions.py b/numpy/lib/tests/test_nanfunctions.py
index 504372faf..da2d0cc52 100644
--- a/numpy/lib/tests/test_nanfunctions.py
+++ b/numpy/lib/tests/test_nanfunctions.py
@@ -1,8 +1,10 @@
from __future__ import division, absolute_import, print_function
import warnings
+import pytest
import numpy as np
+from numpy.lib.nanfunctions import _nan_mask, _replace_nan
from numpy.testing import (
assert_, assert_equal, assert_almost_equal, assert_no_warnings,
assert_raises, assert_array_equal, suppress_warnings
@@ -925,3 +927,56 @@ class TestNanFunctions_Quantile(object):
p = p.tolist()
np.nanquantile(np.arange(100.), p, interpolation="midpoint")
assert_array_equal(p, p0)
+
+@pytest.mark.parametrize("arr, expected", [
+ # array of floats with some nans
+ (np.array([np.nan, 5.0, np.nan, np.inf]),
+ np.array([False, True, False, True])),
+ # int64 array that can't possibly have nans
+ (np.array([1, 5, 7, 9], dtype=np.int64),
+ True),
+ # bool array that can't possibly have nans
+ (np.array([False, True, False, True]),
+ True),
+ # 2-D complex array with nans
+ (np.array([[np.nan, 5.0],
+ [np.nan, np.inf]], dtype=np.complex64),
+ np.array([[False, True],
+ [False, True]])),
+ ])
+def test__nan_mask(arr, expected):
+ for out in [None, np.empty(arr.shape, dtype=np.bool_)]:
+ actual = _nan_mask(arr, out=out)
+ assert_equal(actual, expected)
+ # the above won't distinguish between True proper
+ # and an array of True values; we want True proper
+ # for types that can't possibly contain NaN
+ if type(expected) is not np.ndarray:
+ assert actual is True
+
+
+def test__replace_nan():
+ """ Test that _replace_nan returns the original array if there are no
+ NaNs, not a copy.
+ """
+ for dtype in [np.bool, np.int32, np.int64]:
+ arr = np.array([0, 1], dtype=dtype)
+ result, mask = _replace_nan(arr, 0)
+ assert mask is None
+ # do not make a copy if there are no nans
+ assert result is arr
+
+ for dtype in [np.float32, np.float64]:
+ arr = np.array([0, 1], dtype=dtype)
+ result, mask = _replace_nan(arr, 2)
+ assert (mask == False).all()
+ # mask is not None, so we make a copy
+ assert result is not arr
+ assert_equal(result, arr)
+
+ arr_nan = np.array([0, 1, np.nan], dtype=dtype)
+ result_nan, mask_nan = _replace_nan(arr_nan, 2)
+ assert_equal(mask_nan, np.array([False, False, True]))
+ assert result_nan is not arr_nan
+ assert_equal(result_nan, np.array([0, 1, 2]))
+ assert np.isnan(arr_nan[-1])