# -*- coding: utf-8 -*- # # SelfTest/Util/test_number.py: Self-test for parts of the Crypto.Util.number module # # Written in 2008 by Dwayne C. Litzenberger # # =================================================================== # The contents of this file are dedicated to the public domain. To # the extent that dedication to the public domain is not available, # everyone is granted a worldwide, perpetual, royalty-free, # non-exclusive license to exercise all rights associated with the # contents of this file for any purpose whatsoever. # No rights are reserved. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # =================================================================== """Self-tests for (some of) Crypto.Util.number""" __revision__ = "$Id$" import sys if sys.version_info[0] == 2 and sys.version_info[1] == 1: from Crypto.Util.py21compat import * import unittest class MyError(Exception): """Dummy exception used for tests""" # NB: In some places, we compare tuples instead of just output values so that # if any inputs cause a test failure, we'll be able to tell which ones. class MiscTests(unittest.TestCase): def setUp(self): global number, math from Crypto.Util import number import math def test_ceil_shift(self): """Util.number.ceil_shift""" self.assertRaises(AssertionError, number.ceil_shift, -1, 1) self.assertRaises(AssertionError, number.ceil_shift, 1, -1) # b = 0 self.assertEqual(0, number.ceil_shift(0, 0)) self.assertEqual(1, number.ceil_shift(1, 0)) self.assertEqual(2, number.ceil_shift(2, 0)) self.assertEqual(3, number.ceil_shift(3, 0)) # b = 1 self.assertEqual(0, number.ceil_shift(0, 1)) self.assertEqual(1, number.ceil_shift(1, 1)) self.assertEqual(1, number.ceil_shift(2, 1)) self.assertEqual(2, number.ceil_shift(3, 1)) # b = 2 self.assertEqual(0, number.ceil_shift(0, 2)) self.assertEqual(1, number.ceil_shift(1, 2)) self.assertEqual(1, number.ceil_shift(2, 2)) self.assertEqual(1, number.ceil_shift(3, 2)) self.assertEqual(1, number.ceil_shift(4, 2)) self.assertEqual(2, number.ceil_shift(5, 2)) self.assertEqual(2, number.ceil_shift(6, 2)) self.assertEqual(2, number.ceil_shift(7, 2)) self.assertEqual(2, number.ceil_shift(8, 2)) self.assertEqual(3, number.ceil_shift(9, 2)) for b in range(3, 1+129, 3): # 3, 6, ... , 129 self.assertEqual(0, number.ceil_shift(0, b)) n = 1L while n <= 2L**(b+2): (q, r) = divmod(n-1, 2L**b) expected = q + int(not not r) self.assertEqual((n-1, b, expected), (n-1, b, number.ceil_shift(n-1, b))) (q, r) = divmod(n, 2L**b) expected = q + int(not not r) self.assertEqual((n, b, expected), (n, b, number.ceil_shift(n, b))) (q, r) = divmod(n+1, 2L**b) expected = q + int(not not r) self.assertEqual((n+1, b, expected), (n+1, b, number.ceil_shift(n+1, b))) n *= 2 def test_ceil_div(self): """Util.number.ceil_div""" self.assertRaises(TypeError, number.ceil_div, "1", 1) self.assertRaises(ZeroDivisionError, number.ceil_div, 1, 0) self.assertRaises(ZeroDivisionError, number.ceil_div, -1, 0) # b = -1 self.assertEqual(0, number.ceil_div(0, -1)) self.assertEqual(-1, number.ceil_div(1, -1)) self.assertEqual(-2, number.ceil_div(2, -1)) self.assertEqual(-3, number.ceil_div(3, -1)) # b = 1 self.assertEqual(0, number.ceil_div(0, 1)) self.assertEqual(1, number.ceil_div(1, 1)) self.assertEqual(2, number.ceil_div(2, 1)) self.assertEqual(3, number.ceil_div(3, 1)) # b = 2 self.assertEqual(0, number.ceil_div(0, 2)) self.assertEqual(1, number.ceil_div(1, 2)) self.assertEqual(1, number.ceil_div(2, 2)) self.assertEqual(2, number.ceil_div(3, 2)) self.assertEqual(2, number.ceil_div(4, 2)) self.assertEqual(3, number.ceil_div(5, 2)) # b = 3 self.assertEqual(0, number.ceil_div(0, 3)) self.assertEqual(1, number.ceil_div(1, 3)) self.assertEqual(1, number.ceil_div(2, 3)) self.assertEqual(1, number.ceil_div(3, 3)) self.assertEqual(2, number.ceil_div(4, 3)) self.assertEqual(2, number.ceil_div(5, 3)) self.assertEqual(2, number.ceil_div(6, 3)) self.assertEqual(3, number.ceil_div(7, 3)) # b = 4 self.assertEqual(0, number.ceil_div(0, 4)) self.assertEqual(1, number.ceil_div(1, 4)) self.assertEqual(1, number.ceil_div(2, 4)) self.assertEqual(1, number.ceil_div(3, 4)) self.assertEqual(1, number.ceil_div(4, 4)) self.assertEqual(2, number.ceil_div(5, 4)) self.assertEqual(2, number.ceil_div(6, 4)) self.assertEqual(2, number.ceil_div(7, 4)) self.assertEqual(2, number.ceil_div(8, 4)) self.assertEqual(3, number.ceil_div(9, 4)) # b = -4 self.assertEqual(3, number.ceil_div(-9, -4)) self.assertEqual(2, number.ceil_div(-8, -4)) self.assertEqual(2, number.ceil_div(-7, -4)) self.assertEqual(2, number.ceil_div(-6, -4)) self.assertEqual(2, number.ceil_div(-5, -4)) self.assertEqual(1, number.ceil_div(-4, -4)) self.assertEqual(1, number.ceil_div(-3, -4)) self.assertEqual(1, number.ceil_div(-2, -4)) self.assertEqual(1, number.ceil_div(-1, -4)) self.assertEqual(0, number.ceil_div(0, -4)) self.assertEqual(0, number.ceil_div(1, -4)) self.assertEqual(0, number.ceil_div(2, -4)) self.assertEqual(0, number.ceil_div(3, -4)) self.assertEqual(-1, number.ceil_div(4, -4)) self.assertEqual(-1, number.ceil_div(5, -4)) self.assertEqual(-1, number.ceil_div(6, -4)) self.assertEqual(-1, number.ceil_div(7, -4)) self.assertEqual(-2, number.ceil_div(8, -4)) self.assertEqual(-2, number.ceil_div(9, -4)) def test_exact_log2(self): """Util.number.exact_log2""" self.assertRaises(TypeError, number.exact_log2, "0") self.assertRaises(ValueError, number.exact_log2, -1) self.assertRaises(ValueError, number.exact_log2, 0) self.assertEqual(0, number.exact_log2(1)) self.assertEqual(1, number.exact_log2(2)) self.assertRaises(ValueError, number.exact_log2, 3) self.assertEqual(2, number.exact_log2(4)) self.assertRaises(ValueError, number.exact_log2, 5) self.assertRaises(ValueError, number.exact_log2, 6) self.assertRaises(ValueError, number.exact_log2, 7) e = 3 n = 8 while e < 16: if n == 2**e: self.assertEqual(e, number.exact_log2(n), "expected=2**%d, n=%d" % (e, n)) e += 1 else: self.assertRaises(ValueError, number.exact_log2, n) n += 1 for e in range(16, 1+64, 2): self.assertRaises(ValueError, number.exact_log2, 2L**e-1) self.assertEqual(e, number.exact_log2(2L**e)) self.assertRaises(ValueError, number.exact_log2, 2L**e+1) def test_exact_div(self): """Util.number.exact_div""" # Positive numbers self.assertEqual(1, number.exact_div(1, 1)) self.assertRaises(ValueError, number.exact_div, 1, 2) self.assertEqual(1, number.exact_div(2, 2)) self.assertRaises(ValueError, number.exact_div, 3, 2) self.assertEqual(2, number.exact_div(4, 2)) # Negative numbers self.assertEqual(-1, number.exact_div(-1, 1)) self.assertEqual(-1, number.exact_div(1, -1)) self.assertRaises(ValueError, number.exact_div, -1, 2) self.assertEqual(1, number.exact_div(-2, -2)) self.assertEqual(-2, number.exact_div(-4, 2)) # Zero dividend self.assertEqual(0, number.exact_div(0, 1)) self.assertEqual(0, number.exact_div(0, 2)) # Zero divisor (allow_divzero == False) self.assertRaises(ZeroDivisionError, number.exact_div, 0, 0) self.assertRaises(ZeroDivisionError, number.exact_div, 1, 0) # Zero divisor (allow_divzero == True) self.assertEqual(0, number.exact_div(0, 0, allow_divzero=True)) self.assertRaises(ValueError, number.exact_div, 1, 0, allow_divzero=True) def test_floor_div(self): """Util.number.floor_div""" self.assertRaises(TypeError, number.floor_div, "1", 1) for a in range(-10, 10): for b in range(-10, 10): if b == 0: self.assertRaises(ZeroDivisionError, number.floor_div, a, b) else: self.assertEqual((a, b, int(math.floor(float(a) / b))), (a, b, number.floor_div(a, b))) def test_getStrongPrime(self): """Util.number.getStrongPrime""" self.assertRaises(ValueError, number.getStrongPrime, 256) self.assertRaises(ValueError, number.getStrongPrime, 513) bits = 512 x = number.getStrongPrime(bits) self.assertNotEqual(x % 2, 0) self.assertEqual(x > (1L << bits-1)-1, 1) self.assertEqual(x < (1L << bits), 1) e = 2**16+1 x = number.getStrongPrime(bits, e) self.assertEqual(number.GCD(x-1, e), 1) self.assertNotEqual(x % 2, 0) self.assertEqual(x > (1L << bits-1)-1, 1) self.assertEqual(x < (1L << bits), 1) e = 2**16+2 x = number.getStrongPrime(bits, e) self.assertEqual(number.GCD((x-1)>>1, e), 1) self.assertNotEqual(x % 2, 0) self.assertEqual(x > (1L << bits-1)-1, 1) self.assertEqual(x < (1L << bits), 1) def test_isPrime(self): """Util.number.isPrime""" self.assertEqual(number.isPrime(-3), False) # Regression test: negative numbers should not be prime self.assertEqual(number.isPrime(-2), False) # Regression test: negative numbers should not be prime self.assertEqual(number.isPrime(1), False) # Regression test: isPrime(1) caused some versions of PyCrypto to crash. self.assertEqual(number.isPrime(2), True) self.assertEqual(number.isPrime(3), True) self.assertEqual(number.isPrime(4), False) self.assertEqual(number.isPrime(2L**1279-1), True) self.assertEqual(number.isPrime(-(2L**1279-1)), False) # Regression test: negative numbers should not be prime # test some known gmp pseudo-primes taken from # http://www.trnicely.net/misc/mpzspsp.html for composite in (43 * 127 * 211, 61 * 151 * 211, 15259 * 30517, 346141L * 692281L, 1007119L * 2014237L, 3589477L * 7178953L, 4859419L * 9718837L, 2730439L * 5460877L, 245127919L * 490255837L, 963939391L * 1927878781L, 4186358431L * 8372716861L, 1576820467L * 3153640933L): self.assertEqual(number.isPrime(long(composite)), False) def test_size(self): self.assertEqual(number.size(2),2) self.assertEqual(number.size(3),2) self.assertEqual(number.size(0xa2),8) self.assertEqual(number.size(0xa2ba40),8*3) self.assertEqual(number.size(0xa2ba40ee07e3b2bd2f02ce227f36a195024486e49c19cb41bbbdfbba98b22b0e577c2eeaffa20d883a76e65e394c69d4b3c05a1e8fadda27edb2a42bc000fe888b9b32c22d15add0cd76b3e7936e19955b220dd17d4ea904b1ec102b2e4de7751222aa99151024c7cb41cc5ea21d00eeb41f7c800834d2c6e06bce3bce7ea9a5L), 1024) class FastmathTests(unittest.TestCase): def setUp(self): global number from Crypto.Util import number def test_negative_number_roundtrip_mpzToLongObj_longObjToMPZ(self): """Test that mpzToLongObj and longObjToMPZ (internal functions) roundtrip negative numbers correctly.""" n = -100000000000000000000000000000000000L e = 2L k = number._fastmath.rsa_construct(n, e) self.assertEqual(n, k.n) self.assertEqual(e, k.e) def test_isPrime_randfunc_exception(self): """Test that when isPrime is called, an exception raised in randfunc is propagated.""" def randfunc(n): raise MyError prime = 3536384141L # Needs to be large enough so that rabinMillerTest will be invoked self.assertRaises(MyError, number._fastmath.isPrime, prime, randfunc=randfunc) def test_getStrongPrime_randfunc_exception(self): """Test that when getStrongPrime is called, an exception raised in randfunc is propagated.""" def randfunc(n): raise MyError self.assertRaises(MyError, number._fastmath.getStrongPrime, 512, randfunc=randfunc) def test_isPrime_randfunc_bogus(self): """Test that when isPrime is called, an exception is raised if randfunc returns something bogus.""" def randfunc(n): return None prime = 3536384141L # Needs to be large enough so that rabinMillerTest will be invoked self.assertRaises(TypeError, number._fastmath.isPrime, prime, randfunc=randfunc) def test_getStrongPrime_randfunc_bogus(self): """Test that when getStrongPrime is called, an exception is raised if randfunc returns something bogus.""" def randfunc(n): return None self.assertRaises(TypeError, number._fastmath.getStrongPrime, 512, randfunc=randfunc) def get_tests(config={}): from Crypto.SelfTest.st_common import list_test_cases tests = list_test_cases(MiscTests) try: from Crypto.PublicKey import _fastmath tests += list_test_cases(FastmathTests) except ImportError: from distutils.sysconfig import get_config_var import inspect, os.path ext_suffix = get_config_var("EXT_SUFFIX") or get_config_var("SO") _fm_path = os.path.normpath(os.path.dirname(os.path.abspath( inspect.getfile(inspect.currentframe()))) +"/../../PublicKey/_fastmath"+ext_suffix) if os.path.exists(_fm_path): raise ImportError("While the _fastmath module exists, importing "+ "it failed. This may point to the gmp or mpir shared library "+ "not being in the path. _fastmath was found at "+_fm_path) return tests if __name__ == '__main__': suite = lambda: unittest.TestSuite(get_tests()) unittest.main(defaultTest='suite') # vim:set ts=4 sw=4 sts=4 expandtab: