.. _new-or-different: .. currentmodule:: numpy.random What's New or Different ----------------------- NumPy 1.17.0 introduced `Generator` as an improved replacement for the :ref:`legacy ` `RandomState`. Here is a quick comparison of the two implementations. ================== ==================== ============= Feature Older Equivalent Notes ------------------ -------------------- ------------- `~.Generator` `~.RandomState` ``Generator`` requires a stream source, called a `BitGenerator` A number of these are provided. ``RandomState`` uses the Mersenne Twister `~.MT19937` by default, but can also be instantiated with any BitGenerator. ------------------ -------------------- ------------- ``random`` ``random_sample``, Access the values in a BitGenerator, ``rand`` convert them to ``float64`` in the interval ``[0.0.,`` `` 1.0)``. In addition to the ``size`` kwarg, now supports ``dtype='d'`` or ``dtype='f'``, and an ``out`` kwarg to fill a user- supplied array. Many other distributions are also supported. ------------------ -------------------- ------------- ``integers`` ``randint``, Use the ``endpoint`` kwarg to adjust ``random_integers`` the inclusion or exclusion of the ``high`` interval endpoint ================== ==================== ============= * The normal, exponential and gamma generators use 256-step Ziggurat methods which are 2-10 times faster than NumPy's default implementation in `~.Generator.standard_normal`, `~.Generator.standard_exponential` or `~.Generator.standard_gamma`. Because of the change in algorithms, it is not possible to reproduce the exact random values using ``Generator`` for these distributions or any distribution method that relies on them. .. ipython:: python import numpy.random rng = np.random.default_rng() %timeit -n 1 rng.standard_normal(100000) %timeit -n 1 numpy.random.standard_normal(100000) .. ipython:: python %timeit -n 1 rng.standard_exponential(100000) %timeit -n 1 numpy.random.standard_exponential(100000) .. ipython:: python %timeit -n 1 rng.standard_gamma(3.0, 100000) %timeit -n 1 numpy.random.standard_gamma(3.0, 100000) * `~.Generator.integers` is now the canonical way to generate integer random numbers from a discrete uniform distribution. This replaces both ``randint`` and the deprecated ``random_integers``. * The ``rand`` and ``randn`` methods are only available through the legacy `~.RandomState`. * `Generator.random` is now the canonical way to generate floating-point random numbers, which replaces `RandomState.random_sample`, `sample`, and `ranf`, all of which were aliases. This is consistent with Python's `random.random`. * All bit generators can produce doubles, uint64s and uint32s via CTypes (`~PCG64.ctypes`) and CFFI (`~PCG64.cffi`). This allows these bit generators to be used in numba. * The bit generators can be used in downstream projects via Cython. * All bit generators use `SeedSequence` to :ref:`convert seed integers to initialized states `. * Optional ``dtype`` argument that accepts ``np.float32`` or ``np.float64`` to produce either single or double precision uniform random variables for select distributions. `~.Generator.integers` accepts a ``dtype`` argument with any signed or unsigned integer dtype. * Uniforms (`~.Generator.random` and `~.Generator.integers`) * Normals (`~.Generator.standard_normal`) * Standard Gammas (`~.Generator.standard_gamma`) * Standard Exponentials (`~.Generator.standard_exponential`) .. ipython:: python rng = np.random.default_rng() rng.random(3, dtype=np.float64) rng.random(3, dtype=np.float32) rng.integers(0, 256, size=3, dtype=np.uint8) * Optional ``out`` argument that allows existing arrays to be filled for select distributions * Uniforms (`~.Generator.random`) * Normals (`~.Generator.standard_normal`) * Standard Gammas (`~.Generator.standard_gamma`) * Standard Exponentials (`~.Generator.standard_exponential`) This allows multithreading to fill large arrays in chunks using suitable BitGenerators in parallel. .. ipython:: python rng = np.random.default_rng() existing = np.zeros(4) rng.random(out=existing[:2]) print(existing) * Optional ``axis`` argument for methods like `~.Generator.choice`, `~.Generator.permutation` and `~.Generator.shuffle` that controls which axis an operation is performed over for multi-dimensional arrays. .. ipython:: python rng = np.random.default_rng() a = np.arange(12).reshape((3, 4)) a rng.choice(a, axis=1, size=5) rng.shuffle(a, axis=1) # Shuffle in-place a * Added a method to sample from the complex normal distribution (`~.Generator.complex_normal`)