summaryrefslogtreecommitdiff
path: root/numpy
diff options
context:
space:
mode:
Diffstat (limited to 'numpy')
-rw-r--r--numpy/add_newdocs.py27
-rw-r--r--numpy/core/fromnumeric.py49
-rw-r--r--numpy/core/memmap.py8
-rw-r--r--numpy/core/numeric.py15
-rw-r--r--numpy/core/records.py5
-rw-r--r--numpy/doc/indexing.py14
-rw-r--r--numpy/lib/function_base.py8
-rw-r--r--numpy/matlib.py8
8 files changed, 70 insertions, 64 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py
index 11a2688e5..75f88a85f 100644
--- a/numpy/add_newdocs.py
+++ b/numpy/add_newdocs.py
@@ -28,9 +28,9 @@ add_newdoc('numpy.core', 'flatiter',
It allows iterating over the array as if it were a 1-D array,
either in a for-loop or by calling its `next` method.
- Iteration is done in C-contiguous style, with the last index varying the
- fastest. The iterator can also be indexed using basic slicing or
- advanced indexing.
+ Iteration is done in row-major, C-style order (the last
+ index varying the fastest). The iterator can also be indexed using
+ basic slicing or advanced indexing.
See Also
--------
@@ -745,8 +745,9 @@ add_newdoc('numpy.core.multiarray', 'empty',
dtype : data-type, optional
Desired output data-type.
order : {'C', 'F'}, optional
- Whether to store multi-dimensional data in C (row-major) or
- Fortran (column-major) order in memory.
+ Whether to store multi-dimensional data in row-major
+ (C-style) or column-major (Fortran-style) order in
+ memory.
Returns
-------
@@ -2419,7 +2420,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray',
strides : tuple of ints, optional
Strides of data in memory.
order : {'C', 'F'}, optional
- Row-major or column-major order.
+ Row-major (C-style) or column-major (Fortran-style) order.
Attributes
----------
@@ -3564,9 +3565,9 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('flatten',
Parameters
----------
order : {'C', 'F', 'A'}, optional
- Whether to flatten in C (row-major), Fortran (column-major) order,
- or preserve the C/Fortran ordering from `a`.
- The default is 'C'.
+ Whether to flatten in row-major (C-style) or
+ column-major (Fortran-style) order or preserve the
+ C/Fortran ordering from `a`. The default is 'C'.
Returns
-------
@@ -5144,8 +5145,9 @@ add_newdoc('numpy.core.multiarray', 'ravel_multi_index',
In 'clip' mode, a negative index which would normally
wrap will clip to 0 instead.
order : {'C', 'F'}, optional
- Determines whether the multi-index should be viewed as indexing in
- C (row-major) order or FORTRAN (column-major) order.
+ Determines whether the multi-index should be viewed as
+ indexing in row-major (C-style) or column-major
+ (Fortran-style) order.
Returns
-------
@@ -5194,9 +5196,8 @@ add_newdoc('numpy.core.multiarray', 'unravel_index',
The shape of the array to use for unraveling ``indices``.
order : {'C', 'F'}, optional
.. versionadded:: 1.6.0
-
Determines whether the indices should be viewed as indexing in
- C (row-major) order or FORTRAN (column-major) order.
+ row-major (C-style) or column-major (Fortran-style) order.
Returns
-------
diff --git a/numpy/core/fromnumeric.py b/numpy/core/fromnumeric.py
index 5f96b1d61..b6a28ec9b 100644
--- a/numpy/core/fromnumeric.py
+++ b/numpy/core/fromnumeric.py
@@ -1370,8 +1370,7 @@ def trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None):
def ravel(a, order='C'):
- """
- Return a flattened array.
+ """Return a flattened array.
A 1-D array, containing the elements of the input, is returned. A copy is
made only if needed.
@@ -1386,18 +1385,21 @@ def ravel(a, order='C'):
Input array. The elements in `a` are read in the order specified by
`order`, and packed as a 1-D array.
order : {'C','F', 'A', 'K'}, optional
- The elements of `a` are read using this index order. 'C' means to
- index the elements in C-like order, with the last axis index changing
- fastest, back to the first axis index changing slowest. 'F' means to
- index the elements in Fortran-like index order, with the first index
- changing fastest, and the last index changing slowest. Note that the
- 'C' and 'F' options take no account of the memory layout of the
- underlying array, and only refer to the order of axis indexing.
- 'A' means to read the elements in Fortran-like index order if `a` is
- Fortran *contiguous* in memory, C-like order otherwise. 'K' means to
- read the elements in the order they occur in memory, except for
- reversing the data when strides are negative. By default, 'C' index
- order is used.
+
+ The elements of `a` are read using this index order. 'C' means
+ to index the elements in row-major, C-style order,
+ with the last axis index changing fastest, back to the first
+ axis index changing slowest. 'F' means to index the elements
+ in column-major, Fortran-style order, with the
+ first index changing fastest, and the last index changing
+ slowest. Note that the 'C' and 'F' options take no account of
+ the memory layout of the underlying array, and only refer to
+ the order of axis indexing. 'A' means to read the elements in
+ Fortran-like index order if `a` is Fortran *contiguous* in
+ memory, C-like order otherwise. 'K' means to read the
+ elements in the order they occur in memory, except for
+ reversing the data when strides are negative. By default, 'C'
+ index order is used.
Returns
-------
@@ -1415,11 +1417,12 @@ def ravel(a, order='C'):
Notes
-----
- In C-like (row-major) order, in two dimensions, the row index varies the
- slowest, and the column index the quickest. This can be generalized to
- multiple dimensions, where row-major order implies that the index along the
- first axis varies slowest, and the index along the last quickest. The
- opposite holds for Fortran-like, or column-major, index ordering.
+ In row-major, C-style order, in two dimensions, the row index
+ varies the slowest, and the column index the quickest. This can
+ be generalized to multiple dimensions, where row-major order
+ implies that the index along the first axis varies slowest, and
+ the index along the last quickest. The opposite holds for
+ column-major, Fortran-style index ordering.
Examples
--------
@@ -1473,9 +1476,11 @@ def nonzero(a):
"""
Return the indices of the elements that are non-zero.
- Returns a tuple of arrays, one for each dimension of `a`, containing
- the indices of the non-zero elements in that dimension. The
- corresponding non-zero values can be obtained with::
+ Returns a tuple of arrays, one for each dimension of `a`,
+ containing the indices of the non-zero elements in that
+ dimension. The values in `a` are always tested and returned in
+ row-major, C-style order. The corresponding non-zero
+ values can be obtained with::
a[nonzero(a)]
diff --git a/numpy/core/memmap.py b/numpy/core/memmap.py
index 4b10f361c..6397e8939 100644
--- a/numpy/core/memmap.py
+++ b/numpy/core/memmap.py
@@ -21,8 +21,7 @@ mode_equivalents = {
}
class memmap(ndarray):
- """
- Create a memory-map to an array stored in a *binary* file on disk.
+ """Create a memory-map to an array stored in a *binary* file on disk.
Memory-mapped files are used for accessing small segments of large files
on disk, without reading the entire file into memory. Numpy's
@@ -79,8 +78,9 @@ class memmap(ndarray):
will be 1-D with the number of elements determined by file size
and data-type.
order : {'C', 'F'}, optional
- Specify the order of the ndarray memory layout: C (row-major) or
- Fortran (column-major). This only has an effect if the shape is
+ Specify the order of the ndarray memory layout:
+ :term:`row-major`, C-style or :term:`column-major`,
+ Fortran-style. This only has an effect if the shape is
greater than 1-D. The default order is 'C'.
Attributes
diff --git a/numpy/core/numeric.py b/numpy/core/numeric.py
index 24d92f16f..eb92d7f52 100644
--- a/numpy/core/numeric.py
+++ b/numpy/core/numeric.py
@@ -398,8 +398,7 @@ matmul = multiarray.matmul
def asarray(a, dtype=None, order=None):
- """
- Convert the input to an array.
+ """Convert the input to an array.
Parameters
----------
@@ -410,8 +409,9 @@ def asarray(a, dtype=None, order=None):
dtype : data-type, optional
By default, the data-type is inferred from the input data.
order : {'C', 'F'}, optional
- Whether to use row-major ('C') or column-major ('F' for FORTRAN)
- memory representation. Defaults to 'C'.
+ Whether to use row-major (C-style) or
+ column-major (Fortran-style) memory representation.
+ Defaults to 'C'.
Returns
-------
@@ -468,8 +468,7 @@ def asarray(a, dtype=None, order=None):
return array(a, dtype, copy=False, order=order)
def asanyarray(a, dtype=None, order=None):
- """
- Convert the input to an ndarray, but pass ndarray subclasses through.
+ """Convert the input to an ndarray, but pass ndarray subclasses through.
Parameters
----------
@@ -480,8 +479,8 @@ def asanyarray(a, dtype=None, order=None):
dtype : data-type, optional
By default, the data-type is inferred from the input data.
order : {'C', 'F'}, optional
- Whether to use row-major ('C') or column-major ('F') memory
- representation. Defaults to 'C'.
+ Whether to use row-major (C-style) or column-major
+ (Fortran-style) memory representation. Defaults to 'C'.
Returns
-------
diff --git a/numpy/core/records.py b/numpy/core/records.py
index 1b3d75db6..9c6d8347a 100644
--- a/numpy/core/records.py
+++ b/numpy/core/records.py
@@ -295,8 +295,7 @@ class record(nt.void):
# the fields (and any subfields)
class recarray(ndarray):
- """
- Construct an ndarray that allows field access using attributes.
+ """Construct an ndarray that allows field access using attributes.
Arrays may have a data-types containing fields, analogous
to columns in a spread sheet. An example is ``[(x, int), (y, float)]``,
@@ -345,7 +344,7 @@ class recarray(ndarray):
offset : int, optional
Start reading buffer (`buf`) from this offset onwards.
order : {'C', 'F'}, optional
- Row-major or column-major order.
+ Row-major (C-style) or column-major (Fortran-style) order.
Returns
-------
diff --git a/numpy/doc/indexing.py b/numpy/doc/indexing.py
index 0891e7c8d..9e9f0a10c 100644
--- a/numpy/doc/indexing.py
+++ b/numpy/doc/indexing.py
@@ -1,5 +1,4 @@
-"""
-==============
+"""==============
Array indexing
==============
@@ -229,10 +228,13 @@ most straightforward case, the boolean array has the same shape: ::
>>> y[b]
array([21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34])
-The result is a 1-D array containing all the elements in the indexed
-array corresponding to all the true elements in the boolean array. As
-with index arrays, what is returned is a copy of the data, not a view
-as one gets with slices.
+Unlike in the case of integer index arrays, in the boolean case, the
+result is a 1-D array containing all the elements in the indexed array
+corresponding to all the true elements in the boolean array. The
+elements in the indexed array are always iterated and returned in
+:term:`row-major` (C-style) order. The result is also identical to
+``y[np.nonzero(b)]``. As with index arrays, what is returned is a copy
+of the data, not a view as one gets with slices.
The result will be multidimensional if y has more dimensions than b.
For example: ::
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index 3826715e1..26d25cd6d 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -547,8 +547,7 @@ def average(a, axis=None, weights=None, returned=False):
def asarray_chkfinite(a, dtype=None, order=None):
- """
- Convert the input to an array, checking for NaNs or Infs.
+ """Convert the input to an array, checking for NaNs or Infs.
Parameters
----------
@@ -559,8 +558,9 @@ def asarray_chkfinite(a, dtype=None, order=None):
dtype : data-type, optional
By default, the data-type is inferred from the input data.
order : {'C', 'F'}, optional
- Whether to use row-major ('C') or column-major ('FORTRAN') memory
- representation. Defaults to 'C'.
+ Whether to use row-major (C-style) or
+ column-major (Fortran-style) memory representation.
+ Defaults to 'C'.
Returns
-------
diff --git a/numpy/matlib.py b/numpy/matlib.py
index 677400367..656ca3458 100644
--- a/numpy/matlib.py
+++ b/numpy/matlib.py
@@ -11,8 +11,7 @@ __all__ = np.__all__[:] # copy numpy namespace
__all__ += ['rand', 'randn', 'repmat']
def empty(shape, dtype=None, order='C'):
- """
- Return a new matrix of given shape and type, without initializing entries.
+ """Return a new matrix of given shape and type, without initializing entries.
Parameters
----------
@@ -21,8 +20,9 @@ def empty(shape, dtype=None, order='C'):
dtype : data-type, optional
Desired output data-type.
order : {'C', 'F'}, optional
- Whether to store multi-dimensional data in C (row-major) or
- Fortran (column-major) order in memory.
+ Whether to store multi-dimensional data in row-major
+ (C-style) or column-major (Fortran-style) order in
+ memory.
See Also
--------