""" ============================ Typing (:mod:`numpy.typing`) ============================ .. warning:: Some of the types in this module rely on features only present in the standard library in Python 3.8 and greater. If you want to use these types in earlier versions of Python, you should install the typing-extensions_ package. Large parts of the NumPy API have PEP-484-style type annotations. In addition, the following type aliases are available for users. - ``typing.ArrayLike``: objects that can be converted to arrays - ``typing.DtypeLike``: objects that can be converted to dtypes Roughly speaking, ``typing.ArrayLike`` is "objects that can be used as inputs to ``np.array``" and ``typing.DtypeLike`` is "objects that can be used as inputs to ``np.dtype``". .. _typing-extensions: https://pypi.org/project/typing-extensions/ Differences from the runtime NumPy API -------------------------------------- NumPy is very flexible. Trying to describe the full range of possibilities statically would result in types that are not very helpful. For that reason, the typed NumPy API is often stricter than the runtime NumPy API. This section describes some notable differences. ArrayLike ~~~~~~~~~ The ``ArrayLike`` type tries to avoid creating object arrays. For example, .. code-block:: python >>> np.array(x**2 for x in range(10)) array( at 0x10c004cd0>, dtype=object) is valid NumPy code which will create a 0-dimensional object array. Type checkers will complain about the above example when using the NumPy types however. If you really intended to do the above, then you can either use a ``# type: ignore`` comment: .. code-block:: python >>> np.array(x**2 for x in range(10)) # type: ignore or explicitly type the array like object as ``Any``: .. code-block:: python >>> from typing import Any >>> array_like: Any = (x**2 for x in range(10)) >>> np.array(array_like) array( at 0x1192741d0>, dtype=object) ndarray ~~~~~~~ It's possible to mutate the dtype of an array at runtime. For example, the following code is valid: .. code-block:: python >>> x = np.array([1, 2]) >>> x.dtype = np.bool_ This sort of mutation is not allowed by the types. Users who want to write statically typed code should insted use the `numpy.ndarray.view` method to create a view of the array with a different dtype. dtype ~~~~~ The ``DTypeLike`` type tries to avoid creation of dtype objects using dictionary of fields like below: .. code-block:: python >>> x = np.dtype({"field1": (float, 1), "field2": (int, 3)}) Although this is valid Numpy code, the type checker will complain about it, since its usage is discouraged. Please see : https://numpy.org/devdocs/reference/arrays.dtypes.html NBitBase ~~~~~~~~ .. autoclass:: numpy.typing.NBitBase """ from typing import TYPE_CHECKING if TYPE_CHECKING: import sys if sys.version_info >= (3, 8): from typing import final else: from typing_extensions import final else: def final(f): return f @final # Dissallow the creation of arbitrary `NBitBase` subclasses class NBitBase: """ An object representing `numpy.number` precision during static type checking. Used exclusively for the purpose static type checking, `NBitBase` represents the base of a hierachieral set of subclasses. Each subsequent subclass is herein used for representing a lower level of precision, *e.g.* ``64Bit > 32Bit > 16Bit``. Examples -------- Below is a typical usage example: `NBitBase` is herein used for annotating a function that takes a float and integer of arbitrary precision as arguments and returns a new float of whichever precision is largest (*e.g.* ``np.float16 + np.int64 -> np.float64``). .. code-block:: python >>> from typing import TypeVar, TYPE_CHECKING >>> import numpy as np >>> import numpy.typing as npt >>> T = TypeVar("T", bound=npt.NBitBase) >>> def add(a: "np.floating[T]", b: "np.integer[T]") -> "np.floating[T]": ... return a + b >>> a = np.float16() >>> b = np.int64() >>> out = add(a, b) >>> if TYPE_CHECKING: ... reveal_locals() ... # note: Revealed local types are: ... # note: a: numpy.floating[numpy.typing._16Bit*] ... # note: b: numpy.signedinteger[numpy.typing._64Bit*] ... # note: out: numpy.floating[numpy.typing._64Bit*] """ def __init_subclass__(cls) -> None: allowed_names = { "NBitBase", "_256Bit", "_128Bit", "_96Bit", "_80Bit", "_64Bit", "_32Bit", "_16Bit", "_8Bit", } if cls.__name__ not in allowed_names: raise TypeError('cannot inherit from final class "NBitBase"') super().__init_subclass__() # Silence errors about subclassing a `@final`-decorated class class _256Bit(NBitBase): ... # type: ignore[misc] class _128Bit(_256Bit): ... # type: ignore[misc] class _96Bit(_128Bit): ... # type: ignore[misc] class _80Bit(_96Bit): ... # type: ignore[misc] class _64Bit(_80Bit): ... # type: ignore[misc] class _32Bit(_64Bit): ... # type: ignore[misc] class _16Bit(_32Bit): ... # type: ignore[misc] class _8Bit(_16Bit): ... # type: ignore[misc] # Clean up the namespace del TYPE_CHECKING, final from ._scalars import ( _CharLike, _BoolLike, _IntLike, _FloatLike, _ComplexLike, _NumberLike, _ScalarLike, _VoidLike, ) from ._array_like import _SupportsArray, ArrayLike from ._shape import _Shape, _ShapeLike from ._dtype_like import _SupportsDtype, _VoidDtypeLike, DtypeLike from numpy._pytesttester import PytestTester test = PytestTester(__name__) del PytestTester