diff options
Diffstat (limited to 'numpy/lib')
-rw-r--r-- | numpy/lib/__init__.py | 2 | ||||
-rw-r--r-- | numpy/lib/function_base.py | 17 | ||||
-rw-r--r-- | numpy/lib/mixins.py | 178 | ||||
-rw-r--r-- | numpy/lib/tests/test_mixins.py | 200 |
4 files changed, 397 insertions, 0 deletions
diff --git a/numpy/lib/__init__.py b/numpy/lib/__init__.py index 1d65db55e..4cdb76b20 100644 --- a/numpy/lib/__init__.py +++ b/numpy/lib/__init__.py @@ -8,6 +8,7 @@ from numpy.version import version as __version__ from .type_check import * from .index_tricks import * from .function_base import * +from .mixins import * from .nanfunctions import * from .shape_base import * from .stride_tricks import * @@ -29,6 +30,7 @@ __all__ = ['emath', 'math'] __all__ += type_check.__all__ __all__ += index_tricks.__all__ __all__ += function_base.__all__ +__all__ += mixins.__all__ __all__ += shape_base.__all__ __all__ += stride_tricks.__all__ __all__ += twodim_base.__all__ diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py index 4a07815e8..3c39d1a7b 100644 --- a/numpy/lib/function_base.py +++ b/numpy/lib/function_base.py @@ -1874,6 +1874,23 @@ def diff(a, n=1, axis=-1): will contain `False` when consecutive elements are the same and `True` when they differ. + For unsigned integer arrays, the results will also be unsigned. This should + not be surprising, as the result is consistent with calculating the + difference directly: + + >>> u8_arr = np.array([1, 0], dtype=np.uint8) + >>> np.diff(u8_arr) + array([255], dtype=uint8) + >>> u8_arr[1,...] - u8_arr[0,...] + array(255, np.uint8) + + If this is not desirable, then the array should be cast to a larger integer + type first: + + >>> i16_arr = u8_arr.astype(np.int16) + >>> np.diff(i16_arr) + array([-1], dtype=int16) + Examples -------- >>> x = np.array([1, 2, 4, 7, 0]) diff --git a/numpy/lib/mixins.py b/numpy/lib/mixins.py new file mode 100644 index 000000000..b5231e372 --- /dev/null +++ b/numpy/lib/mixins.py @@ -0,0 +1,178 @@ +"""Mixin classes for custom array types that don't inherit from ndarray.""" +from __future__ import division, absolute_import, print_function + +import sys + +from numpy.core import umath as um + +# Nothing should be exposed in the top-level NumPy module. +__all__ = [] + + +def _disables_array_ufunc(obj): + """True when __array_ufunc__ is set to None.""" + try: + return obj.__array_ufunc__ is None + except AttributeError: + return False + + +def _binary_method(ufunc, name): + """Implement a forward binary method with a ufunc, e.g., __add__.""" + def func(self, other): + if _disables_array_ufunc(other): + return NotImplemented + return ufunc(self, other) + func.__name__ = '__{}__'.format(name) + return func + + +def _reflected_binary_method(ufunc, name): + """Implement a reflected binary method with a ufunc, e.g., __radd__.""" + def func(self, other): + if _disables_array_ufunc(other): + return NotImplemented + return ufunc(other, self) + func.__name__ = '__r{}__'.format(name) + return func + + +def _inplace_binary_method(ufunc, name): + """Implement an in-place binary method with a ufunc, e.g., __iadd__.""" + def func(self, other): + return ufunc(self, other, out=(self,)) + func.__name__ = '__i{}__'.format(name) + return func + + +def _numeric_methods(ufunc, name): + """Implement forward, reflected and inplace binary methods with a ufunc.""" + return (_binary_method(ufunc, name), + _reflected_binary_method(ufunc, name), + _inplace_binary_method(ufunc, name)) + + +def _unary_method(ufunc, name): + """Implement a unary special method with a ufunc.""" + def func(self): + return ufunc(self) + func.__name__ = '__{}__'.format(name) + return func + + +class NDArrayOperatorsMixin(object): + """Mixin defining all operator special methods using __array_ufunc__. + + This class implements the special methods for almost all of Python's + builtin operators defined in the `operator` module, including comparisons + (``==``, ``>``, etc.) and arithmetic (``+``, ``*``, ``-``, etc.), by + deferring to the ``__array_ufunc__`` method, which subclasses must + implement. + + This class does not yet implement the special operators corresponding + to ``divmod``, unary ``+`` or ``matmul`` (``@``), because these operation + do not yet have corresponding NumPy ufuncs. + + It is useful for writing classes that do not inherit from `numpy.ndarray`, + but that should support arithmetic and numpy universal functions like + arrays as described in :ref:`A Mechanism for Overriding Ufuncs + <neps.ufunc-overrides>`. + + As an trivial example, consider this implementation of an ``ArrayLike`` + class that simply wraps a NumPy array and ensures that the result of any + arithmetic operation is also an ``ArrayLike`` object:: + + class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin): + def __init__(self, value): + self.value = np.asarray(value) + + # One might also consider adding the built-in list type to this + # list, to support operations like np.add(array_like, list) + _HANDLED_TYPES = (np.ndarray, numbers.Number) + + def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): + out = kwargs.get('out', ()) + for x in inputs + out: + # Only support operations with instances of _HANDLED_TYPES. + # Use ArrayLike instead of type(self) for isinstance to + # allow subclasses that don't override __array_ufunc__ to + # handle ArrayLike objects. + if not isinstance(x, self._HANDLED_TYPES + (ArrayLike,)): + return NotImplemented + + # Defer to the implementation of the ufunc on unwrapped values. + inputs = tuple(x.value if isinstance(x, ArrayLike) else x + for x in inputs) + if out: + kwargs['out'] = tuple( + x.value if isinstance(x, ArrayLike) else x + for x in out) + result = getattr(ufunc, method)(*inputs, **kwargs) + + if type(result) is tuple: + # multiple return values + return tuple(type(self)(x) for x in result) + elif method == 'at': + # no return value + return None + else: + # one return value + return type(self)(result) + + def __repr__(self): + return '%s(%r)' % (type(self).__name__, self.value) + + In interactions between ``ArrayLike`` objects and numbers or numpy arrays, + the result is always another ``ArrayLike``: + + >>> x = ArrayLike([1, 2, 3]) + >>> x - 1 + ArrayLike(array([0, 1, 2])) + >>> 1 - x + ArrayLike(array([ 0, -1, -2])) + >>> np.arange(3) - x + ArrayLike(array([-1, -1, -1])) + >>> x - np.arange(3) + ArrayLike(array([1, 1, 1])) + + Note that unlike ``numpy.ndarray``, ``ArrayLike`` does not allow operations + with arbitrary, unrecognized types. This ensures that interactions with + ArrayLike preserve a well-defined casting hierarchy. + """ + # Like np.ndarray, this mixin class implements "Option 1" from the ufunc + # overrides NEP. + + # comparisons don't have reflected and in-place versions + __lt__ = _binary_method(um.less, 'lt') + __le__ = _binary_method(um.less_equal, 'le') + __eq__ = _binary_method(um.equal, 'eq') + __ne__ = _binary_method(um.not_equal, 'ne') + __gt__ = _binary_method(um.greater, 'gt') + __ge__ = _binary_method(um.greater_equal, 'ge') + + # numeric methods + __add__, __radd__, __iadd__ = _numeric_methods(um.add, 'add') + __sub__, __rsub__, __isub__ = _numeric_methods(um.subtract, 'sub') + __mul__, __rmul__, __imul__ = _numeric_methods(um.multiply, 'mul') + if sys.version_info.major < 3: + # Python 3 uses only __truediv__ and __floordiv__ + __div__, __rdiv__, __idiv__ = _numeric_methods(um.divide, 'div') + __truediv__, __rtruediv__, __itruediv__ = _numeric_methods( + um.true_divide, 'truediv') + __floordiv__, __rfloordiv__, __ifloordiv__ = _numeric_methods( + um.floor_divide, 'floordiv') + __mod__, __rmod__, __imod__ = _numeric_methods(um.mod, 'mod') + # TODO: handle the optional third argument for __pow__? + __pow__, __rpow__, __ipow__ = _numeric_methods(um.power, 'pow') + __lshift__, __rlshift__, __ilshift__ = _numeric_methods( + um.left_shift, 'lshift') + __rshift__, __rrshift__, __irshift__ = _numeric_methods( + um.right_shift, 'rshift') + __and__, __rand__, __iand__ = _numeric_methods(um.bitwise_and, 'and') + __xor__, __rxor__, __ixor__ = _numeric_methods(um.bitwise_xor, 'xor') + __or__, __ror__, __ior__ = _numeric_methods(um.bitwise_or, 'or') + + # unary methods + __neg__ = _unary_method(um.negative, 'neg') + __abs__ = _unary_method(um.absolute, 'abs') + __invert__ = _unary_method(um.invert, 'invert') diff --git a/numpy/lib/tests/test_mixins.py b/numpy/lib/tests/test_mixins.py new file mode 100644 index 000000000..57c4a4cd8 --- /dev/null +++ b/numpy/lib/tests/test_mixins.py @@ -0,0 +1,200 @@ +from __future__ import division, absolute_import, print_function + +import numbers +import operator +import sys + +import numpy as np +from numpy.testing import ( + TestCase, run_module_suite, assert_, assert_equal, assert_raises) + + +PY2 = sys.version_info.major < 3 + + +# NOTE: This class should be kept as an exact copy of the example from the +# docstring for NDArrayOperatorsMixin. + +class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin): + def __init__(self, value): + self.value = np.asarray(value) + + # One might also consider adding the built-in list type to this + # list, to support operations like np.add(array_like, list) + _HANDLED_TYPES = (np.ndarray, numbers.Number) + + def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): + out = kwargs.get('out', ()) + for x in inputs + out: + # Only support operations with instances of _HANDLED_TYPES. + # Use ArrayLike instead of type(self) for isinstance to + # allow subclasses that don't override __array_ufunc__ to + # handle ArrayLike objects. + if not isinstance(x, self._HANDLED_TYPES + (ArrayLike,)): + return NotImplemented + + # Defer to the implementation of the ufunc on unwrapped values. + inputs = tuple(x.value if isinstance(x, ArrayLike) else x + for x in inputs) + if out: + kwargs['out'] = tuple( + x.value if isinstance(x, ArrayLike) else x + for x in out) + result = getattr(ufunc, method)(*inputs, **kwargs) + + if type(result) is tuple: + # multiple return values + return tuple(type(self)(x) for x in result) + elif method == 'at': + # no return value + return None + else: + # one return value + return type(self)(result) + + def __repr__(self): + return '%s(%r)' % (type(self).__name__, self.value) + + +def _assert_equal_type_and_value(result, expected, err_msg=None): + assert_equal(type(result), type(expected), err_msg=err_msg) + assert_equal(result.value, expected.value, err_msg=err_msg) + assert_equal(getattr(result.value, 'dtype', None), + getattr(expected.value, 'dtype', None), err_msg=err_msg) + + +class TestNDArrayOperatorsMixin(TestCase): + + def test_array_like_add(self): + + def check(result): + _assert_equal_type_and_value(result, ArrayLike(0)) + + check(ArrayLike(0) + 0) + check(0 + ArrayLike(0)) + + check(ArrayLike(0) + np.array(0)) + check(np.array(0) + ArrayLike(0)) + + check(ArrayLike(np.array(0)) + 0) + check(0 + ArrayLike(np.array(0))) + + check(ArrayLike(np.array(0)) + np.array(0)) + check(np.array(0) + ArrayLike(np.array(0))) + + def test_inplace(self): + array_like = ArrayLike(np.array([0])) + array_like += 1 + _assert_equal_type_and_value(array_like, ArrayLike(np.array([1]))) + + array = np.array([0]) + array += ArrayLike(1) + _assert_equal_type_and_value(array, ArrayLike(np.array([1]))) + + def test_opt_out(self): + + class OptOut(object): + """Object that opts out of __array_ufunc__.""" + __array_ufunc__ = None + + def __add__(self, other): + return self + + def __radd__(self, other): + return self + + array_like = ArrayLike(1) + opt_out = OptOut() + + # supported operations + assert_(array_like + opt_out is opt_out) + assert_(opt_out + array_like is opt_out) + + # not supported + with assert_raises(TypeError): + # don't use the Python default, array_like = array_like + opt_out + array_like += opt_out + with assert_raises(TypeError): + array_like - opt_out + with assert_raises(TypeError): + opt_out - array_like + + def test_subclass(self): + + class SubArrayLike(ArrayLike): + """Should take precedence over ArrayLike.""" + + x = ArrayLike(0) + y = SubArrayLike(1) + _assert_equal_type_and_value(x + y, y) + _assert_equal_type_and_value(y + x, y) + + def test_object(self): + x = ArrayLike(0) + obj = object() + with assert_raises(TypeError): + x + obj + with assert_raises(TypeError): + obj + x + with assert_raises(TypeError): + x += obj + + def test_unary_methods(self): + array = np.array([-1, 0, 1, 2]) + array_like = ArrayLike(array) + for op in [operator.neg, + # pos is not yet implemented + abs, + operator.invert]: + _assert_equal_type_and_value(op(array_like), ArrayLike(op(array))) + + def test_binary_methods(self): + array = np.array([-1, 0, 1, 2]) + array_like = ArrayLike(array) + operators = [ + operator.lt, + operator.le, + operator.eq, + operator.ne, + operator.gt, + operator.ge, + operator.add, + operator.sub, + operator.mul, + operator.truediv, + operator.floordiv, + # TODO: test div on Python 2, only + operator.mod, + # divmod is not yet implemented + pow, + operator.lshift, + operator.rshift, + operator.and_, + operator.xor, + operator.or_, + ] + for op in operators: + expected = ArrayLike(op(array, 1)) + actual = op(array_like, 1) + err_msg = 'failed for operator {}'.format(op) + _assert_equal_type_and_value(expected, actual, err_msg=err_msg) + + def test_ufunc_at(self): + array = ArrayLike(np.array([1, 2, 3, 4])) + assert_(np.negative.at(array, np.array([0, 1])) is None) + _assert_equal_type_and_value(array, ArrayLike([-1, -2, 3, 4])) + + def test_ufunc_two_outputs(self): + def check(result): + assert_(type(result) is tuple) + assert_equal(len(result), 2) + mantissa, exponent = np.frexp(2 ** -3) + _assert_equal_type_and_value(result[0], ArrayLike(mantissa)) + _assert_equal_type_and_value(result[1], ArrayLike(exponent)) + + check(np.frexp(ArrayLike(2 ** -3))) + check(np.frexp(ArrayLike(np.array(2 ** -3)))) + + +if __name__ == "__main__": + run_module_suite() |