from __future__ import annotations from ._array_object import ndarray from typing import TYPE_CHECKING if TYPE_CHECKING: from ._types import Optional, Tuple, Union, array import numpy as np # Note: the function name is different here def concat(arrays: Tuple[array, ...], /, *, axis: Optional[int] = 0) -> array: """ Array API compatible wrapper for :py:func:`np.concatenate `. See its docstring for more information. """ arrays = tuple(a._array for a in arrays) return ndarray._new(np.concatenate(arrays, axis=axis)) def expand_dims(x: array, /, *, axis: int) -> array: """ Array API compatible wrapper for :py:func:`np.expand_dims `. See its docstring for more information. """ return ndarray._new(np.expand_dims(x._array, axis)) def flip(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None) -> array: """ Array API compatible wrapper for :py:func:`np.flip `. See its docstring for more information. """ return ndarray._new(np.flip(x._array, axis=axis)) def reshape(x: array, /, shape: Tuple[int, ...]) -> array: """ Array API compatible wrapper for :py:func:`np.reshape `. See its docstring for more information. """ return ndarray._new(np.reshape(x._array, shape)) def roll(x: array, /, shift: Union[int, Tuple[int, ...]], *, axis: Optional[Union[int, Tuple[int, ...]]] = None) -> array: """ Array API compatible wrapper for :py:func:`np.roll `. See its docstring for more information. """ return ndarray._new(np.roll(x._array, shift, axis=axis)) def squeeze(x: array, /, axis: Optional[Union[int, Tuple[int, ...]]] = None) -> array: """ Array API compatible wrapper for :py:func:`np.squeeze `. See its docstring for more information. """ return ndarray._new(np.squeeze(x._array, axis=axis)) def stack(arrays: Tuple[array, ...], /, *, axis: int = 0) -> array: """ Array API compatible wrapper for :py:func:`np.stack `. See its docstring for more information. """ arrays = tuple(a._array for a in arrays) return ndarray._new(np.stack(arrays, axis=axis))