summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLegrandin <gooksankoo@hoiptorrow.mailexpire.com>2011-10-11 23:47:59 +0200
committerLegrandin <gooksankoo@hoiptorrow.mailexpire.com>2011-10-11 23:53:43 +0200
commitcee93d88d0c7283ff8c8c376ed47253900e5a49e (patch)
treece3206710d7dbd621d13c4173f5f5057275bc923
parent075f0726aa9bee63173ba91c465e6c1fa57a6e1d (diff)
downloadpycrypto-cee93d88d0c7283ff8c8c376ed47253900e5a49e.tar.gz
Restructure both PKCS#1 ciphers as objects, to make them more uniform with other ciphers in the module.
-rw-r--r--lib/Crypto/Cipher/PKCS1_OAEP.py348
-rw-r--r--lib/Crypto/Cipher/PKCS1_v1_5.py266
-rw-r--r--lib/Crypto/SelfTest/Cipher/test_pkcs1_15.py23
-rw-r--r--lib/Crypto/SelfTest/Cipher/test_pkcs1_oaep.py28
4 files changed, 365 insertions, 300 deletions
diff --git a/lib/Crypto/Cipher/PKCS1_OAEP.py b/lib/Crypto/Cipher/PKCS1_OAEP.py
index 889333a..4c43707 100644
--- a/lib/Crypto/Cipher/PKCS1_OAEP.py
+++ b/lib/Crypto/Cipher/PKCS1_OAEP.py
@@ -33,13 +33,15 @@ As an example, a sender may encrypt a message in this way:
>>>
>>> message = 'To be encrypted'
>>> key = RSA.importKey(open('pubkey.der').read())
- >>> ciphertext = PKCS1_OAEP.encrypt(message, key)
+ >>> cipher = PKCS1_OAEP.new(key)
+ >>> ciphertext = cipher.encrypt(message)
At the receiver side, decryption can be done using the private part of
the RSA key:
>>> key = RSA.importKey(open('privkey.der').read())
- >>> message = PKCS1_OAEP.decrypt(ciphertext, key):
+ >>> cipher = PKCS1_OAP.new(key)
+ >>> message = cipher.decrypt(ciphertext)
:undocumented: __revision__, __package__
@@ -50,7 +52,7 @@ the RSA key:
from __future__ import nested_scopes
__revision__ = "$Id$"
-__all__ = [ 'encrypt', 'decrypt' ]
+__all__ = [ 'new' ]
import Crypto.Signature.PKCS1_PSS
import Crypto.Hash.SHA
@@ -59,170 +61,194 @@ import Crypto.Util.number
from Crypto.Util.number import ceil_div
from Crypto.Util.strxor import strxor
-def encrypt(message, key, hashAlgo=None, mgfunc=None, label=''):
- """Produce the PKCS#1 OAEP encryption of a message.
-
- This function is named ``RSAES-OAEP-ENCRYPT``, and is specified in
- section 7.1.1 of RFC3447.
+class PKCS1OAEP_Cipher:
+ """This cipher can perform PKCS#1 v1.5 OAEP encryption or decryption."""
+
+ def __init__(self, key, hashAlgo, mgfunc, label):
+ """Initialize this PKCS#1 OAEP cipher object.
+
+ :Parameters:
+ key : an RSA key object
+ If a private half is given, both encryption and decryption are possible.
+ If a public half is given, only encryption is possible.
+ hashAlgo : hash object
+ The hash function to use. This can be a module under `Crypto.Hash`
+ or an existing hash object created from any of such modules. If not specified,
+ `Crypto.Hash.SHA` (that is, SHA-1) is used.
+ mgfunc : callable
+ A mask generation function that accepts two parameters: a string to
+ use as seed, and the lenth of the mask to generate, in bytes.
+ If not specified, the standard MGF1 is used (a safe choice).
+ label : string
+ A label to apply to this particular encryption. If not specified,
+ an empty string is used. Specifying a label does not improve
+ security.
+
+ :attention: Modify the mask generation function only if you know what you are doing.
+ Sender and receiver must use the same one.
+ """
+ self._key = key
+
+ if hashAlgo:
+ self._hashObj = hashAlgo
+ else:
+ self._hashObj = Crypto.Hash.SHA
+
+ if mgfunc:
+ self._mgf = mgfunc
+ else:
+ self._mgf = lambda x,y: Crypto.Signature.PKCS1_PSS.MGF1(x,y,self._hashObj)
+
+ self._label = label
+
+ def can_encrypt(self):
+ """Return True/1 if this cipher object can be used for encryption."""
+ return self._key.can_encrypt()
+
+ def can_decrypt(self):
+ """Return True/1 if this cipher object can be used for decryption."""
+ return self._key.can_decrypt()
+
+ def encrypt(self, message):
+ """Produce the PKCS#1 OAEP encryption of a message.
+
+ This function is named ``RSAES-OAEP-ENCRYPT``, and is specified in
+ section 7.1.1 of RFC3447.
+
+ :Parameters:
+ message : string
+ The message to encrypt, also known as plaintext. It can be of
+ variable length, but not longer than the RSA modulus (in bytes)
+ minus 2, minus twice the hash output size.
+
+ :Return: A string, the ciphertext in which the message is encrypted.
+ It is as long as the RSA modulus (in bytes).
+ :Raise ValueError:
+ If the RSA key length is not sufficiently long to deal with the given
+ message.
+ """
+ # TODO: Verify the key is RSA
+
+ randFunc = self._key._randfunc
+
+ # See 7.1.1 in RFC3447
+ modBits = Crypto.Util.number.size(self._key.n)
+ k = ceil_div(modBits,8) # Convert from bits to bytes
+ hLen = self._hashObj.digest_size
+ mLen = len(message)
+
+ # Step 1b
+ ps_len = k-mLen-2*hLen-2
+ if ps_len<0:
+ raise ValueError("Plaintext is too long.")
+ # Step 2a
+ lHash = self._hashObj.new(self._label).digest()
+ # Step 2b
+ ps = '\x00'*ps_len
+ # Step 2c
+ db = lHash + ps + '\x01' + message
+ # Step 2d
+ ros = randFunc(hLen)
+ # Step 2e
+ dbMask = self._mgf(ros, k-hLen-1)
+ # Step 2f
+ maskedDB = strxor(db, dbMask)
+ # Step 2g
+ seedMask = self._mgf(maskedDB, hLen)
+ # Step 2h
+ maskedSeed = strxor(ros, seedMask)
+ # Step 2i
+ em = '\x00' + maskedSeed + maskedDB
+ # Step 3a (OS2IP), step 3b (RSAEP), part of step 3c (I2OSP)
+ m = self._key.encrypt(em, 0)[0]
+ # Complete step 3c (I2OSP)
+ c = '\x00'*(k-len(m)) + m
+ return c
+
+ def decrypt(self, ct):
+ """Decrypt a PKCS#1 OAEP ciphertext.
+
+ This function is named ``RSAES-OAEP-DECRYPT``, and is specified in
+ section 7.1.2 of RFC3447.
+
+ :Parameters:
+ ct : string
+ The ciphertext that contains the message to recover.
+
+ :Return: A string, the original message.
+ :Raise ValueError:
+ If the ciphertext length is incorrect, or if the decryption does not
+ succeed.
+ :Raise TypeError:
+ If the RSA key has no private half.
+ """
+ # TODO: Verify the key is RSA
+
+ # See 7.1.2 in RFC3447
+ modBits = Crypto.Util.number.size(self._key.n)
+ k = ceil_div(modBits,8) # Convert from bits to bytes
+ hLen = self._hashObj.digest_size
+
+ # Step 1b and 1c
+ if len(ct) != k or k<hLen+2:
+ raise ValueError("Ciphertext with incorrect length.")
+ # Step 2a (O2SIP), 2b (RSADP), and part of 2c (I2OSP)
+ m = self._key.decrypt(ct)
+ # Complete step 2c (I2OSP)
+ em = '\x00'*(k-len(m)) + m
+ # Step 3a
+ lHash = self._hashObj.new(self._label).digest()
+ # Step 3b
+ y = em[0]
+ # y must be 0, but we MUST NOT check it here in order not to
+ # allow attacks like Manger's (http://dl.acm.org/citation.cfm?id=704143)
+ maskedSeed = em[1:hLen+1]
+ maskedDB = em[hLen+1:]
+ # Step 3c
+ seedMask = self._mgf(maskedDB, hLen)
+ # Step 3d
+ seed = strxor(maskedSeed, seedMask)
+ # Step 3e
+ dbMask = self._mgf(seed, k-hLen-1)
+ # Step 3f
+ db = strxor(maskedDB, dbMask)
+ # Step 3g
+ valid = 1
+ one = db[hLen:].find('\x01')
+ lHash1 = db[:hLen]
+ if lHash1!=lHash:
+ valid = 0
+ if one<0:
+ valid = 0
+ if y!='\x00':
+ valid = 0
+ if not valid:
+ raise ValueError("Incorrect decryption.")
+ # Step 4
+ return db[hLen+one+1:]
+
+def new(key, hashAlgo=None, mgfunc=None, label=''):
+ """Return a cipher object `PKCS1OAEP_Cipher` that can be used to perform PKCS#1 OAEP encryption or decryption.
:Parameters:
- message : string
- The message to encrypt, also known as plaintext. It can be of
- variable length, but not longer than the RSA modulus (in bytes)
- minus 2, minus twice the hash output size.
key : RSA key object
- The key to use to encrypt the message. This is a `Crypto.PublicKey.RSA`
- object.
+ The key to use to encrypt or decrypt the message. This is a `Crypto.PublicKey.RSA` object.
+ Decryption is only possible if *key* is a private RSA key.
hashAlgo : hash object
- The hash function to use. This can be a module under `Crypto.Hash`
- or an existing hash object created from any of such modules. If not specified,
- `Crypto.Hash.SHA` (that is, SHA-1) is used.
+ The hash function to use. This can be a module under `Crypto.Hash`
+ or an existing hash object created from any of such modules. If not specified,
+ `Crypto.Hash.SHA` (that is, SHA-1) is used.
mgfunc : callable
- A mask generation function that accepts two parameters: a string to
- use as seed, and the lenth of the mask to generate, in bytes.
- If not specified, the standard MGF1 is used (a safe choice).
+ A mask generation function that accepts two parameters: a string to
+ use as seed, and the lenth of the mask to generate, in bytes.
+ If not specified, the standard MGF1 is used (a safe choice).
label : string
- A label to apply to this particular encryption. If not specified,
- an empty string is used. Specifying a label does not improve
- security.
-
- :Return: A string, the ciphertext in which the message is encrypted.
- It is as long as the RSA modulus (in bytes).
- :Raise ValueError:
- If the RSA key length is not sufficiently long to deal with the given
- message.
-
+ A label to apply to this particular encryption. If not specified,
+ an empty string is used. Specifying a label does not improve
+ security.
+
:attention: Modify the mask generation function only if you know what you are doing.
- The receiver must use the same one too.
- """
- # TODO: Verify the key is RSA
-
- randFunc = key._randfunc
-
- # See 7.1.1 in RFC3447
- modBits = Crypto.Util.number.size(key.n)
- k = ceil_div(modBits,8) # Convert from bits to bytes
- if hashAlgo:
- hashObj = hashAlgo
- else:
- hashObj = Crypto.Hash.SHA
- hLen = hashObj.digest_size
- mLen = len(message)
- if mgfunc:
- mgf = mgfunc
- else:
- mgf = lambda x,y: Crypto.Signature.PKCS1_PSS.MGF1(x,y,hashObj)
-
- # Step 1b
- ps_len = k-mLen-2*hLen-2
- if ps_len<0:
- raise ValueError("Plaintext is too long.")
- # Step 2a
- lHash = hashObj.new(label).digest()
- # Step 2b
- ps = '\x00'*ps_len
- # Step 2c
- db = lHash + ps + '\x01' + message
- # Step 2d
- ros = randFunc(hLen)
- # Step 2e
- dbMask = mgf(ros, k-hLen-1)
- # Step 2f
- maskedDB = strxor(db, dbMask)
- # Step 2g
- seedMask = mgf(maskedDB, hLen)
- # Step 2h
- maskedSeed = strxor(ros, seedMask)
- # Step 2i
- em = '\x00' + maskedSeed + maskedDB
- # Step 3a (OS2IP), step 3b (RSAEP), part of step 3c (I2OSP)
- m = key.encrypt(em, 0)[0]
- # Complete step 3c (I2OSP)
- c = '\x00'*(k-len(m)) + m
- return c
-
-def decrypt(ct, key, hashAlgo=None, mgfunc=None, label=''):
- """Decrypt a PKCS#1 OAEP ciphertext.
-
- This function is named ``RSAES-OAEP-DECRYPT``, and is specified in
- section 7.1.2 of RFC3447.
-
- :Parameters:
- ct : string
- The ciphertext that contains the message to recover.
- key : RSA key object
- The key to use to verify the message. This is a `Crypto.PublicKey.RSA`
- object. It must have its private half.
- hashAlgo : hash object
- The hash function to use. This can be a module under `Crypto.Hash`
- or an existing hash object created from any of such modules.
- If not specified, `Crypto.Hash.SHA` (that is, SHA-1) is used.
- mgfunc : callable
- A mask generation function that accepts two parameters: a string to
- use as seed, and the lenth of the mask to generate, in bytes.
- If not specified, the standard MGF1 is used. The sender must have
- used the same function.
- label : string
- A label to apply to this particular encryption. If not specified,
- an empty string is used. The sender must have used the same label.
-
- :Return: A string, the original message.
- :Raise ValueError:
- If the ciphertext length is incorrect, or if the decryption does not
- succeed.
- :Raise TypeError:
- If the RSA key has no private half.
+ Sender and receiver must use the same one.
"""
- # TODO: Verify the key is RSA
-
- # See 7.1.2 in RFC3447
- modBits = Crypto.Util.number.size(key.n)
- k = ceil_div(modBits,8) # Convert from bits to bytes
- if hashAlgo:
- hashObj = hashAlgo
- else:
- hashObj = Crypto.Hash.SHA
- hLen = hashObj.digest_size
- if mgfunc:
- mgf = mgfunc
- else:
- mgf = lambda x,y: Crypto.Signature.PKCS1_PSS.MGF1(x,y,hashObj)
-
- # Step 1b and 1c
- if len(ct) != k or k<hLen+2:
- raise ValueError("Ciphertext with incorrect length.")
- # Step 2a (O2SIP), 2b (RSADP), and part of 2c (I2OSP)
- m = key.decrypt(ct)
- # Complete step 2c (I2OSP)
- em = '\x00'*(k-len(m)) + m
- # Step 3a
- lHash = hashObj.new(label).digest()
- # Step 3b
- y = em[0]
- # y must be 0, but we MUST NOT check it here in order not to
- # allow attacks like Manger's (http://dl.acm.org/citation.cfm?id=704143)
- maskedSeed = em[1:hLen+1]
- maskedDB = em[hLen+1:]
- # Step 3c
- seedMask = mgf(maskedDB, hLen)
- # Step 3d
- seed = strxor(maskedSeed, seedMask)
- # Step 3e
- dbMask = mgf(seed, k-hLen-1)
- # Step 3f
- db = strxor(maskedDB, dbMask)
- # Step 3g
- valid = 1
- one = db[hLen:].find('\x01')
- lHash1 = db[:hLen]
- if lHash1!=lHash:
- valid = 0
- if one<0:
- valid = 0
- if y!='\x00':
- valid = 0
- if not valid:
- raise ValueError("Incorrect decryption.")
- # Step 4
- return db[hLen+one+1:]
+ return PKCS1OAEP_Cipher(key, hashAlgo, mgfunc, label)
diff --git a/lib/Crypto/Cipher/PKCS1_v1_5.py b/lib/Crypto/Cipher/PKCS1_v1_5.py
index 8d02afe..748a327 100644
--- a/lib/Crypto/Cipher/PKCS1_v1_5.py
+++ b/lib/Crypto/Cipher/PKCS1_v1_5.py
@@ -38,8 +38,8 @@ As an example, a sender may encrypt a message in this way:
>>> h = SHA.new(message)
>>>
>>> key = RSA.importKey(open('pubkey.der').read())
- >>>
- >>> ciphertext = PKCS1_v1_5.encrypt(message+h.digest(), key)
+ >>> cipher = PKCS1_v1_5.new(key)
+ >>> ciphertext = cipher.encrypt(message+h.digest())
At the receiver side, decryption can be done using the private part of
the RSA key:
@@ -52,7 +52,8 @@ the RSA key:
>>> dsize = SHA.digest_size
>>> sentinel = Random.new().read(15+dsize) # Let's assume that average data length is 15
>>>
- >>> message = PKCS1_v1_5.decrypt(ciphertext, key, sentinel)
+ >>> cipher = PKCS1_v1_5.new(key)
+ >>> message = cipher.decrypt(ciphertext, sentinel)
>>>
>>> digest = SHA.new(message[:-dsize]).digest()
>>> if digest==message[-dsize:]: # Note how we DO NOT look for the sentinel
@@ -67,129 +68,158 @@ the RSA key:
"""
__revision__ = "$Id$"
-__all__ = [ 'encrypt', 'decrypt' ]
+__all__ = [ 'new' ]
from Crypto.Util.number import ceil_div
import Crypto.Util.number
-def encrypt(message, key):
- """Produce the PKCS#1 v1.5 encryption of a message.
-
- This function is named ``RSAES-PKCS1-V1_5-ENCRYPT``, and is specified in
- section 7.2.1 of RFC3447.
+class PKCS115_Cipher:
+ """This cipher can perform PKCS#1 v1.5 RSA encryption or decryption."""
- :Parameters:
- message : string
- The message to encrypt, also known as plaintext. It can be of
- variable length, but not longer than the RSA modulus (in bytes) minus 11.
- key : RSA key object
- The key to use to encrypt the message. This is a `Crypto.PublicKey.RSA`
- object.
-
- :Return: A string, the ciphertext in which the message is encrypted.
- It is as long as the RSA modulus (in bytes).
- :Raise ValueError:
- If the RSA key length is not sufficiently long to deal with the given
- message.
- """
- # TODO: Verify the key is RSA
-
- randFunc = key._randfunc
-
- # See 7.2.1 in RFC3447
- modBits = Crypto.Util.number.size(key.n)
- k = ceil_div(modBits,8) # Convert from bits to bytes
- mLen = len(message)
-
- # Step 1
- if mLen > k-11:
- raise ValueError("Plaintext is too long.")
- # Step 2a
- class nonZeroRandByte:
- def __init__(self, rf): self.rf=rf
- def __call__(self, c):
- while c=='\x00': c=self.rf(1)
- return c
- ps = "".join(map(nonZeroRandByte(randFunc), randFunc(k-mLen-3)))
- # Step 2b
- em = '\x00\x02' + ps + '\x00' + message
- # Step 3a (OS2IP), step 3b (RSAEP), part of step 3c (I2OSP)
- m = key.encrypt(em, 0)[0]
- # Complete step 3c (I2OSP)
- c = '\x00'*(k-len(m)) + m
- return c
-
-def decrypt(ct, key, sentinel):
- """Decrypt a PKCS#1 v1.5 ciphertext.
-
- This function is named ``RSAES-PKCS1-V1_5-DECRYPT``, and is specified in
- section 7.2.2 of RFC3447.
+ def __init__(self, key):
+ """Initialize this PKCS#1 v1.5 cipher object.
+
+ :Parameters:
+ key : an RSA key object
+ If a private half is given, both encryption and decryption are possible.
+ If a public half is given, only encryption is possible.
+ """
+ self._key = key
+
+ def can_encrypt(self):
+ """Return True/1 if this cipher object can be used for encryption."""
+ return self._key.can_encrypt()
+
+ def can_decrypt(self):
+ """Return True/1 if this cipher object can be used for decryption."""
+ return self._key.can_decrypt()
+
+ def encrypt(self, message):
+ """Produce the PKCS#1 v1.5 encryption of a message.
+
+ This function is named ``RSAES-PKCS1-V1_5-ENCRYPT``, and is specified in
+ section 7.2.1 of RFC3447.
+ For a complete example see `Crypto.Cipher.PKCS1_v1_5`.
+
+ :Parameters:
+ message : string
+ The message to encrypt, also known as plaintext. It can be of
+ variable length, but not longer than the RSA modulus (in bytes) minus 11.
+
+ :Return: A string, the ciphertext in which the message is encrypted.
+ It is as long as the RSA modulus (in bytes).
+ :Raise ValueError:
+ If the RSA key length is not sufficiently long to deal with the given
+ message.
+
+ """
+ # TODO: Verify the key is RSA
+
+ randFunc = self._key._randfunc
+
+ # See 7.2.1 in RFC3447
+ modBits = Crypto.Util.number.size(self._key.n)
+ k = ceil_div(modBits,8) # Convert from bits to bytes
+ mLen = len(message)
+
+ # Step 1
+ if mLen > k-11:
+ raise ValueError("Plaintext is too long.")
+ # Step 2a
+ class nonZeroRandByte:
+ def __init__(self, rf): self.rf=rf
+ def __call__(self, c):
+ while c=='\x00': c=self.rf(1)
+ return c
+ ps = "".join(map(nonZeroRandByte(randFunc), randFunc(k-mLen-3)))
+ # Step 2b
+ em = '\x00\x02' + ps + '\x00' + message
+ # Step 3a (OS2IP), step 3b (RSAEP), part of step 3c (I2OSP)
+ m = self._key.encrypt(em, 0)[0]
+ # Complete step 3c (I2OSP)
+ c = '\x00'*(k-len(m)) + m
+ return c
+
+ def decrypt(self, ct, sentinel):
+ """Decrypt a PKCS#1 v1.5 ciphertext.
+
+ This function is named ``RSAES-PKCS1-V1_5-DECRYPT``, and is specified in
+ section 7.2.2 of RFC3447.
+ For a complete example see `Crypto.Cipher.PKCS1_v1_5`.
+
+ :Parameters:
+ ct : string
+ The ciphertext that contains the message to recover.
+ sentinel : string
+ The string to return to indicate that an error was detected during decryption.
+
+ :Return: A string. It is either the original message or the ``sentinel`` (in case of an error).
+ :Raise ValueError:
+ If the ciphertext length is incorrect
+ :Raise TypeError:
+ If the RSA key has no private half.
+
+ :attention:
+ You should **never** let the party who submitted the ciphertext know that
+ this function returned the ``sentinel`` value.
+ Armed with such knowledge (for a fair amount of carefully crafted but invalid ciphertexts),
+ an attacker is able to recontruct the plaintext of any other encryption that were carried out
+ with the same RSA public key (see `Bleichenbacher's`__ attack).
+
+ In general, it should not be possible for the other party to distinguish
+ whether processing at the server side failed because the value returned
+ was a ``sentinel`` as opposed to a random, invalid message.
+
+ In fact, the second option is not that unlikely: encryption done according to PKCS#1 v1.5
+ embeds no good integrity check. There is roughly one chance
+ in 2^16 for a random ciphertext to be returned as a valid message
+ (although random looking).
+
+ It is therefore advisabled to:
+
+ 1. Select as ``sentinel`` a value that resembles a plausable random, invalid message.
+ 2. Not report back an error as soon as you detect a ``sentinel`` value.
+ Put differently, you should not explicitly check if the returned value is the ``sentinel`` or not.
+ 3. Cover all possible errors with a single, generic error indicator.
+ 4. Embed into the definition of ``message`` (at the protocol level) a digest (e.g. ``SHA-1``).
+ It is recommended for it to be the rightmost part ``message``.
+ 5. Where possible, monitor the number of errors due to ciphertexts originating from the same party,
+ and slow down the rate of the requests from such party (or even blacklist it altogether).
+
+ **If you are designing a new protocol, consider using the more robust PKCS#1 OAEP.**
+
+ .. __: http://www.bell-labs.com/user/bleichen/papers/pkcs.ps
+
+ """
+
+ # TODO: Verify the key is RSA
+
+ # See 7.2.1 in RFC3447
+ modBits = Crypto.Util.number.size(self._key.n)
+ k = ceil_div(modBits,8) # Convert from bits to bytes
+
+ # Step 1
+ if len(ct) != k:
+ raise ValueError("Ciphertext with incorrect length.")
+ # Step 2a (O2SIP), 2b (RSADP), and part of 2c (I2OSP)
+ m = self._key.decrypt(ct)
+ # Complete step 2c (I2OSP)
+ em = '\x00'*(k-len(m)) + m
+ # Step 3
+ sep = em.find('\x00',2)
+ if not em.startswith('\x00\x02') or sep<10:
+ return sentinel
+ # Step 4
+ return em[sep+1:]
+
+def new(key):
+ """Return a cipher object `PKCS115_Cipher` that can be used to perform PKCS#1 v1.5 encryption or decryption.
:Parameters:
- ct : string
- The ciphertext that contains the message to recover.
key : RSA key object
- The key to use to verify the message. This is a `Crypto.PublicKey.RSA`
- object. It must have its private half.
- sentinel : string
- The string to return to indicate that an error was detected during decryption.
-
- :Return: A string. It is either the original message or the ``sentinel`` (in case of an error).
- :Raise ValueError:
- If the ciphertext length is incorrect
- :Raise TypeError:
- If the RSA key has no private half.
-
- :attention:
- You should **never** let the party who submitted the ciphertext know that
- this function returned the ``sentinel`` value.
- Armed with such knowledge (for a fair amount of carefully crafted but invalid ciphertexts),
- an attacker is able to recontruct the plaintext of any other encryption that were carried out
- with the same RSA public key (see `Bleichenbacher's`__ attack).
-
- In general, it should not be possible for the other party to distinguish
- whether processing at the server side failed because the value returned
- was a ``sentinel`` as opposed to a random, invalid message.
-
- In fact, the second option is not that unlikely: encryption done according to PKCS#1 v1.5
- embeds no good integrity check. There is roughly one chance
- in 2^16 for a random ciphertext to be returned as a valid message
- (although random looking).
-
- It is therefore advisabled to:
-
- 1. Select as ``sentinel`` a value that resembles a plausable random, invalid message.
- 2. Not report back an error as soon as you detect a ``sentinel`` value.
- Put differently, you should not explicitly check if the returned value is the ``sentinel`` or not.
- 3. Cover all possible errors with a single, generic error indicator.
- 4. Embed into the definition of ``message`` (at the protocol level) a digest (e.g. ``SHA-1``).
- It is recommended for it to be the rightmost part ``message``.
- 5. Where possible, monitor the number of errors due to ciphertexts originating from the same party,
- and slow down the rate of the requests from such party (or even blacklist it altogether).
-
- **If you are designing a new protocol, consider using the more robust PKCS#1 OAEP.**
-
- .. __: http://www.bell-labs.com/user/bleichen/papers/pkcs.ps
+ The key to use to encrypt or decrypt the message. This is a `Crypto.PublicKey.RSA` object.
+ Decryption is only possible if *key* is a private RSA key.
"""
-
- # TODO: Verify the key is RSA
-
- # See 7.2.1 in RFC3447
- modBits = Crypto.Util.number.size(key.n)
- k = ceil_div(modBits,8) # Convert from bits to bytes
-
- # Step 1
- if len(ct) != k:
- raise ValueError("Ciphertext with incorrect length.")
- # Step 2a (O2SIP), 2b (RSADP), and part of 2c (I2OSP)
- m = key.decrypt(ct)
- # Complete step 2c (I2OSP)
- em = '\x00'*(k-len(m)) + m
- # Step 3
- sep = em.find('\x00',2)
- if not em.startswith('\x00\x02') or sep<10:
- return sentinel
- # Step 4
- return em[sep+1:]
+ return PKCS115_Cipher(key)
diff --git a/lib/Crypto/SelfTest/Cipher/test_pkcs1_15.py b/lib/Crypto/SelfTest/Cipher/test_pkcs1_15.py
index 1609770..566cbf5 100644
--- a/lib/Crypto/SelfTest/Cipher/test_pkcs1_15.py
+++ b/lib/Crypto/SelfTest/Cipher/test_pkcs1_15.py
@@ -115,44 +115,47 @@ HKukWBcq9f/UOmS0oEhai/6g+Uf7VHJdWaeO5LzuvwU=
return r
# The real test
key._randfunc = randGen(t2b(test[3]))
- ct = PKCS.encrypt(test[1], key)
+ cipher = PKCS.new(key)
+ ct = cipher.encrypt(test[1])
self.assertEqual(ct, t2b(test[2]))
def testEncrypt2(self):
# Verify that encryption fail if plaintext is too long
pt = '\x00'*(128-11+1)
- self.assertRaises(ValueError, PKCS.encrypt, pt, self.key1024)
+ cipher = PKCS.new(self.key1024)
+ self.assertRaises(ValueError, cipher.encrypt, pt)
def testVerify1(self):
for test in self._testData:
# Build the key
key = RSA.importKey(test[0])
# The real test
- pt = PKCS.decrypt(t2b(test[2]), key, "---")
+ cipher = PKCS.new(key)
+ pt = cipher.decrypt(t2b(test[2]), "---")
self.assertEqual(pt, test[1])
def testVerify2(self):
# Verify that decryption fails if ciphertext is not as long as
# RSA modulus
- self.assertRaises(ValueError, PKCS.decrypt, '\x00'*127,
- self.key1024, "---")
- self.assertRaises(ValueError, PKCS.decrypt, '\x00'*129,
- self.key1024, "---")
+ cipher = PKCS.new(self.key1024)
+ self.assertRaises(ValueError, cipher.decrypt, '\x00'*127, "---")
+ self.assertRaises(ValueError, cipher.decrypt, '\x00'*129, "---")
# Verify that decryption fails if there are less then 8 non-zero padding
# bytes
pt = '\x00\x02' + '\xFF'*7 + '\x00' + '\x45'*118
ct = self.key1024.encrypt(pt, 0)[0]
ct = '\x00'*(128-len(ct)) + ct
- self.assertEqual("---", PKCS.decrypt(ct, self.key1024, "---"))
+ self.assertEqual("---", cipher.decrypt(ct, "---"))
def testEncryptVerify1(self):
# Encrypt/Verify messages of length [0..RSAlen-11]
# and therefore padding [8..117]
for pt_len in xrange(0,128-11+1):
pt = self.rng(pt_len)
- ct = PKCS.encrypt(pt, self.key1024)
- pt2 = PKCS.decrypt(ct, self.key1024, "---")
+ cipher = PKCS.new(self.key1024)
+ ct = cipher.encrypt(pt)
+ pt2 = cipher.decrypt(ct, "---")
self.assertEqual(pt,pt2)
diff --git a/lib/Crypto/SelfTest/Cipher/test_pkcs1_oaep.py b/lib/Crypto/SelfTest/Cipher/test_pkcs1_oaep.py
index ad1fd91..ff43d58 100644
--- a/lib/Crypto/SelfTest/Cipher/test_pkcs1_oaep.py
+++ b/lib/Crypto/SelfTest/Cipher/test_pkcs1_oaep.py
@@ -281,13 +281,15 @@ class PKCS1_OAEP_Tests(unittest.TestCase):
return r
# The real test
key._randfunc = randGen(t2b(test[3]))
- ct = PKCS.encrypt(t2b(test[1]), key, test[4])
+ cipher = PKCS.new(key, test[4])
+ ct = cipher.encrypt(t2b(test[1]))
self.assertEqual(ct, t2b(test[2]))
def testEncrypt2(self):
# Verify that encryption fails if plaintext is too long
pt = '\x00'*(128-2*20-2+1)
- self.assertRaises(ValueError, PKCS.encrypt, pt, self.key1024)
+ cipher = PKCS.new(self.key1024)
+ self.assertRaises(ValueError, cipher.encrypt, pt)
def testDecrypt1(self):
# Verify decryption using all test vectors
@@ -296,14 +298,15 @@ class PKCS1_OAEP_Tests(unittest.TestCase):
comps = [ long(rws(test[0][x]),16) for x in ('n','e','d') ]
key = RSA.construct(comps)
# The real test
- pt = PKCS.decrypt(t2b(test[2]), key, test[4])
+ cipher = PKCS.new(key, test[4])
+ pt = cipher.decrypt(t2b(test[2]))
self.assertEqual(pt, t2b(test[1]))
def testDecrypt2(self):
# Simplest possible negative tests
for ct_size in (127,128,129):
- self.assertRaises(ValueError, PKCS.decrypt, '\x00'*ct_size,
- self.key1024)
+ cipher = PKCS.new(self.key1024)
+ self.assertRaises(ValueError, cipher.decrypt, '\x00'*ct_size)
def testEncryptDecrypt1(self):
# Encrypt/Decrypt messages of length [0..128-2*20-2]
@@ -327,16 +330,18 @@ class PKCS1_OAEP_Tests(unittest.TestCase):
asked = 0
pt = self.rng(40)
self.key1024._randfunc = localRng
- ct = PKCS.encrypt(pt, self.key1024, hashmod)
- self.assertEqual(PKCS.decrypt(ct, self.key1024, hashmod), pt)
+ cipher = PKCS.new(self.key1024, hashmod)
+ ct = cipher.encrypt(pt)
+ self.assertEqual(cipher.decrypt(ct), pt)
self.assertTrue(asked > hashmod.digest_size)
def testEncryptDecrypt2(self):
# Verify that OAEP supports labels
pt = self.rng(35)
xlabel = self.rng(22)
- ct = PKCS.encrypt(pt, self.key1024, label=xlabel)
- self.assertEqual(PKCS.decrypt(ct, self.key1024, label=xlabel), pt)
+ cipher = PKCS.new(self.key1024, label=xlabel)
+ ct = cipher.encrypt(pt)
+ self.assertEqual(cipher.decrypt(ct), pt)
def testEncryptDecrypt3(self):
# Verify that encrypt() uses the custom MGF
@@ -348,9 +353,10 @@ class PKCS1_OAEP_Tests(unittest.TestCase):
return '\x00'*maskLen
mgfcalls = 0
pt = self.rng(32)
- ct = PKCS.encrypt(pt, self.key1024, mgfunc=newMGF)
+ cipher = PKCS.new(self.key1024, mgfunc=newMGF)
+ ct = cipher.encrypt(pt)
self.assertEqual(mgfcalls, 2)
- self.assertEqual(PKCS.decrypt(ct, self.key1024, mgfunc=newMGF), pt)
+ self.assertEqual(cipher.decrypt(ct), pt)
def get_tests(config={}):
tests = []