# -*- coding: ascii -*- # # Util/PEM.py : Privacy Enhanced Mail utilities # # =================================================================== # The contents of this file are dedicated to the public domain. To # the extent that dedication to the public domain is not available, # everyone is granted a worldwide, perpetual, royalty-free, # non-exclusive license to exercise all rights associated with the # contents of this file for any purpose whatsoever. # No rights are reserved. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # =================================================================== """Set of functions for encapsulating data according to the PEM format. PEM (Privacy Enhanced Mail) was an IETF standard for securing emails via a Public Key Infrastructure. It is specified in RFC 1421-1424. Even though it has been abandoned, the simple message encapsulation it defined is still widely used today for encoding *binary* cryptographic objects like keys and certificates into text. """ __all__ = ['encode', 'decode'] import sys if sys.version_info[0] == 2 and sys.version_info[1] == 1: from Crypto.Util.py21compat import * from Crypto.Util.py3compat import * import re from binascii import hexlify, unhexlify, a2b_base64, b2a_base64 from Crypto.Hash import MD5 from Crypto.Util.Padding import pad, unpad from Crypto.Cipher import DES, DES3, AES from Crypto.Protocol.KDF import PBKDF1 from Crypto.Random import get_random_bytes def encode(data, marker, passphrase=None, randfunc=None): """Encode a piece of binary data into PEM format. :Parameters: data : byte string The piece of binary data to encode. marker : string The marker for the PEM block (e.g. "PUBLIC KEY"). Note that there is no official master list for all allowed markers. Still, you can refer to the OpenSSL_ source code. passphrase : byte string If given, the PEM block will be encrypted. The key is derived from the passphrase. randfunc : callable Random number generation function; it accepts an integer N and returns a byte string of random data, N bytes long. If not given, a new one is instantiated. :Returns: The PEM block, as a string. .. _OpenSSL: http://cvs.openssl.org/fileview?f=openssl/crypto/pem/pem.h&v=1.66.2.1.4.2 """ if randfunc is None: randfunc = get_random_bytes out = "-----BEGIN %s-----\n" % marker if passphrase: # We only support 3DES for encryption salt = randfunc(8) key = PBKDF1(passphrase, salt, 16, 1, MD5) key += PBKDF1(key + passphrase, salt, 8, 1, MD5) objenc = DES3.new(key, DES3.MODE_CBC, salt) out += "Proc-Type: 4,ENCRYPTED\nDEK-Info: DES-EDE3-CBC,%s\n\n" %\ tostr(hexlify(salt).upper()) # Encrypt with PKCS#7 padding data = objenc.encrypt(pad(data, objenc.block_size)) # Each BASE64 line can take up to 64 characters (=48 bytes of data) # b2a_base64 adds a new line character! chunks = [tostr(b2a_base64(data[i:i + 48])) for i in range(0, len(data), 48)] out += "".join(chunks) out += "-----END %s-----" % marker return out def decode(pem_data, passphrase=None): """Decode a PEM block into binary. :Parameters: pem_data : string The PEM block. passphrase : byte string If given and the PEM block is encrypted, the key will be derived from the passphrase. :Returns: A tuple with the binary data, the marker string, and a boolean to indicate if decryption was performed. :Raises ValueError: If decoding fails, if the PEM file is encrypted and no passphrase has been provided or if the passphrase is incorrect. """ # Verify Pre-Encapsulation Boundary r = re.compile("\s*-----BEGIN (.*)-----\n") m = r.match(pem_data) if not m: raise ValueError("Not a valid PEM pre boundary") marker = m.group(1) # Verify Post-Encapsulation Boundary r = re.compile("-----END (.*)-----\s*$") m = r.search(pem_data) if not m or m.group(1) != marker: raise ValueError("Not a valid PEM post boundary") # Removes spaces and slit on lines lines = pem_data.replace(" ", '').split() # Decrypts, if necessary if lines[1].startswith('Proc-Type:4,ENCRYPTED'): if not passphrase: raise ValueError("PEM is encrypted, but no passphrase available") DEK = lines[2].split(':') if len(DEK) != 2 or DEK[0] != 'DEK-Info': raise ValueError("PEM encryption format not supported.") algo, salt = DEK[1].split(',') salt = unhexlify(tobytes(salt)) if algo == "DES-CBC": # This is EVP_BytesToKey in OpenSSL key = PBKDF1(passphrase, salt, 8, 1, MD5) objdec = DES.new(key, DES.MODE_CBC, salt) elif algo == "DES-EDE3-CBC": # Note that EVP_BytesToKey is note exactly the same as PBKDF1 key = PBKDF1(passphrase, salt, 16, 1, MD5) key += PBKDF1(key + passphrase, salt, 8, 1, MD5) objdec = DES3.new(key, DES3.MODE_CBC, salt) elif algo == "AES-128-CBC": key = PBKDF1(passphrase, salt[:8], 16, 1, MD5) objdec = AES.new(key, AES.MODE_CBC, salt) else: raise ValueError("Unsupport PEM encryption algorithm.") lines = lines[2:] else: objdec = None # Decode body data = a2b_base64(b(''.join(lines[1:-1]))) enc_flag = False if objdec: data = unpad(objdec.decrypt(data), objdec.block_size) enc_flag = True return (data, marker, enc_flag)