summaryrefslogtreecommitdiff
path: root/numpy/random/_generator.pyx
blob: 2c25b7191560aa2e47698d43c82eb6c78c582c26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
#!python
#cython: wraparound=False, nonecheck=False, boundscheck=False, cdivision=True, language_level=3
import operator
import warnings
from collections.abc import Sequence

from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer
from cpython cimport (Py_INCREF, PyFloat_AsDouble)
from cpython.mem cimport PyMem_Malloc, PyMem_Free

cimport cython
import numpy as np
cimport numpy as np
from numpy.core.multiarray import normalize_axis_index

from .c_distributions cimport *
from libc cimport string
from libc.math cimport sqrt
from libc.stdint cimport (uint8_t, uint16_t, uint32_t, uint64_t,
                          int32_t, int64_t, INT64_MAX, SIZE_MAX)
from ._bounded_integers cimport (_rand_bool, _rand_int32, _rand_int64,
         _rand_int16, _rand_int8, _rand_uint64, _rand_uint32, _rand_uint16,
         _rand_uint8, _gen_mask)
from ._pcg64 import PCG64
from numpy.random cimport bitgen_t
from ._common cimport (POISSON_LAM_MAX, CONS_POSITIVE, CONS_NONE,
            CONS_NON_NEGATIVE, CONS_BOUNDED_0_1, CONS_BOUNDED_GT_0_1,
            CONS_BOUNDED_LT_0_1, CONS_GT_1, CONS_POSITIVE_NOT_NAN, CONS_POISSON,
            double_fill, cont, kahan_sum, cont_broadcast_3, float_fill, cont_f,
            check_array_constraint, check_constraint, disc, discrete_broadcast_iii,
            validate_output_shape
        )

cdef extern from "numpy/arrayobject.h":
    int PyArray_ResolveWritebackIfCopy(np.ndarray)
    int PyArray_FailUnlessWriteable(np.PyArrayObject *obj,
                                    const char *name) except -1
    object PyArray_FromArray(np.PyArrayObject *, np.PyArray_Descr *, int)

    enum:
        NPY_ARRAY_WRITEBACKIFCOPY

np.import_array()

cdef int64_t _safe_sum_nonneg_int64(size_t num_colors, int64_t *colors):
    """
    Sum the values in the array `colors`.

    Return -1 if an overflow occurs.
    The values in *colors are assumed to be nonnegative.
    """
    cdef size_t i
    cdef int64_t sum

    sum = 0
    for i in range(num_colors):
        if colors[i] > INT64_MAX - sum:
            return -1
        sum += colors[i]
    return sum


cdef inline void _shuffle_raw_wrap(bitgen_t *bitgen, np.npy_intp n,
                                   np.npy_intp first, np.npy_intp itemsize,
                                   np.npy_intp stride,
                                   char* data, char* buf) nogil:
    # We trick gcc into providing a specialized implementation for
    # the most common case, yielding a ~33% performance improvement.
    # Note that apparently, only one branch can ever be specialized.
    if itemsize == sizeof(np.npy_intp):
        _shuffle_raw(bitgen, n, first, sizeof(np.npy_intp), stride, data, buf)
    else:
        _shuffle_raw(bitgen, n, first, itemsize, stride, data, buf)


cdef inline void _shuffle_raw(bitgen_t *bitgen, np.npy_intp n,
                              np.npy_intp first, np.npy_intp itemsize,
                              np.npy_intp stride,
                              char* data, char* buf) nogil:
    """
    Parameters
    ----------
    bitgen
        Pointer to a bitgen_t instance.
    n
        Number of elements in data
    first
        First observation to shuffle.  Shuffles n-1,
        n-2, ..., first, so that when first=1 the entire
        array is shuffled
    itemsize
        Size in bytes of item
    stride
        Array stride
    data
        Location of data
    buf
        Location of buffer (itemsize)
    """
    cdef np.npy_intp i, j

    for i in reversed(range(first, n)):
        j = random_interval(bitgen, i)
        string.memcpy(buf, data + j * stride, itemsize)
        string.memcpy(data + j * stride, data + i * stride, itemsize)
        string.memcpy(data + i * stride, buf, itemsize)


cdef inline void _shuffle_int(bitgen_t *bitgen, np.npy_intp n,
                              np.npy_intp first, int64_t* data) nogil:
    """
    Parameters
    ----------
    bitgen
        Pointer to a bitgen_t instance.
    n
        Number of elements in data
    first
        First observation to shuffle.  Shuffles n-1,
        n-2, ..., first, so that when first=1 the entire
        array is shuffled
    data
        Location of data
    """
    cdef np.npy_intp i, j
    cdef int64_t temp
    for i in reversed(range(first, n)):
        j = random_bounded_uint64(bitgen, 0, i, 0, 0)
        temp = data[j]
        data[j] = data[i]
        data[i] = temp


cdef bint _check_bit_generator(object bitgen):
    """Check if an object satisfies the BitGenerator interface.
    """
    if not hasattr(bitgen, "capsule"):
        return False
    cdef const char *name = "BitGenerator"
    return PyCapsule_IsValid(bitgen.capsule, name)


cdef class Generator:
    """
    Generator(bit_generator)

    Container for the BitGenerators.

    ``Generator`` exposes a number of methods for generating random
    numbers drawn from a variety of probability distributions. In addition to
    the distribution-specific arguments, each method takes a keyword argument
    `size` that defaults to ``None``. If `size` is ``None``, then a single
    value is generated and returned. If `size` is an integer, then a 1-D
    array filled with generated values is returned. If `size` is a tuple,
    then an array with that shape is filled and returned.

    The function :func:`numpy.random.default_rng` will instantiate
    a `Generator` with numpy's default `BitGenerator`.

    **No Compatibility Guarantee**

    ``Generator`` does not provide a version compatibility guarantee. In
    particular, as better algorithms evolve the bit stream may change.

    Parameters
    ----------
    bit_generator : BitGenerator
        BitGenerator to use as the core generator.

    Notes
    -----
    The Python stdlib module `random` contains pseudo-random number generator
    with a number of methods that are similar to the ones available in
    ``Generator``. It uses Mersenne Twister, and this bit generator can
    be accessed using ``MT19937``. ``Generator``, besides being
    NumPy-aware, has the advantage that it provides a much larger number
    of probability distributions to choose from.

    Examples
    --------
    >>> from numpy.random import Generator, PCG64
    >>> rng = Generator(PCG64())
    >>> rng.standard_normal()
    -0.203  # random

    See Also
    --------
    default_rng : Recommended constructor for `Generator`.
    """
    cdef public object _bit_generator
    cdef bitgen_t _bitgen
    cdef binomial_t _binomial
    cdef object lock
    _poisson_lam_max = POISSON_LAM_MAX

    def __init__(self, bit_generator):
        self._bit_generator = bit_generator

        capsule = bit_generator.capsule
        cdef const char *name = "BitGenerator"
        if not PyCapsule_IsValid(capsule, name):
            raise ValueError("Invalid bit generator. The bit generator must "
                             "be instantiated.")
        self._bitgen = (<bitgen_t *> PyCapsule_GetPointer(capsule, name))[0]
        self.lock = bit_generator.lock

    def __repr__(self):
        return self.__str__() + ' at 0x{:X}'.format(id(self))

    def __str__(self):
        _str = self.__class__.__name__
        _str += '(' + self.bit_generator.__class__.__name__ + ')'
        return _str

    # Pickling support:
    def __getstate__(self):
        return self.bit_generator.state

    def __setstate__(self, state):
        self.bit_generator.state = state

    def __reduce__(self):
        from ._pickle import __generator_ctor
        return __generator_ctor, (self.bit_generator.state['bit_generator'],), self.bit_generator.state

    @property
    def bit_generator(self):
        """
        Gets the bit generator instance used by the generator

        Returns
        -------
        bit_generator : BitGenerator
            The bit generator instance used by the generator
        """
        return self._bit_generator

    def random(self, size=None, dtype=np.float64, out=None):
        """
        random(size=None, dtype=np.float64, out=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random` by `(b-a)` and add `a`::

          (b - a) * random() + a

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.random()
        0.47108547995356098 # random
        >>> type(rng.random())
        <class 'float'>
        >>> rng.random((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * rng.random((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        """
        cdef double temp
        _dtype = np.dtype(dtype)
        if _dtype == np.float64:
            return double_fill(&random_standard_uniform_fill, &self._bitgen, size, self.lock, out)
        elif _dtype == np.float32:
            return float_fill(&random_standard_uniform_fill_f, &self._bitgen, size, self.lock, out)
        else:
            raise TypeError('Unsupported dtype %r for random' % _dtype)

    def beta(self, a, b, size=None):
        """
        beta(a, b, size=None)

        Draw samples from a Beta distribution.

        The Beta distribution is a special case of the Dirichlet distribution,
        and is related to the Gamma distribution.  It has the probability
        distribution function

        .. math:: f(x; a,b) = \\frac{1}{B(\\alpha, \\beta)} x^{\\alpha - 1}
                                                         (1 - x)^{\\beta - 1},

        where the normalization, B, is the beta function,

        .. math:: B(\\alpha, \\beta) = \\int_0^1 t^{\\alpha - 1}
                                     (1 - t)^{\\beta - 1} dt.

        It is often seen in Bayesian inference and order statistics.

        Parameters
        ----------
        a : float or array_like of floats
            Alpha, positive (>0).
        b : float or array_like of floats
            Beta, positive (>0).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` and ``b`` are both scalars.
            Otherwise, ``np.broadcast(a, b).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized beta distribution.

        """
        return cont(&random_beta, &self._bitgen, size, self.lock, 2,
                    a, 'a', CONS_POSITIVE,
                    b, 'b', CONS_POSITIVE,
                    0.0, '', CONS_NONE, None)

    def exponential(self, scale=1.0, size=None):
        """
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \\frac{1}{\\beta}) = \\frac{1}{\\beta} \\exp(-\\frac{x}{\\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\\lambda = 1/\\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\\beta = 1/\\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        """
        return cont(&random_exponential, &self._bitgen, size, self.lock, 1,
                    scale, 'scale', CONS_NON_NEGATIVE,
                    0.0, '', CONS_NONE,
                    0.0, '', CONS_NONE,
                    None)

    def standard_exponential(self, size=None, dtype=np.float64, method='zig', out=None):
        """
        standard_exponential(size=None, dtype=np.float64, method='zig', out=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        method : str, optional
            Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method.
            'zig' uses the much faster Ziggurat method of Marsaglia and Tsang.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.default_rng().standard_exponential((3, 8000))

        """
        _dtype = np.dtype(dtype)
        if _dtype == np.float64:
            if method == 'zig':
                return double_fill(&random_standard_exponential_fill, &self._bitgen, size, self.lock, out)
            else:
                return double_fill(&random_standard_exponential_inv_fill, &self._bitgen, size, self.lock, out)
        elif _dtype == np.float32:
            if method == 'zig':
                return float_fill(&random_standard_exponential_fill_f, &self._bitgen, size, self.lock, out)
            else:
                return float_fill(&random_standard_exponential_inv_fill_f, &self._bitgen, size, self.lock, out)
        else:
            raise TypeError('Unsupported dtype %r for standard_exponential'
                            % _dtype)

    def integers(self, low, high=None, size=None, dtype=np.int64, endpoint=False):
        """
        integers(low, high=None, size=None, dtype=np.int64, endpoint=False)

        Return random integers from `low` (inclusive) to `high` (exclusive), or
        if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces
        `RandomState.randint` (with endpoint=False) and
        `RandomState.random_integers` (with endpoint=True)

        Return random integers from the "discrete uniform" distribution of
        the specified dtype. If `high` is None (the default), then results are
        from 0 to `low`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is 0 and this value is
            used for `high`).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is np.int64.
        endpoint : bool, optional
            If true, sample from the interval [low, high] instead of the
            default [low, high)
            Defaults to False

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        Notes
        -----
        When using broadcasting with uint64 dtypes, the maximum value (2**64)
        cannot be represented as a standard integer type. The high array (or
        low if high is None) must have object dtype, e.g., array([2**64]).

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.integers(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])  # random
        >>> rng.integers(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> rng.integers(5, size=(2, 4))
        array([[4, 0, 2, 1],
               [3, 2, 2, 0]])  # random

        Generate a 1 x 3 array with 3 different upper bounds

        >>> rng.integers(1, [3, 5, 10])
        array([2, 2, 9])  # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> rng.integers([1, 5, 7], 10)
        array([9, 8, 7])  # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7],
               [ 1, 16,  9, 12]], dtype=uint8)  # random

        References
        ----------
        .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval",
               ACM Transactions on Modeling and Computer Simulation 29 (1), 2019,
               http://arxiv.org/abs/1805.10941.

        """
        if high is None:
            high = low
            low = 0

        _dtype = np.dtype(dtype)

        # Implementation detail: the old API used a masked method to generate
        # bounded uniform integers. Lemire's method is preferable since it is
        # faster. randomgen allows a choice, we will always use the faster one.
        cdef bint _masked = False

        if _dtype == np.int32:
            ret = _rand_int32(low, high, size, _masked, endpoint, &self._bitgen, self.lock)
        elif _dtype == np.int64:
            ret = _rand_int64(low, high, size, _masked, endpoint, &self._bitgen, self.lock)
        elif _dtype == np.int16:
            ret = _rand_int16(low, high, size, _masked, endpoint, &self._bitgen, self.lock)
        elif _dtype == np.int8:
            ret = _rand_int8(low, high, size, _masked, endpoint, &self._bitgen, self.lock)
        elif _dtype == np.uint64:
            ret = _rand_uint64(low, high, size, _masked, endpoint, &self._bitgen, self.lock)
        elif _dtype == np.uint32:
            ret = _rand_uint32(low, high, size, _masked, endpoint, &self._bitgen, self.lock)
        elif _dtype == np.uint16:
            ret = _rand_uint16(low, high, size, _masked, endpoint, &self._bitgen, self.lock)
        elif _dtype == np.uint8:
            ret = _rand_uint8(low, high, size, _masked, endpoint, &self._bitgen, self.lock)
        elif _dtype == np.bool_:
            ret = _rand_bool(low, high, size, _masked, endpoint, &self._bitgen, self.lock)
        elif not _dtype.isnative:
            raise ValueError('Providing a dtype with a non-native byteorder '
                             'is not supported. If you require '
                             'platform-independent byteorder, call byteswap '
                             'when required.')
        else:
            raise TypeError('Unsupported dtype %r for integers' % _dtype)


        if size is None and dtype in (bool, int):
            if np.array(ret).shape == ():
                return dtype(ret)
        return ret

    def bytes(self, np.npy_intp length):
        """
        bytes(length)

        Return random bytes.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : bytes
            String of length `length`.

        Examples
        --------
        >>> np.random.default_rng().bytes(10)
        b'\\xfeC\\x9b\\x86\\x17\\xf2\\xa1\\xafcp' # random

        """
        cdef Py_ssize_t n_uint32 = ((length - 1) // 4 + 1)
        # Interpret the uint32s as little-endian to convert them to bytes
        # consistently.
        return self.integers(0, 4294967296, size=n_uint32,
                             dtype=np.uint32).astype('<u4').tobytes()[:length]

    @cython.wraparound(True)
    def choice(self, a, size=None, replace=True, p=None, axis=0, bint shuffle=True):
        """
        choice(a, size=None, replace=True, p=None, axis=0, shuffle=True)

        Generates a random sample from a given array

        Parameters
        ----------
        a : {array_like, int}
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated from np.arange(a).
        size : {int, tuple[int]}, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more
            than one dimension, the `size` shape will be inserted into the
            `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 +
            len(size)``. Default is None, in which case a single value is
            returned.
        replace : bool, optional
            Whether the sample is with or without replacement. Default is True,
            meaning that a value of ``a`` can be selected multiple times.
        p : 1-D array_like, optional
            The probabilities associated with each entry in a.
            If not given, the sample assumes a uniform distribution over all
            entries in ``a``.
        axis : int, optional
            The axis along which the selection is performed. The default, 0,
            selects by row.
        shuffle : bool, optional
            Whether the sample is shuffled when sampling without replacement.
            Default is True, False provides a speedup.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if p is not 1-dimensional, if
            a is array-like with a size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size.

        See Also
        --------
        integers, shuffle, permutation

        Notes
        -----
        Setting user-specified probabilities through ``p`` uses a more general but less
        efficient sampler than the default. The general sampler produces a different sample
        than the optimized sampler even if each element of ``p`` is 1 / len(a).

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> rng = np.random.default_rng()
        >>> rng.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to rng.integers(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> rng.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to rng.permutation(np.arange(5))[:3]

        Generate a uniform random sample from a 2-D array along the first
        axis (the default), without replacement:

        >>> rng.choice([[0, 1, 2], [3, 4, 5], [6, 7, 8]], 2, replace=False)
        array([[3, 4, 5], # random
               [0, 1, 2]])

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        """

        cdef int64_t val, t, loc, size_i, pop_size_i
        cdef int64_t *idx_data
        cdef np.npy_intp j
        cdef uint64_t set_size, mask
        cdef uint64_t[::1] hash_set
        # Format and Verify input
        a_original = a
        a = np.array(a, copy=False)
        if a.ndim == 0:
            try:
                # __index__ must return an integer by python rules.
                pop_size = operator.index(a.item())
            except TypeError as exc:
                raise ValueError("a must be a sequence or an integer, "
                                 f"not {type(a_original)}") from exc
            if pop_size <= 0 and np.prod(size) != 0:
                raise ValueError("a must be a positive integer unless no "
                                 "samples are taken")
        else:
            pop_size = a.shape[axis]
            if pop_size == 0 and np.prod(size) != 0:
                raise ValueError("a cannot be empty unless no samples are "
                                 "taken")

        if p is not None:
            d = len(p)

            atol = np.sqrt(np.finfo(np.float64).eps)
            if isinstance(p, np.ndarray):
                if np.issubdtype(p.dtype, np.floating):
                    atol = max(atol, np.sqrt(np.finfo(p.dtype).eps))

            p = <np.ndarray>np.PyArray_FROM_OTF(
                p, np.NPY_DOUBLE, np.NPY_ALIGNED | np.NPY_ARRAY_C_CONTIGUOUS)
            pix = <double*>np.PyArray_DATA(p)

            if p.ndim != 1:
                raise ValueError("p must be 1-dimensional")
            if p.size != pop_size:
                raise ValueError("a and p must have same size")
            p_sum = kahan_sum(pix, d)
            if np.isnan(p_sum):
                raise ValueError("probabilities contain NaN")
            if np.logical_or.reduce(p < 0):
                raise ValueError("probabilities are not non-negative")
            if abs(p_sum - 1.) > atol:
                raise ValueError("probabilities do not sum to 1")

        # `shape == None` means `shape == ()`, but with scalar unpacking at the
        # end
        is_scalar = size is None
        if not is_scalar:
            shape = size
            size = np.prod(shape, dtype=np.intp)
        else:
            shape = ()
            size = 1

        # Actual sampling
        if replace:
            if p is not None:
                cdf = p.cumsum()
                cdf /= cdf[-1]
                uniform_samples = self.random(shape)
                idx = cdf.searchsorted(uniform_samples, side='right')
                # searchsorted returns a scalar
                idx = np.array(idx, copy=False, dtype=np.int64)
            else:
                idx = self.integers(0, pop_size, size=shape, dtype=np.int64)
        else:
            if size > pop_size:
                raise ValueError("Cannot take a larger sample than "
                                 "population when replace is False")
            elif size < 0:
                raise ValueError("negative dimensions are not allowed")

            if p is not None:
                if np.count_nonzero(p > 0) < size:
                    raise ValueError("Fewer non-zero entries in p than size")
                n_uniq = 0
                p = p.copy()
                found = np.zeros(shape, dtype=np.int64)
                flat_found = found.ravel()
                while n_uniq < size:
                    x = self.random((size - n_uniq,))
                    if n_uniq > 0:
                        p[flat_found[0:n_uniq]] = 0
                    cdf = np.cumsum(p)
                    cdf /= cdf[-1]
                    new = cdf.searchsorted(x, side='right')
                    _, unique_indices = np.unique(new, return_index=True)
                    unique_indices.sort()
                    new = new.take(unique_indices)
                    flat_found[n_uniq:n_uniq + new.size] = new
                    n_uniq += new.size
                idx = found
            else:
                size_i = size
                pop_size_i = pop_size
                # This is a heuristic tuning. should be improvable
                if shuffle:
                    cutoff = 50
                else:
                    cutoff = 20
                if pop_size_i > 10000 and (size_i > (pop_size_i // cutoff)):
                    # Tail shuffle size elements
                    idx = np.PyArray_Arange(0, pop_size_i, 1, np.NPY_INT64)
                    idx_data = <int64_t*>(<np.ndarray>idx).data
                    with self.lock, nogil:
                        _shuffle_int(&self._bitgen, pop_size_i,
                                     max(pop_size_i - size_i, 1), idx_data)
                    # Copy to allow potentially large array backing idx to be gc
                    idx = idx[(pop_size - size):].copy()
                else:
                    # Floyd's algorithm
                    idx = np.empty(size, dtype=np.int64)
                    idx_data = <int64_t*>np.PyArray_DATA(<np.ndarray>idx)
                    # smallest power of 2 larger than 1.2 * size
                    set_size = <uint64_t>(1.2 * size_i)
                    mask = _gen_mask(set_size)
                    set_size = 1 + mask
                    hash_set = np.full(set_size, <uint64_t>-1, np.uint64)
                    with self.lock, cython.wraparound(False), nogil:
                        for j in range(pop_size_i - size_i, pop_size_i):
                            val = random_bounded_uint64(&self._bitgen, 0, j, 0, 0)
                            loc = val & mask
                            while hash_set[loc] != <uint64_t>-1 and hash_set[loc] != <uint64_t>val:
                                loc = (loc + 1) & mask
                            if hash_set[loc] == <uint64_t>-1: # then val not in hash_set
                                hash_set[loc] = val
                                idx_data[j - pop_size_i + size_i] = val
                            else: # we need to insert j instead
                                loc = j & mask
                                while hash_set[loc] != <uint64_t>-1:
                                    loc = (loc + 1) & mask
                                hash_set[loc] = j
                                idx_data[j - pop_size_i + size_i] = j
                        if shuffle:
                            _shuffle_int(&self._bitgen, size_i, 1, idx_data)
                idx.shape = shape

        if is_scalar and isinstance(idx, np.ndarray):
            # In most cases a scalar will have been made an array
            idx = idx.item(0)

        # Use samples as indices for a if a is array-like
        if a.ndim == 0:
            return idx

        if not is_scalar and idx.ndim == 0:
            # If size == () then the user requested a 0-d array as opposed to
            # a scalar object when size is None. However a[idx] is always a
            # scalar and not an array. So this makes sure the result is an
            # array, taking into account that np.array(item) may not work
            # for object arrays.
            res = np.empty((), dtype=a.dtype)
            res[()] = a[idx]
            return res

        # asarray downcasts on 32-bit platforms, always safe
        # no-op on 64-bit platforms
        return a.take(np.asarray(idx, dtype=np.intp), axis=axis)

    def uniform(self, low=0.0, high=1.0, size=None):
        """
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than high.  The high limit may be included in the returned array of 
            floats due to floating-point rounding in the equation 
            ``low + (high-low) * random_sample()``.  high - low must be 
            non-negative.  The default value is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        integers : Discrete uniform distribution, yielding integers.
        random : Floats uniformly distributed over ``[0, 1)``.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \\frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.

        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.default_rng().uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        """
        cdef bint is_scalar = True
        cdef np.ndarray alow, ahigh, arange
        cdef double _low, _high, rng
        cdef object temp

        alow = <np.ndarray>np.PyArray_FROM_OTF(low, np.NPY_DOUBLE, np.NPY_ALIGNED)
        ahigh = <np.ndarray>np.PyArray_FROM_OTF(high, np.NPY_DOUBLE, np.NPY_ALIGNED)

        if np.PyArray_NDIM(alow) == np.PyArray_NDIM(ahigh) == 0:
            _low = PyFloat_AsDouble(low)
            _high = PyFloat_AsDouble(high)
            rng = _high - _low
            if not np.isfinite(rng):
                raise OverflowError('high - low range exceeds valid bounds')

            return cont(&random_uniform, &self._bitgen, size, self.lock, 2,
                        _low, '', CONS_NONE,
                        rng, 'high - low', CONS_NON_NEGATIVE,
                        0.0, '', CONS_NONE,
                        None)

        temp = np.subtract(ahigh, alow)
        # needed to get around Pyrex's automatic reference-counting
        # rules because EnsureArray steals a reference
        Py_INCREF(temp)

        arange = <np.ndarray>np.PyArray_EnsureArray(temp)
        if not np.all(np.isfinite(arange)):
            raise OverflowError('Range exceeds valid bounds')
        return cont(&random_uniform, &self._bitgen, size, self.lock, 2,
                    alow, '', CONS_NONE,
                    arange, 'high - low', CONS_NON_NEGATIVE,
                    0.0, '', CONS_NONE,
                    None)

    # Complicated, continuous distributions:
    def standard_normal(self, size=None, dtype=np.float64, out=None):
        """
        standard_normal(size=None, dtype=np.float64, out=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.

        Notes
        -----
        For random samples from :math:`N(\\mu, \\sigma^2)`, use one of::

            mu + sigma * rng.standard_normal(size=...)
            rng.normal(mu, sigma, size=...)

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.standard_normal()
        2.1923875335537315 # random

        >>> s = rng.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = rng.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from :math:`N(3, 6.25)`:

        >>> 3 + 2.5 * rng.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        """
        _dtype = np.dtype(dtype)
        if _dtype == np.float64:
            return double_fill(&random_standard_normal_fill, &self._bitgen, size, self.lock, out)
        elif _dtype == np.float32:
            return float_fill(&random_standard_normal_fill_f, &self._bitgen, size, self.lock, out)
        else:
            raise TypeError('Unsupported dtype %r for standard_normal' % _dtype)

    def normal(self, loc=0.0, scale=1.0, size=None):
        """
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \\frac{1}{\\sqrt{ 2 \\pi \\sigma^2 }}
                         e^{ - \\frac{ (x - \\mu)^2 } {2 \\sigma^2} },

        where :math:`\\mu` is the mean and :math:`\\sigma` the standard
        deviation. The square of the standard deviation, :math:`\\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \\sigma` and :math:`x - \\sigma` [2]_).  This implies that
        :meth:`normal` is more likely to return samples lying close to the
        mean, rather than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.default_rng().normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.0  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from N(3, 6.25):

        >>> np.random.default_rng().normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        """
        return cont(&random_normal, &self._bitgen, size, self.lock, 2,
                    loc, '', CONS_NONE,
                    scale, 'scale', CONS_NON_NEGATIVE,
                    0.0, '', CONS_NONE,
                    None)

    def standard_gamma(self, shape, size=None, dtype=np.float64, out=None):
        """
        standard_gamma(shape, size=None, dtype=np.float64, out=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is
            not None, it must have the same shape as the provided size and
            must match the type of the output values.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\\frac{e^{-x/\\theta}}{\\theta^k\\Gamma(k)},

        where :math:`k` is the shape and :math:`\\theta` the scale,
        and :math:`\\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.default_rng().standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        """
        cdef void *func
        _dtype = np.dtype(dtype)
        if _dtype == np.float64:
            return cont(&random_standard_gamma, &self._bitgen, size, self.lock, 1,
                        shape, 'shape', CONS_NON_NEGATIVE,
                        0.0, '', CONS_NONE,
                        0.0, '', CONS_NONE,
                        out)
        if _dtype == np.float32:
            return cont_f(&random_standard_gamma_f, &self._bitgen, size, self.lock,
                          shape, 'shape', CONS_NON_NEGATIVE,
                          out)
        else:
            raise TypeError('Unsupported dtype %r for standard_gamma' % _dtype)

    def gamma(self, shape, scale=1.0, size=None):
        """
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\\frac{e^{-x/\\theta}}{\\theta^k\\Gamma(k)},

        where :math:`k` is the shape and :math:`\\theta` the scale,
        and :math:`\\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.default_rng().gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        """
        return cont(&random_gamma, &self._bitgen, size, self.lock, 2,
                    shape, 'shape', CONS_NON_NEGATIVE,
                    scale, 'scale', CONS_NON_NEGATIVE,
                    0.0, '', CONS_NONE, None)

    def f(self, dfnum, dfden, size=None):
        """
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.default_rng().f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        """
        return cont(&random_f, &self._bitgen, size, self.lock, 2,
                    dfnum, 'dfnum', CONS_POSITIVE,
                    dfden, 'dfden', CONS_POSITIVE,
                    0.0, '', CONS_NONE, None)

    def noncentral_f(self, dfnum, dfden, nonc, size=None):
        """
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> rng = np.random.default_rng()
        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = rng.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        """
        return cont(&random_noncentral_f, &self._bitgen, size, self.lock, 3,
                    dfnum, 'dfnum', CONS_POSITIVE,
                    dfden, 'dfden', CONS_POSITIVE,
                    nonc, 'nonc', CONS_NON_NEGATIVE, None)

    def chisquare(self, df, size=None):
        """
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \\sum_{i=0}^{\\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \\sim \\chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \\frac{(1/2)^{k/2}}{\\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\\Gamma` is the gamma function,

        .. math:: \\Gamma(x) = \\int_0^{-\\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.default_rng().chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random

        """
        return cont(&random_chisquare, &self._bitgen, size, self.lock, 1,
                    df, 'df', CONS_POSITIVE,
                    0.0, '', CONS_NONE,
                    0.0, '', CONS_NONE, None)

    def noncentral_chisquare(self, df, nonc, size=None):
        """
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\\chi^2` distribution is a generalization of
        the :math:`\\chi^2` distribution.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \\sum^{\\infty}_{i=0}
                               \\frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> rng = np.random.default_rng()
        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(rng.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        """
        return cont(&random_noncentral_chisquare, &self._bitgen, size, self.lock, 2,
                    df, 'df', CONS_POSITIVE,
                    nonc, 'nonc', CONS_NON_NEGATIVE,
                    0.0, '', CONS_NONE, None)

    def standard_cauchy(self, size=None):
        """
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \\gamma) = \\frac{1}{\\pi \\gamma \\bigl[ 1+
                  (\\frac{x-x_0}{\\gamma})^2 \\bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.default_rng().standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        """
        return cont(&random_standard_cauchy, &self._bitgen, size, self.lock, 0,
                    0.0, '', CONS_NONE, 0.0, '', CONS_NONE, 0.0, '', CONS_NONE, None)

    def standard_t(self, df, size=None):
        """
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \\frac{\\Gamma(\\frac{df+1}{2})}{\\sqrt{\\pi df}
                  \\Gamma(\\frac{df}{2})}\\Bigl( 1+\\frac{x^2}{df} \\Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \\
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ? Our null hypothesis will be the absence of deviation,
        and the alternate hypothesis will be the presence of an effect that could be
        either positive or negative, hence making our test 2-tailed. 

        Because we are estimating the mean and we have N=11 values in our sample,
        we have N-1=10 degrees of freedom. We set our significance level to 95% and 
        compute the t statistic using the empirical mean and empirical standard 
        deviation of our intake. We use a ddof of 1 to base the computation of our 
        empirical standard deviation on an unbiased estimate of the variance (note:
        the final estimate is not unbiased due to the concave nature of the square 
        root).

        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727
        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> t
        -2.8207540608310198

        We draw 1000000 samples from Student's t distribution with the adequate
        degrees of freedom.

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.default_rng().standard_t(10, size=1000000)
        >>> h = plt.hist(s, bins=100, density=True)

        Does our t statistic land in one of the two critical regions found at 
        both tails of the distribution?

        >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
        0.018318  #random < 0.05, statistic is in critical region

        The probability value for this 2-tailed test is about 1.83%, which is 
        lower than the 5% pre-determined significance threshold. 

        Therefore, the probability of observing values as extreme as our intake
        conditionally on the null hypothesis being true is too low, and we reject 
        the null hypothesis of no deviation. 

        """
        return cont(&random_standard_t, &self._bitgen, size, self.lock, 1,
                    df, 'df', CONS_POSITIVE,
                    0, '', CONS_NONE,
                    0, '', CONS_NONE,
                    None)

    def vonmises(self, mu, kappa, size=None):
        """
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \\frac{e^{\\kappa cos(x-\\mu)}}{2\\pi I_0(\\kappa)},

        where :math:`\\mu` is the mode and :math:`\\kappa` the dispersion,
        and :math:`I_0(\\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.default_rng().vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        """
        return cont(&random_vonmises, &self._bitgen, size, self.lock, 2,
                    mu, 'mu', CONS_NONE,
                    kappa, 'kappa', CONS_NON_NEGATIVE,
                    0.0, '', CONS_NONE, None)

    def pareto(self, a, size=None):
        """
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \\frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.


        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.default_rng().pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        """
        return cont(&random_pareto, &self._bitgen, size, self.lock, 1,
                    a, 'a', CONS_POSITIVE,
                    0.0, '', CONS_NONE,
                    0.0, '', CONS_NONE, None)

    def weibull(self, a, size=None):
        """
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\\lambda` is just :math:`X = \\lambda(-ln(U))^{1/a}`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \\frac{a}
                         {\\lambda}(\\frac{x}{\\lambda})^{a-1}e^{-(x/\\lambda)^a},

        where :math:`a` is the shape and :math:`\\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\\lambda(\\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> s = rng.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(rng.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        """
        return cont(&random_weibull, &self._bitgen, size, self.lock, 1,
                    a, 'a', CONS_NON_NEGATIVE,
                    0.0, '', CONS_NONE,
                    0.0, '', CONS_NONE, None)

    def power(self, a, size=None):
        """
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a <= 0.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \\le x \\le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = rng.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats  # doctest: +SKIP
        >>> rvs = rng.power(5, 1000000)
        >>> rvsp = rng.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + Generator.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        """
        return cont(&random_power, &self._bitgen, size, self.lock, 1,
                    a, 'a', CONS_POSITIVE,
                    0.0, '', CONS_NONE,
                    0.0, '', CONS_NONE, None)

    def laplace(self, loc=0.0, scale=1.0, size=None):
        """
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \\mu, \\lambda) = \\frac{1}{2\\lambda}
                                       \\exp\\left(-\\frac{|x - \\mu|}{\\lambda}\\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.default_rng().laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        """
        return cont(&random_laplace, &self._bitgen, size, self.lock, 2,
                    loc, 'loc', CONS_NONE,
                    scale, 'scale', CONS_NON_NEGATIVE,
                    0.0, '', CONS_NONE, None)

    def gumbel(self, loc=0.0, scale=1.0, size=None):
        """
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \\frac{e^{-(x - \\mu)/ \\beta}}{\\beta} e^{ -e^{-(x - \\mu)/
                  \\beta}},

        where :math:`\\mu` is the mode, a location parameter, and
        :math:`\\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\\mu + 0.57721\\beta` and a variance
        of :math:`\\frac{\\pi^2}{6}\\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = rng.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = rng.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        """
        return cont(&random_gumbel, &self._bitgen, size, self.lock, 2,
                    loc, 'loc', CONS_NONE,
                    scale, 'scale', CONS_NON_NEGATIVE,
                    0.0, '', CONS_NONE, None)

    def logistic(self, loc=0.0, scale=1.0, size=None):
        """
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \\frac{e^{-(x-\\mu)/s}}{s(1+e^{-(x-\\mu)/s})^2},

        where :math:`\\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.default_rng().logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        """
        return cont(&random_logistic, &self._bitgen, size, self.lock, 2,
                    loc, 'loc', CONS_NONE,
                    scale, 'scale', CONS_NON_NEGATIVE,
                    0.0, '', CONS_NONE, None)

    def lognormal(self, mean=0.0, sigma=1.0, size=None):
        """
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \\frac{1}{\\sigma x \\sqrt{2\\pi}}
                         e^{(-\\frac{(ln(x)-\\mu)^2}{2\\sigma^2})}

        where :math:`\\mu` is the mean and :math:`\\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = rng.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> rng = rng
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + rng.standard_normal(100)
        ...    b.append(np.product(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        """
        return cont(&random_lognormal, &self._bitgen, size, self.lock, 2,
                    mean, 'mean', CONS_NONE,
                    sigma, 'sigma', CONS_NON_NEGATIVE,
                    0.0, '', CONS_NONE, None)

    def rayleigh(self, scale=1.0, size=None):
        """
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \\frac{x}{scale^2}e^{\\frac{-x^2}{2 \\cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> rng = np.random.default_rng()
        >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = rng.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        """
        return cont(&random_rayleigh, &self._bitgen, size, self.lock, 1,
                    scale, 'scale', CONS_NON_NEGATIVE,
                    0.0, '', CONS_NONE,
                    0.0, '', CONS_NONE, None)

    def wald(self, mean, scale, size=None):
        """
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \\sqrt{\\frac{scale}{2\\pi x^3}}e^
                                    \\frac{-scale(x-mean)^2}{2\\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.default_rng().wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        """
        return cont(&random_wald, &self._bitgen, size, self.lock, 2,
                    mean, 'mean', CONS_POSITIVE,
                    scale, 'scale', CONS_POSITIVE,
                    0.0, '', CONS_NONE, None)

    def triangular(self, left, mode, right, size=None):
        """
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \\begin{cases}
                  \\frac{2(x-l)}{(r-l)(m-l)}& \\text{for $l \\leq x \\leq m$},\\\\
                  \\frac{2(r-x)}{(r-l)(r-m)}& \\text{for $m \\leq x \\leq r$},\\\\
                  0& \\text{otherwise}.
                  \\end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.default_rng().triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        """
        cdef bint is_scalar = True
        cdef double fleft, fmode, fright
        cdef np.ndarray oleft, omode, oright

        oleft = <np.ndarray>np.PyArray_FROM_OTF(left, np.NPY_DOUBLE, np.NPY_ALIGNED)
        omode = <np.ndarray>np.PyArray_FROM_OTF(mode, np.NPY_DOUBLE, np.NPY_ALIGNED)
        oright = <np.ndarray>np.PyArray_FROM_OTF(right, np.NPY_DOUBLE, np.NPY_ALIGNED)

        if np.PyArray_NDIM(oleft) == np.PyArray_NDIM(omode) == np.PyArray_NDIM(oright) == 0:
            fleft = PyFloat_AsDouble(left)
            fright = PyFloat_AsDouble(right)
            fmode = PyFloat_AsDouble(mode)

            if fleft > fmode:
                raise ValueError("left > mode")
            if fmode > fright:
                raise ValueError("mode > right")
            if fleft == fright:
                raise ValueError("left == right")
            return cont(&random_triangular, &self._bitgen, size, self.lock, 3,
                        fleft, '', CONS_NONE,
                        fmode, '', CONS_NONE,
                        fright, '', CONS_NONE, None)

        if np.any(np.greater(oleft, omode)):
            raise ValueError("left > mode")
        if np.any(np.greater(omode, oright)):
            raise ValueError("mode > right")
        if np.any(np.equal(oleft, oright)):
            raise ValueError("left == right")

        return cont_broadcast_3(&random_triangular, &self._bitgen, size, self.lock,
                            oleft, '', CONS_NONE,
                            omode, '', CONS_NONE,
                            oright, '', CONS_NONE)

    # Complicated, discrete distributions:
    def binomial(self, n, p, size=None):
        """
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \\binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = rng.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(rng.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 39%.

        """

        # Uses a custom implementation since self._binomial is required
        cdef double _dp = 0
        cdef int64_t _in = 0
        cdef bint is_scalar = True
        cdef np.npy_intp i, cnt
        cdef np.ndarray randoms
        cdef np.int64_t *randoms_data
        cdef np.broadcast it

        p_arr = <np.ndarray>np.PyArray_FROM_OTF(p, np.NPY_DOUBLE, np.NPY_ALIGNED)
        is_scalar = is_scalar and np.PyArray_NDIM(p_arr) == 0
        n_arr = <np.ndarray>np.PyArray_FROM_OTF(n, np.NPY_INT64, np.NPY_ALIGNED)
        is_scalar = is_scalar and np.PyArray_NDIM(n_arr) == 0

        if not is_scalar:
            check_array_constraint(p_arr, 'p', CONS_BOUNDED_0_1)
            check_array_constraint(n_arr, 'n', CONS_NON_NEGATIVE)
            if size is not None:
                randoms = <np.ndarray>np.empty(size, np.int64)
            else:
                it = np.PyArray_MultiIterNew2(p_arr, n_arr)
                randoms = <np.ndarray>np.empty(it.shape, np.int64)

            cnt = np.PyArray_SIZE(randoms)

            it = np.PyArray_MultiIterNew3(randoms, p_arr, n_arr)
            validate_output_shape(it.shape, randoms)
            with self.lock, nogil:
                for i in range(cnt):
                    _dp = (<double*>np.PyArray_MultiIter_DATA(it, 1))[0]
                    _in = (<int64_t*>np.PyArray_MultiIter_DATA(it, 2))[0]
                    (<int64_t*>np.PyArray_MultiIter_DATA(it, 0))[0] = random_binomial(&self._bitgen, _dp, _in, &self._binomial)

                    np.PyArray_MultiIter_NEXT(it)

            return randoms

        _dp = PyFloat_AsDouble(p)
        _in = <int64_t>n
        check_constraint(_dp, 'p', CONS_BOUNDED_0_1)
        check_constraint(<double>_in, 'n', CONS_NON_NEGATIVE)

        if size is None:
            with self.lock:
                return random_binomial(&self._bitgen, _dp, _in, &self._binomial)

        randoms = <np.ndarray>np.empty(size, np.int64)
        cnt = np.PyArray_SIZE(randoms)
        randoms_data = <np.int64_t *>np.PyArray_DATA(randoms)

        with self.lock, nogil:
            for i in range(cnt):
                randoms_data[i] = random_binomial(&self._bitgen, _dp, _in,
                                                  &self._binomial)

        return randoms

    def negative_binomial(self, n, p, size=None):
        """
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval (0, 1].

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution. Must satisfy 0 < p <= 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \\frac{\\Gamma(N+n)}{N!\\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\\frac{\\Gamma(N+n)}{N!\\Gamma(n)} = \\binom{N+n-1}{N}`, which is
        the more common form of this term in the the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        Because this method internally calls ``Generator.poisson`` with an
        intermediate random value, a ValueError is raised when the choice of 
        :math:`n` and :math:`p` would result in the mean + 10 sigma of the sampled
        intermediate distribution exceeding the max acceptable value of the 
        ``Generator.poisson`` method. This happens when :math:`p` is too low 
        (a lot of failures happen for every success) and :math:`n` is too big (
        a lot of sucesses are allowed).
        Therefore, the :math:`n` and :math:`p` values must satisfy the constraint:

        .. math:: n\\frac{1-p}{p}+10n\\sqrt{n}\\frac{1-p}{p}<2^{63}-1-10\\sqrt{2^{63}-1},

        Where the left side of the equation is the derived mean + 10 sigma of
        a sample from the gamma distribution internally used as the :math:`lam`
        parameter of a poisson sample, and the right side of the equation is
        the constraint for maximum value of :math:`lam` in ``Generator.poisson``.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.default_rng().negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        """

        cdef bint is_scalar = True
        cdef double *_dn
        cdef double *_dp
        cdef double _dmax_lam

        p_arr = <np.ndarray>np.PyArray_FROM_OTF(p, np.NPY_DOUBLE, np.NPY_ALIGNED)
        is_scalar = is_scalar and np.PyArray_NDIM(p_arr) == 0
        n_arr = <np.ndarray>np.PyArray_FROM_OTF(n, np.NPY_DOUBLE, np.NPY_ALIGNED)
        is_scalar = is_scalar and np.PyArray_NDIM(n_arr) == 0

        if not is_scalar:
            check_array_constraint(n_arr, 'n', CONS_POSITIVE_NOT_NAN)
            check_array_constraint(p_arr, 'p', CONS_BOUNDED_GT_0_1)
            # Check that the choice of negative_binomial parameters won't result in a
            # call to the poisson distribution function with a value of lam too large.
            max_lam_arr = (1 - p_arr) / p_arr * (n_arr + 10 * np.sqrt(n_arr))
            if np.any(np.greater(max_lam_arr, POISSON_LAM_MAX)):
                raise ValueError("n too large or p too small, see Generator.negative_binomial Notes")

        else:
            _dn = <double*>np.PyArray_DATA(n_arr)
            _dp = <double*>np.PyArray_DATA(p_arr)

            check_constraint(_dn[0], 'n', CONS_POSITIVE_NOT_NAN)
            check_constraint(_dp[0], 'p', CONS_BOUNDED_GT_0_1)
            # Check that the choice of negative_binomial parameters won't result in a
            # call to the poisson distribution function with a value of lam too large.
            _dmax_lam = (1 - _dp[0]) / _dp[0] * (_dn[0] + 10 * sqrt(_dn[0]))
            if _dmax_lam > POISSON_LAM_MAX:
                raise ValueError("n too large or p too small, see Generator.negative_binomial Notes")

        return disc(&random_negative_binomial, &self._bitgen, size, self.lock, 2, 0,
                    n_arr, 'n', CONS_NONE,
                    p_arr, 'p', CONS_NONE,
                    0.0, '', CONS_NONE)

    def poisson(self, lam=1.0, size=None):
        """
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        Parameters
        ----------
        lam : float or array_like of floats
            Expected number of events occurring in a fixed-time interval,
            must be >= 0. A sequence must be broadcastable over the requested
            size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \\lambda)=\\frac{\\lambda^k e^{-\\lambda}}{k!}

        For events with an expected separation :math:`\\lambda` the Poisson
        distribution :math:`f(k; \\lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> rng = np.random.default_rng()
        >>> s = rng.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = rng.poisson(lam=(100., 500.), size=(100, 2))

        """
        return disc(&random_poisson, &self._bitgen, size, self.lock, 1, 0,
                    lam, 'lam', CONS_POISSON,
                    0.0, '', CONS_NONE,
                    0.0, '', CONS_NONE)

    def zipf(self, a, size=None):
        """
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        discrete probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(k) = \\frac{k^{-a}}{\\zeta(a)},

        for integers :math:`k \geq 1`, where :math:`\\zeta` is the Riemann Zeta
        function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 4.0
        >>> n = 20000
        >>> s = np.random.default_rng().zipf(a, size=n)

        Display the histogram of the samples, along with
        the expected histogram based on the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import zeta  # doctest: +SKIP

        `bincount` provides a fast histogram for small integers.

        >>> count = np.bincount(s)
        >>> k = np.arange(1, s.max() + 1)

        >>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
        >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
        ...          label='expected count')   # doctest: +SKIP
        >>> plt.semilogy()
        >>> plt.grid(alpha=0.4)
        >>> plt.legend()
        >>> plt.title(f'Zipf sample, a={a}, size={n}')
        >>> plt.show()

        """
        return disc(&random_zipf, &self._bitgen, size, self.lock, 1, 0,
                    a, 'a', CONS_GT_1,
                    0.0, '', CONS_NONE,
                    0.0, '', CONS_NONE)

    def geometric(self, p, size=None):
        """
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.default_rng().geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 # random

        """
        return disc(&random_geometric, &self._bitgen, size, self.lock, 1, 0,
                    p, 'p', CONS_BOUNDED_GT_0_1,
                    0.0, '', CONS_NONE,
                    0.0, '', CONS_NONE)

    def hypergeometric(self, ngood, nbad, nsample, size=None):
        """
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative and
            less than 10**9.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative and
            less than 10**9.
        nsample : int or array_like of ints
            Number of items sampled.  Must be nonnegative and less than
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        multivariate_hypergeometric : Draw samples from the multivariate
            hypergeometric distribution.
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \\frac{\\binom{g}{x}\\binom{b}{n-x}}{\\binom{g+b}{n}},

        where :math:`0 \\le x \\le n` and :math:`n-b \\le x \\le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        The arguments `ngood` and `nbad` each must be less than `10**9`. For
        extremely large arguments, the algorithm that is used to compute the
        samples [4]_ breaks down because of loss of precision in floating point
        calculations.  For such large values, if `nsample` is not also large,
        the distribution can be approximated with the binomial distribution,
        `binomial(n=nsample, p=ngood/(ngood + nbad))`.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution
        .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating
               discrete random variates", Journal of Computational and Applied
               Mathematics, 31, pp. 181-189 (1990).

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = rng.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        """
        DEF HYPERGEOM_MAX = 10**9
        cdef bint is_scalar = True
        cdef np.ndarray ongood, onbad, onsample
        cdef int64_t lngood, lnbad, lnsample

        ongood = <np.ndarray>np.PyArray_FROM_OTF(ngood, np.NPY_INT64, np.NPY_ALIGNED)
        onbad = <np.ndarray>np.PyArray_FROM_OTF(nbad, np.NPY_INT64, np.NPY_ALIGNED)
        onsample = <np.ndarray>np.PyArray_FROM_OTF(nsample, np.NPY_INT64, np.NPY_ALIGNED)

        if np.PyArray_NDIM(ongood) == np.PyArray_NDIM(onbad) == np.PyArray_NDIM(onsample) == 0:

            lngood = <int64_t>ngood
            lnbad = <int64_t>nbad
            lnsample = <int64_t>nsample

            if lngood >= HYPERGEOM_MAX or lnbad >= HYPERGEOM_MAX:
                raise ValueError("both ngood and nbad must be less than %d" %
                                 HYPERGEOM_MAX)
            if lngood + lnbad < lnsample:
                raise ValueError("ngood + nbad < nsample")
            return disc(&random_hypergeometric, &self._bitgen, size, self.lock, 0, 3,
                        lngood, 'ngood', CONS_NON_NEGATIVE,
                        lnbad, 'nbad', CONS_NON_NEGATIVE,
                        lnsample, 'nsample', CONS_NON_NEGATIVE)

        if np.any(ongood >= HYPERGEOM_MAX) or np.any(onbad >= HYPERGEOM_MAX):
            raise ValueError("both ngood and nbad must be less than %d" %
                             HYPERGEOM_MAX)

        if np.any(np.less(np.add(ongood, onbad), onsample)):
            raise ValueError("ngood + nbad < nsample")

        return discrete_broadcast_iii(&random_hypergeometric, &self._bitgen, size, self.lock,
                                      ongood, 'ngood', CONS_NON_NEGATIVE,
                                      onbad, 'nbad', CONS_NON_NEGATIVE,
                                      onsample, 'nsample', CONS_NON_NEGATIVE)

    def logseries(self, p, size=None):
        """
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 <= ``p`` < 1.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range [0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability mass function for the Log Series distribution is

        .. math:: P(k) = \\frac{-p^k}{k \\ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.default_rng().logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a) * count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        """
        return disc(&random_logseries, &self._bitgen, size, self.lock, 1, 0,
                 p, 'p', CONS_BOUNDED_LT_0_1,
                 0.0, '', CONS_NONE,
                 0.0, '', CONS_NONE)

    # Multivariate distributions:
    def multivariate_normal(self, mean, cov, size=None, check_valid='warn',
                            tol=1e-8, *, method='svd'):
        """
        multivariate_normal(mean, cov, size=None, check_valid='warn',
                            tol=1e-8, *, method='svd')

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (standard deviation, or "width,"
        squared) of the one-dimensional normal distribution.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.
        method : { 'svd', 'eigh', 'cholesky'}, optional
            The cov input is used to compute a factor matrix A such that
            ``A @ A.T = cov``. This argument is used to select the method
            used to compute the factor matrix A. The default method 'svd' is
            the slowest, while 'cholesky' is the fastest but less robust than
            the slowest method. The method `eigh` uses eigen decomposition to
            compute A and is faster than svd but slower than cholesky.

            .. versionadded:: 1.18.0

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.default_rng().multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> rng = np.random.default_rng()
        >>> x = rng.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        We can use a different method other than the default to factorize cov:

        >>> y = rng.multivariate_normal(mean, cov, (3, 3), method='cholesky')
        >>> y.shape
        (3, 3, 2)

        Here we generate 800 samples from the bivariate normal distribution
        with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]].  The
        expected variances of the first and second components of the sample
        are 6 and 3.5, respectively, and the expected correlation
        coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

        >>> cov = np.array([[6, -3], [-3, 3.5]])
        >>> pts = rng.multivariate_normal([0, 0], cov, size=800)

        Check that the mean, covariance, and correlation coefficient of the
        sample are close to the expected values:

        >>> pts.mean(axis=0)
        array([ 0.0326911 , -0.01280782])  # may vary
        >>> np.cov(pts.T)
        array([[ 5.96202397, -2.85602287],
               [-2.85602287,  3.47613949]])  # may vary
        >>> np.corrcoef(pts.T)[0, 1]
        -0.6273591314603949  # may vary

        We can visualize this data with a scatter plot.  The orientation
        of the point cloud illustrates the negative correlation of the
        components of this sample.

        >>> import matplotlib.pyplot as plt
        >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
        >>> plt.axis('equal')
        >>> plt.grid()
        >>> plt.show()
        """
        if method not in {'eigh', 'svd', 'cholesky'}:
            raise ValueError(
                "method must be one of {'eigh', 'svd', 'cholesky'}")

        # Check preconditions on arguments
        mean = np.array(mean)
        cov = np.array(cov)
        if size is None:
            shape = []
        elif isinstance(size, (int, long, np.integer)):
            shape = [size]
        else:
            shape = size

        if len(mean.shape) != 1:
            raise ValueError("mean must be 1 dimensional")
        if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]):
            raise ValueError("cov must be 2 dimensional and square")
        if mean.shape[0] != cov.shape[0]:
            raise ValueError("mean and cov must have same length")

        # Compute shape of output and create a matrix of independent
        # standard normally distributed random numbers. The matrix has rows
        # with the same length as mean and as many rows are necessary to
        # form a matrix of shape final_shape.
        final_shape = list(shape[:])
        final_shape.append(mean.shape[0])
        x = self.standard_normal(final_shape).reshape(-1, mean.shape[0])

        # Transform matrix of standard normals into matrix where each row
        # contains multivariate normals with the desired covariance.
        # Compute A such that dot(transpose(A),A) == cov.
        # Then the matrix products of the rows of x and A has the desired
        # covariance. Note that sqrt(s)*v where (u,s,v) is the singular value
        # decomposition of cov is such an A.
        #
        # Also check that cov is positive-semidefinite. If so, the u.T and v
        # matrices should be equal up to roundoff error if cov is
        # symmetric and the singular value of the corresponding row is
        # not zero. We continue to use the SVD rather than Cholesky in
        # order to preserve current outputs. Note that symmetry has not
        # been checked.

        # GH10839, ensure double to make tol meaningful
        cov = cov.astype(np.double)
        if method == 'svd':
            from numpy.linalg import svd
            (u, s, vh) = svd(cov)
        elif method == 'eigh':
            from numpy.linalg import eigh
            # could call linalg.svd(hermitian=True), but that calculates a vh we don't need
            (s, u)  = eigh(cov)
        else:
            from numpy.linalg import cholesky
            l = cholesky(cov)

        # make sure check_valid is ignored when method == 'cholesky'
        # since the decomposition will have failed if cov is not valid.
        if check_valid != 'ignore' and method != 'cholesky':
            if check_valid != 'warn' and check_valid != 'raise':
                raise ValueError(
                    "check_valid must equal 'warn', 'raise', or 'ignore'")
            if method == 'svd':
                psd = np.allclose(np.dot(vh.T * s, vh), cov, rtol=tol, atol=tol)
            else:
                psd = not np.any(s < -tol)
            if not psd:
                if check_valid == 'warn':
                    warnings.warn("covariance is not positive-semidefinite.",
                                  RuntimeWarning)
                else:
                    raise ValueError("covariance is not positive-semidefinite.")

        if method == 'cholesky':
            _factor = l
        elif method == 'eigh':
            # if check_valid == 'ignore' we need to ensure that np.sqrt does not
            # return a NaN if s is a very small negative number that is
            # approximately zero or when the covariance is not positive-semidefinite
            _factor = u * np.sqrt(abs(s))
        else:
            _factor = u * np.sqrt(s)

        x = mean + x @ _factor.T
        x.shape = tuple(final_shape)
        return x

    def multinomial(self, object n, object pvals, size=None):
        """
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        Parameters
        ----------
        n : int or array-like of ints
            Number of experiments.
        pvals : array-like of floats
            Probabilities of each of the ``p`` different outcomes with shape
            ``(k0, k1, ..., kn, p)``. Each element ``pvals[i,j,...,:]`` must
            sum to 1 (however, the last element is always assumed to account
            for the remaining probability, as long as
            ``sum(pvals[..., :-1], axis=-1) <= 1.0``. Must have at least 1
            dimension where pvals.shape[-1] > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn each with ``p`` elements. Default
            is None where the output size is determined by the broadcast shape
            of ``n`` and all by the final dimension of ``pvals``, which is
            denoted as ``b=(b0, b1, ..., bq)``. If size is not None, then it
            must be compatible with the broadcast shape ``b``. Specifically,
            size must have ``q`` or more elements and size[-(q-j):] must equal
            ``bj``.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape size, if provided. When size is
            provided, the output shape is size + (p,)  If not specified,
            the shape is determined by the broadcast shape of ``n`` and
            ``pvals``, ``(b0, b1, ..., bq)`` augmented with the dimension of
            the multinomial, ``p``, so that that output shape is
            ``(b0, b1, ..., bq, p)``.

            Each entry ``out[i,j,...,:]`` is a ``p``-dimensional value drawn
            from the distribution.

        Examples
        --------
        Throw a dice 20 times:

        >>> rng = np.random.default_rng()
        >>> rng.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]])  # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> rng.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3],
               [2, 4, 3, 4, 0, 7]])  # random

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        Now, do one experiment throwing the dice 10 time, and 10 times again,
        and another throwing the dice 20 times, and 20 times again:

        >>> rng.multinomial([[10], [20]], [1/6.]*6, size=(2, 2))
        array([[[2, 4, 0, 1, 2, 1],
                [1, 3, 0, 3, 1, 2]],
               [[1, 4, 4, 4, 4, 3],
                [3, 3, 2, 5, 5, 2]]])  # random

        The first array shows the outcomes of throwing the dice 10 times, and
        the second shows the outcomes from throwing the dice 20 times.

        A loaded die is more likely to land on number 6:

        >>> rng.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26])  # random

        Simulate 10 throws of a 4-sided die and 20 throws of a 6-sided die

        >>> rng.multinomial([10, 20],[[1/4]*4 + [0]*2, [1/6]*6])
        array([[2, 1, 4, 3, 0, 0],
               [3, 3, 3, 6, 1, 4]], dtype=int64)  # random

        Generate categorical random variates from two categories where the
        first has 3 outcomes and the second has 2.

        >>> rng.multinomial(1, [[.1, .5, .4 ], [.3, .7, .0]])
        array([[0, 0, 1],
               [0, 1, 0]], dtype=int64)  # random

        ``argmax(axis=-1)`` is then used to return the categories.

        >>> pvals = [[.1, .5, .4 ], [.3, .7, .0]]
        >>> rvs = rng.multinomial(1, pvals, size=(4,2))
        >>> rvs.argmax(axis=-1)
        array([[0, 1],
               [2, 0],
               [2, 1],
               [2, 0]], dtype=int64)  # random

        The same output dimension can be produced using broadcasting.

        >>> rvs = rng.multinomial([[1]] * 4, pvals)
        >>> rvs.argmax(axis=-1)
        array([[0, 1],
               [2, 0],
               [2, 1],
               [2, 0]], dtype=int64)  # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62])  # random

        not like:

        >>> rng.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs
        """

        cdef np.npy_intp d, i, sz, offset, pi
        cdef np.ndarray parr, mnarr, on, temp_arr
        cdef double *pix
        cdef int ndim
        cdef int64_t *mnix
        cdef int64_t ni
        cdef np.broadcast it
        on = <np.ndarray>np.PyArray_FROM_OTF(n,
                                             np.NPY_INT64,
                                             np.NPY_ARRAY_ALIGNED |
                                             np.NPY_ARRAY_C_CONTIGUOUS)
        parr = <np.ndarray>np.PyArray_FROM_OTF(pvals,
                                               np.NPY_DOUBLE,
                                               np.NPY_ARRAY_ALIGNED |
                                               np.NPY_ARRAY_C_CONTIGUOUS)
        ndim = parr.ndim
        d = parr.shape[ndim - 1] if ndim >= 1 else 0
        if d == 0:
            raise ValueError(
                "pvals must have at least 1 dimension and the last dimension "
                "of pvals must be greater than 0."
            )

        check_array_constraint(parr, 'pvals', CONS_BOUNDED_0_1)
        pix = <double*>np.PyArray_DATA(parr)
        sz = np.PyArray_SIZE(parr)
        # Cython 0.29.20 would not correctly translate the range-based for
        # loop to a C for loop
        # for offset in range(<np.npy_intp>0, sz, d):
        offset = 0
        while offset < sz:
            if kahan_sum(pix + offset, d-1) > (1.0 + 1e-12):
                # When floating, but not float dtype, and close, improve the error
                # 1.0001 works for float16 and float32
                slice_repr = "[:-1]" if ndim == 1 else "[...,:-1]"
                if (isinstance(pvals, np.ndarray)
                        and np.issubdtype(pvals.dtype, np.floating)
                        and pvals.dtype != float
                        and pvals.sum() < 1.0001):
                    msg = (f"sum(pvals{slice_repr}.astype(np.float64)) > 1.0."
                           " The pvals array is cast to 64-bit floating"
                           " point prior to checking the sum. Precision "
                           "changes when casting may cause problems even "
                           "if the sum of the original pvals is valid.")
                else:
                    msg = f"sum(pvals{slice_repr}) > 1.0"
                raise ValueError(msg)
            offset += d

        if np.PyArray_NDIM(on) != 0 or ndim > 1: # vector
            check_array_constraint(on, 'n', CONS_NON_NEGATIVE)
            # This provides the offsets to use in the C-contig parr when
            # broadcasting
            offsets = <np.ndarray>np.arange(
                0, np.PyArray_SIZE(parr), d, dtype=np.intp
            ).reshape((<object>parr).shape[:ndim - 1])
            if size is None:
                it = np.PyArray_MultiIterNew2(on, offsets)
            else:
                temp = np.empty(size, dtype=np.int8)
                temp_arr = <np.ndarray>temp
                it = np.PyArray_MultiIterNew3(on, offsets, temp_arr)
                # Validate size and the broadcast shape
                try:
                    size = (operator.index(size),)
                except:
                    size = tuple(size)
                # This test verifies that an axis with dim 1 in size has not
                # been increased by broadcasting with the input
                if it.shape != size:
                    raise ValueError(
                        f"Output size {size} is not compatible with "
                        f"broadcast dimensions of inputs {it.shape}."
                    )
            shape = it.shape + (d,)
            multin = np.zeros(shape, dtype=np.int64)
            mnarr = <np.ndarray>multin
            mnix = <int64_t*>np.PyArray_DATA(mnarr)
            offset = 0
            sz = it.size
            with self.lock, nogil:
                for i in range(sz):
                    ni = (<int64_t*>np.PyArray_MultiIter_DATA(it, 0))[0]
                    pi = (<np.npy_intp*>np.PyArray_MultiIter_DATA(it, 1))[0]
                    random_multinomial(&self._bitgen, ni, &mnix[offset], &pix[pi], d, &self._binomial)
                    offset += d
                    np.PyArray_MultiIter_NEXT(it)
            return multin

        if size is None:
            shape = (d,)
        else:
            try:
                shape = (operator.index(size), d)
            except:
                shape = tuple(size) + (d,)

        multin = np.zeros(shape, dtype=np.int64)
        mnarr = <np.ndarray>multin
        mnix = <int64_t*>np.PyArray_DATA(mnarr)
        sz = np.PyArray_SIZE(mnarr)
        ni = n
        check_constraint(ni, 'n', CONS_NON_NEGATIVE)
        offset = 0
        with self.lock, nogil:
            for i in range(sz // d):
                random_multinomial(&self._bitgen, ni, &mnix[offset], pix, d, &self._binomial)
                offset += d

        return multin

    def multivariate_hypergeometric(self, object colors, object nsample,
                                    size=None, method='marginals'):
        """
        multivariate_hypergeometric(colors, nsample, size=None,
                                    method='marginals')

        Generate variates from a multivariate hypergeometric distribution.

        The multivariate hypergeometric distribution is a generalization
        of the hypergeometric distribution.

        Choose ``nsample`` items at random without replacement from a
        collection with ``N`` distinct types.  ``N`` is the length of
        ``colors``, and the values in ``colors`` are the number of occurrences
        of that type in the collection.  The total number of items in the
        collection is ``sum(colors)``.  Each random variate generated by this
        function is a vector of length ``N`` holding the counts of the
        different types that occurred in the ``nsample`` items.

        The name ``colors`` comes from a common description of the
        distribution: it is the probability distribution of the number of
        marbles of each color selected without replacement from an urn
        containing marbles of different colors; ``colors[i]`` is the number
        of marbles in the urn with color ``i``.

        Parameters
        ----------
        colors : sequence of integers
            The number of each type of item in the collection from which
            a sample is drawn.  The values in ``colors`` must be nonnegative.
            To avoid loss of precision in the algorithm, ``sum(colors)``
            must be less than ``10**9`` when `method` is "marginals".
        nsample : int
            The number of items selected.  ``nsample`` must not be greater
            than ``sum(colors)``.
        size : int or tuple of ints, optional
            The number of variates to generate, either an integer or a tuple
            holding the shape of the array of variates.  If the given size is,
            e.g., ``(k, m)``, then ``k * m`` variates are drawn, where one
            variate is a vector of length ``len(colors)``, and the return value
            has shape ``(k, m, len(colors))``.  If `size` is an integer, the
            output has shape ``(size, len(colors))``.  Default is None, in
            which case a single variate is returned as an array with shape
            ``(len(colors),)``.
        method : string, optional
            Specify the algorithm that is used to generate the variates.
            Must be 'count' or 'marginals' (the default).  See the Notes
            for a description of the methods.

        Returns
        -------
        variates : ndarray
            Array of variates drawn from the multivariate hypergeometric
            distribution.

        See Also
        --------
        hypergeometric : Draw samples from the (univariate) hypergeometric
            distribution.

        Notes
        -----
        The two methods do not return the same sequence of variates.

        The "count" algorithm is roughly equivalent to the following numpy
        code::

            choices = np.repeat(np.arange(len(colors)), colors)
            selection = np.random.choice(choices, nsample, replace=False)
            variate = np.bincount(selection, minlength=len(colors))

        The "count" algorithm uses a temporary array of integers with length
        ``sum(colors)``.

        The "marginals" algorithm generates a variate by using repeated
        calls to the univariate hypergeometric sampler.  It is roughly
        equivalent to::

            variate = np.zeros(len(colors), dtype=np.int64)
            # `remaining` is the cumulative sum of `colors` from the last
            # element to the first; e.g. if `colors` is [3, 1, 5], then
            # `remaining` is [9, 6, 5].
            remaining = np.cumsum(colors[::-1])[::-1]
            for i in range(len(colors)-1):
                if nsample < 1:
                    break
                variate[i] = hypergeometric(colors[i], remaining[i+1],
                                           nsample)
                nsample -= variate[i]
            variate[-1] = nsample

        The default method is "marginals".  For some cases (e.g. when
        `colors` contains relatively small integers), the "count" method
        can be significantly faster than the "marginals" method.  If
        performance of the algorithm is important, test the two methods
        with typical inputs to decide which works best.

        .. versionadded:: 1.18.0

        Examples
        --------
        >>> colors = [16, 8, 4]
        >>> seed = 4861946401452
        >>> gen = np.random.Generator(np.random.PCG64(seed))
        >>> gen.multivariate_hypergeometric(colors, 6)
        array([5, 0, 1])
        >>> gen.multivariate_hypergeometric(colors, 6, size=3)
        array([[5, 0, 1],
               [2, 2, 2],
               [3, 3, 0]])
        >>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2))
        array([[[3, 2, 1],
                [3, 2, 1]],
               [[4, 1, 1],
                [3, 2, 1]]])
        """
        cdef int64_t nsamp
        cdef size_t num_colors
        cdef int64_t total
        cdef int64_t *colors_ptr
        cdef int64_t max_index
        cdef size_t num_variates
        cdef int64_t *variates_ptr
        cdef int result

        if method not in ['count', 'marginals']:
            raise ValueError('method must be "count" or "marginals".')

        try:
            operator.index(nsample)
        except TypeError:
            raise ValueError('nsample must be an integer')

        if nsample < 0:
            raise ValueError("nsample must be nonnegative.")
        if nsample > INT64_MAX:
            raise ValueError("nsample must not exceed %d" % INT64_MAX)
        nsamp = nsample

        # Validation of colors, a 1-d sequence of nonnegative integers.
        invalid_colors = False
        try:
            colors = np.asarray(colors)
            if colors.ndim != 1:
                invalid_colors = True
            elif colors.size > 0 and not np.issubdtype(colors.dtype,
                                                       np.integer):
                invalid_colors = True
            elif np.any((colors < 0) | (colors > INT64_MAX)):
                invalid_colors = True
        except ValueError:
            invalid_colors = True
        if invalid_colors:
            raise ValueError('colors must be a one-dimensional sequence '
                             'of nonnegative integers not exceeding %d.' %
                             INT64_MAX)

        colors = np.ascontiguousarray(colors, dtype=np.int64)
        num_colors = colors.size

        colors_ptr = <int64_t *> np.PyArray_DATA(colors)

        total = _safe_sum_nonneg_int64(num_colors, colors_ptr)
        if total == -1:
            raise ValueError("sum(colors) must not exceed the maximum value "
                             "of a 64 bit signed integer (%d)" % INT64_MAX)

        if method == 'marginals' and total >= 1000000000:
            raise ValueError('When method is "marginals", sum(colors) must '
                             'be less than 1000000000.')

        # The C code that implements the 'count' method will malloc an
        # array of size total*sizeof(size_t). Here we ensure that that
        # product does not overflow.
        if SIZE_MAX > <uint64_t>INT64_MAX:
            max_index = INT64_MAX // sizeof(size_t)
        else:
            max_index = SIZE_MAX // sizeof(size_t)
        if method == 'count' and total > max_index:
            raise ValueError("When method is 'count', sum(colors) must not "
                             "exceed %d" % max_index)
        if nsamp > total:
            raise ValueError("nsample > sum(colors)")

        # Figure out the shape of the return array.
        if size is None:
            shape = (num_colors,)
        elif np.isscalar(size):
            shape = (size, num_colors)
        else:
            shape = tuple(size) + (num_colors,)
        variates = np.zeros(shape, dtype=np.int64)

        if num_colors == 0:
            return variates

        # One variate is a vector of length num_colors.
        num_variates = variates.size // num_colors
        variates_ptr = <int64_t *> np.PyArray_DATA(variates)

        if method == 'count':
            with self.lock, nogil:
                result = random_multivariate_hypergeometric_count(&self._bitgen,
                                        total, num_colors, colors_ptr, nsamp,
                                        num_variates, variates_ptr)
            if result == -1:
                raise MemoryError("Insufficient memory for multivariate_"
                                  "hypergeometric with method='count' and "
                                  "sum(colors)=%d" % total)
        else:
            with self.lock, nogil:
                random_multivariate_hypergeometric_marginals(&self._bitgen,
                                        total, num_colors, colors_ptr, nsamp,
                                        num_variates, variates_ptr)
        return variates

    def dirichlet(self, object alpha, size=None):
        """
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        ------
        ValueError
            If any value in ``alpha`` is less than or equal to zero

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \\propto \\prod_{i=1}^{k}{x^{\\alpha_i-1}_i},

        where :math:`\\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \\frac{1}{\\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.default_rng().dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        """

        # =================
        # Pure python algo
        # =================
        # alpha   = N.atleast_1d(alpha)
        # k       = alpha.size

        # if n == 1:
        #     val = N.zeros(k)
        #     for i in range(k):
        #         val[i]   = sgamma(alpha[i], n)
        #     val /= N.sum(val)
        # else:
        #     val = N.zeros((k, n))
        #     for i in range(k):
        #         val[i]   = sgamma(alpha[i], n)
        #     val /= N.sum(val, axis = 0)
        #     val = val.T
        # return val

        cdef np.npy_intp k, totsize, i, j
        cdef np.ndarray alpha_arr, val_arr, alpha_csum_arr
        cdef double csum
        cdef double *alpha_data
        cdef double *alpha_csum_data
        cdef double *val_data
        cdef double acc, invacc, v

        k = len(alpha)
        alpha_arr = <np.ndarray>np.PyArray_FROMANY(
            alpha, np.NPY_DOUBLE, 1, 1,
            np.NPY_ARRAY_ALIGNED | np.NPY_ARRAY_C_CONTIGUOUS)
        if np.any(np.less_equal(alpha_arr, 0)):
            raise ValueError('alpha <= 0')
        alpha_data = <double*>np.PyArray_DATA(alpha_arr)

        if size is None:
            shape = (k,)
        else:
            try:
                shape = (operator.index(size), k)
            except:
                shape = tuple(size) + (k,)

        diric = np.zeros(shape, np.float64)
        val_arr = <np.ndarray>diric
        val_data= <double*>np.PyArray_DATA(val_arr)

        i = 0
        totsize = np.PyArray_SIZE(val_arr)

        # Select one of the following two algorithms for the generation
        #  of Dirichlet random variates (RVs)
        #
        # A) Small alpha case: Use the stick-breaking approach with beta
        #    random variates (RVs).
        # B) Standard case: Perform unit normalisation of a vector
        #    of gamma random variates
        #
        # A) prevents NaNs resulting from 0/0 that may occur in B)
        # when all values in the vector ':math:\\alpha' are smaller
        # than 1, then there is a nonzero probability that all
        # generated gamma RVs will be 0. When that happens, the
        # normalization process ends up computing 0/0, giving nan. A)
        # does not use divisions, so that a situation in which 0/0 has
        # to be computed cannot occur. A) is slower than B) as
        # generation of beta RVs is slower than generation of gamma
        # RVs. A) is selected whenever `alpha.max() < t`, where `t <
        # 1` is a threshold that controls the probability of
        # generating a NaN value when B) is used. For a given
        # threshold `t` this probability can be bounded by
        # `gammainc(t, d)` where `gammainc` is the regularized
        # incomplete gamma function and `d` is the smallest positive
        # floating point number that can be represented with a given
        # precision. For the chosen threshold `t=0.1` this probability
        # is smaller than `1.8e-31` for double precision floating
        # point numbers.

        if (k > 0) and (alpha_arr.max() < 0.1):
            # Small alpha case: Use stick-breaking approach with beta
            # random variates (RVs).
            # alpha_csum_data will hold the cumulative sum, right to
            # left, of alpha_arr.
            # Use a numpy array for memory management only.  We could just as
            # well have malloc'd alpha_csum_data.  alpha_arr is a C-contiguous
            # double array, therefore so is alpha_csum_arr.
            alpha_csum_arr = np.empty_like(alpha_arr)
            alpha_csum_data = <double*>np.PyArray_DATA(alpha_csum_arr)
            csum = 0.0
            for j in range(k - 1, -1, -1):
                csum += alpha_data[j]
                alpha_csum_data[j] = csum

            with self.lock, nogil:
                while i < totsize:
                    acc = 1.
                    for j in range(k - 1):
                        v = random_beta(&self._bitgen, alpha_data[j],
                                        alpha_csum_data[j + 1])
                        val_data[i + j] = acc * v
                        acc *= (1. - v)
                    val_data[i + k - 1] = acc
                    i = i + k

        else:
            # Standard case: Unit normalisation of a vector of gamma random
            # variates
            with self.lock, nogil:
                while i < totsize:
                    acc = 0.
                    for j in range(k):
                        val_data[i + j] = random_standard_gamma(&self._bitgen,
                                                                alpha_data[j])
                        acc = acc + val_data[i + j]
                    invacc = 1. / acc
                    for j in range(k):
                        val_data[i + j] = val_data[i + j] * invacc
                    i = i + k

        return diric

    def permuted(self, object x, *, axis=None, out=None):
        """
        permuted(x, axis=None, out=None)

        Randomly permute `x` along axis `axis`.

        Unlike `shuffle`, each slice along the given axis is shuffled
        independently of the others.

        Parameters
        ----------
        x : array_like, at least one-dimensional
            Array to be shuffled.
        axis : int, optional
            Slices of `x` in this axis are shuffled. Each slice
            is shuffled independently of the others.  If `axis` is
            None, the flattened array is shuffled.
        out : ndarray, optional
            If given, this is the destinaton of the shuffled array.
            If `out` is None, a shuffled copy of the array is returned.

        Returns
        -------
        ndarray
            If `out` is None, a shuffled copy of `x` is returned.
            Otherwise, the shuffled array is stored in `out`,
            and `out` is returned

        See Also
        --------
        shuffle
        permutation
        
        Notes
        -----
        An important distinction between methods ``shuffle``  and ``permuted`` is 
        how they both treat the ``axis`` parameter which can be found at 
        :ref:`generator-handling-axis-parameter`.

        Examples
        --------
        Create a `numpy.random.Generator` instance:

        >>> rng = np.random.default_rng()

        Create a test array:

        >>> x = np.arange(24).reshape(3, 8)
        >>> x
        array([[ 0,  1,  2,  3,  4,  5,  6,  7],
               [ 8,  9, 10, 11, 12, 13, 14, 15],
               [16, 17, 18, 19, 20, 21, 22, 23]])

        Shuffle the rows of `x`:

        >>> y = rng.permuted(x, axis=1)
        >>> y
        array([[ 4,  3,  6,  7,  1,  2,  5,  0],  # random
               [15, 10, 14,  9, 12, 11,  8, 13],
               [17, 16, 20, 21, 18, 22, 23, 19]])

        `x` has not been modified:

        >>> x
        array([[ 0,  1,  2,  3,  4,  5,  6,  7],
               [ 8,  9, 10, 11, 12, 13, 14, 15],
               [16, 17, 18, 19, 20, 21, 22, 23]])

        To shuffle the rows of `x` in-place, pass `x` as the `out`
        parameter:

        >>> y = rng.permuted(x, axis=1, out=x)
        >>> x
        array([[ 3,  0,  4,  7,  1,  6,  2,  5],  # random
               [ 8, 14, 13,  9, 12, 11, 15, 10],
               [17, 18, 16, 22, 19, 23, 20, 21]])

        Note that when the ``out`` parameter is given, the return
        value is ``out``:

        >>> y is x
        True
        """

        cdef int ax
        cdef np.npy_intp axlen, axstride, itemsize
        cdef void *buf
        cdef np.flatiter it
        cdef np.ndarray to_shuffle
        cdef int status
        cdef int flags

        x = np.asarray(x)

        if out is None:
            out = x.copy(order='K')
        else:
            if type(out) is not np.ndarray:
                raise TypeError('out must be a numpy array')
            PyArray_FailUnlessWriteable(<np.PyArrayObject *>out, "out")
            if out.shape != x.shape:
                raise ValueError('out must have the same shape as x')
            np.copyto(out, x, casting='safe')

        if axis is None:
            if x.ndim > 1:
                if not (np.PyArray_FLAGS(out) & (np.NPY_ARRAY_C_CONTIGUOUS |
                                                 np.NPY_ARRAY_F_CONTIGUOUS)): 
                    flags = (np.NPY_ARRAY_C_CONTIGUOUS |
                             NPY_ARRAY_WRITEBACKIFCOPY)
                    to_shuffle = PyArray_FromArray(<np.PyArrayObject *>out,
                                                   <np.PyArray_Descr *>NULL, flags)
                    self.shuffle(to_shuffle.ravel(order='K'))
                    # Because we only execute this block if out is not
                    # contiguous, we know this call will always result in a
                    # copy of to_shuffle back to out. I.e. status will be 1.
                    status = PyArray_ResolveWritebackIfCopy(to_shuffle)
                    assert status == 1
                else:
                    # out is n-d with n > 1, but is either C- or F-contiguous,
                    # so we know out.ravel(order='A') is a view.
                    self.shuffle(out.ravel(order='A'))
            else:
                # out is 1-d
                self.shuffle(out)
            return out

        ax = normalize_axis_index(axis, np.ndim(out))
        itemsize = out.itemsize
        axlen = out.shape[ax]
        axstride = out.strides[ax]

        it = np.PyArray_IterAllButAxis(out, &ax)

        buf = PyMem_Malloc(itemsize)
        if buf == NULL:
            raise MemoryError('memory allocation failed in permuted')

        if out.dtype.hasobject:
            # Keep the GIL when shuffling an object array.
            with self.lock:
                while np.PyArray_ITER_NOTDONE(it):
                    _shuffle_raw_wrap(&self._bitgen, axlen, 0, itemsize,
                                      axstride,
                                      <char *>np.PyArray_ITER_DATA(it),
                                      <char *>buf)
                    np.PyArray_ITER_NEXT(it)
        else:
            # out is not an object array, so we can release the GIL.
            with self.lock, nogil:
                while np.PyArray_ITER_NOTDONE(it):
                    _shuffle_raw_wrap(&self._bitgen, axlen, 0, itemsize,
                                      axstride,
                                      <char *>np.PyArray_ITER_DATA(it),
                                      <char *>buf)
                    np.PyArray_ITER_NEXT(it)

        PyMem_Free(buf)
        return out

    def shuffle(self, object x, axis=0):
        """
        shuffle(x, axis=0)

        Modify an array or sequence in-place by shuffling its contents.

        The order of sub-arrays is changed but their contents remains the same.

        Parameters
        ----------
        x : ndarray or MutableSequence
            The array, list or mutable sequence to be shuffled.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.
            It is only supported on `ndarray` objects.

        Returns
        -------
        None

        See Also
        --------
        permuted
        permutation

        Notes
        -----
        An important distinction between methods ``shuffle``  and ``permuted`` is 
        how they both treat the ``axis`` parameter which can be found at 
        :ref:`generator-handling-axis-parameter`.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> arr = np.arange(10)
        >>> arr
        array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
        >>> rng.shuffle(arr)
        >>> arr
        array([2, 0, 7, 5, 1, 4, 8, 9, 3, 6]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> arr
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]])
        >>> rng.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        >>> arr = np.arange(9).reshape((3, 3))
        >>> arr
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]])
        >>> rng.shuffle(arr, axis=1)
        >>> arr
        array([[2, 0, 1], # random
               [5, 3, 4],
               [8, 6, 7]])
        """
        cdef:
            np.npy_intp i, j, n = len(x), stride, itemsize
            char* x_ptr
            char* buf_ptr

        if isinstance(x, np.ndarray):
            if not x.flags.writeable:
                raise ValueError('array is read-only')
            # Only call ndim on ndarrays, see GH 18142
            axis = normalize_axis_index(axis, np.ndim(x))

        if type(x) is np.ndarray and x.ndim == 1 and x.size:
            # Fast, statically typed path: shuffle the underlying buffer.
            # Only for non-empty, 1d objects of class ndarray (subclasses such
            # as MaskedArrays may not support this approach).
            x_ptr = np.PyArray_BYTES(x)
            stride = x.strides[0]
            itemsize = x.dtype.itemsize
            # As the array x could contain python objects we use a buffer
            # of bytes for the swaps to avoid leaving one of the objects
            # within the buffer and erroneously decrementing it's refcount
            # when the function exits.
            buf = np.empty(itemsize, dtype=np.int8)  # GC'd at function exit
            buf_ptr = np.PyArray_BYTES(buf)
            if x.dtype.hasobject:
                with self.lock:
                    _shuffle_raw_wrap(&self._bitgen, n, 1, itemsize, stride,
                                      x_ptr, buf_ptr)
            else:
                # Same as above, but the GIL is released.
                with self.lock, nogil:
                    _shuffle_raw_wrap(&self._bitgen, n, 1, itemsize, stride,
                                      x_ptr, buf_ptr)
        elif isinstance(x, np.ndarray):
            if x.size == 0:
                # shuffling is a no-op
                return

            x = np.swapaxes(x, 0, axis)
            buf = np.empty_like(x[0, ...])
            with self.lock:
                for i in reversed(range(1, len(x))):
                    j = random_interval(&self._bitgen, i)
                    if i == j:
                        # i == j is not needed and memcpy is undefined.
                        continue
                    buf[...] = x[j, ...]
                    x[j, ...] = x[i, ...]
                    x[i, ...] = buf
        else:
            # Untyped path.
            if not isinstance(x, Sequence):
                # See gh-18206. We may decide to deprecate here in the future.
                warnings.warn(
                    f"you are shuffling a '{type(x).__name__}' object "
                    "which is not a subclass of 'Sequence'; "
                    "`shuffle` is not guaranteed to behave correctly. "
                    "E.g., non-numpy array/tensor objects with view semantics "
                    "may contain duplicates after shuffling.",
                    UserWarning, stacklevel=1)  # Cython does not add a level

            if axis != 0:
                raise NotImplementedError("Axis argument is only supported "
                                          "on ndarray objects")
            with self.lock:
                for i in reversed(range(1, n)):
                    j = random_interval(&self._bitgen, i)
                    x[i], x[j] = x[j], x[i]

    def permutation(self, object x, axis=0):
        """
        permutation(x, axis=0)

        Randomly permute a sequence, or return a permuted range.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> rng.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        >>> rng.permutation("abc")
        Traceback (most recent call last):
            ...
        numpy.AxisError: axis 0 is out of bounds for array of dimension 0

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr, axis=1)
        array([[0, 2, 1], # random
               [3, 5, 4],
               [6, 8, 7]])

        """
        if isinstance(x, (int, np.integer)):
            arr = np.arange(x)
            self.shuffle(arr)
            return arr

        arr = np.asarray(x)

        axis = normalize_axis_index(axis, arr.ndim)

        # shuffle has fast-path for 1-d
        if arr.ndim == 1:
            # Return a copy if same memory
            if np.may_share_memory(arr, x):
                arr = np.array(arr)
            self.shuffle(arr)
            return arr

        # Shuffle index array, dtype to ensure fast path
        idx = np.arange(arr.shape[axis], dtype=np.intp)
        self.shuffle(idx)
        slices = [slice(None)]*arr.ndim
        slices[axis] = idx
        return arr[tuple(slices)]


def default_rng(seed=None):
    """Construct a new Generator with the default BitGenerator (PCG64).

    Parameters
    ----------
    seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
        A seed to initialize the `BitGenerator`. If None, then fresh,
        unpredictable entropy will be pulled from the OS. If an ``int`` or
        ``array_like[ints]`` is passed, then it will be passed to
        `SeedSequence` to derive the initial `BitGenerator` state. One may also
        pass in a `SeedSequence` instance.
        Additionally, when passed a `BitGenerator`, it will be wrapped by
        `Generator`. If passed a `Generator`, it will be returned unaltered.

    Returns
    -------
    Generator
        The initialized generator object.

    Notes
    -----
    If ``seed`` is not a `BitGenerator` or a `Generator`, a new `BitGenerator`
    is instantiated. This function does not manage a default global instance.
    
    Examples
    --------
    ``default_rng`` is the recommended constructor for the random number class
    ``Generator``. Here are several ways we can construct a random 
    number generator using ``default_rng`` and the ``Generator`` class. 
    
    Here we use ``default_rng`` to generate a random float:
 
    >>> import numpy as np
    >>> rng = np.random.default_rng(12345)
    >>> print(rng)
    Generator(PCG64)
    >>> rfloat = rng.random()
    >>> rfloat
    0.22733602246716966
    >>> type(rfloat)
    <class 'float'>
     
    Here we use ``default_rng`` to generate 3 random integers between 0 
    (inclusive) and 10 (exclusive):
        
    >>> import numpy as np
    >>> rng = np.random.default_rng(12345)
    >>> rints = rng.integers(low=0, high=10, size=3)
    >>> rints
    array([6, 2, 7])
    >>> type(rints[0])
    <class 'numpy.int64'>
    
    Here we specify a seed so that we have reproducible results:
    
    >>> import numpy as np
    >>> rng = np.random.default_rng(seed=42)
    >>> print(rng)
    Generator(PCG64)
    >>> arr1 = rng.random((3, 3))
    >>> arr1
    array([[0.77395605, 0.43887844, 0.85859792],
           [0.69736803, 0.09417735, 0.97562235],
           [0.7611397 , 0.78606431, 0.12811363]])

    If we exit and restart our Python interpreter, we'll see that we
    generate the same random numbers again:

    >>> import numpy as np
    >>> rng = np.random.default_rng(seed=42)
    >>> arr2 = rng.random((3, 3))
    >>> arr2
    array([[0.77395605, 0.43887844, 0.85859792],
           [0.69736803, 0.09417735, 0.97562235],
           [0.7611397 , 0.78606431, 0.12811363]])

    """
    if _check_bit_generator(seed):
        # We were passed a BitGenerator, so just wrap it up.
        return Generator(seed)
    elif isinstance(seed, Generator):
        # Pass through a Generator.
        return seed
    # Otherwise we need to instantiate a new BitGenerator and Generator as
    # normal.
    return Generator(PCG64(seed))