#!/usr/bin/env python # -*- coding: utf-8 -*- # # pct-speedtest.py: Speed test for the Python Cryptography Toolkit # # Written in 2009 by Dwayne C. Litzenberger # # =================================================================== # The contents of this file are dedicated to the public domain. To # the extent that dedication to the public domain is not available, # everyone is granted a worldwide, perpetual, royalty-free, # non-exclusive license to exercise all rights associated with the # contents of this file for any purpose whatsoever. # No rights are reserved. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # =================================================================== import time import os import sys from Crypto.PublicKey import RSA from Crypto.Cipher import PKCS1_OAEP, PKCS1_v1_5 as RSAES_PKCS1_v1_5 from Crypto.Signature import PKCS1_PSS, PKCS1_v1_5 as RSASSA_PKCS1_v1_5 from Crypto.Cipher import AES, ARC2, ARC4, Blowfish, CAST, DES3, DES, XOR from Crypto.Hash import HMAC, MD2, MD4, MD5, SHA224, SHA256, SHA384, SHA512, CMAC from Crypto.Random import get_random_bytes import Crypto.Util.Counter from Crypto.Util.number import bytes_to_long try: from Crypto.Hash import SHA1 except ImportError: # Maybe it's called SHA from Crypto.Hash import SHA as SHA1 try: from Crypto.Hash import RIPEMD160 except ImportError: # Maybe it's called RIPEMD try: from Crypto.Hash import RIPEMD as RIPEMD160 except ImportError: # Some builds of PyCrypto don't have the RIPEMD module RIPEMD160 = None try: import hashlib import hmac except ImportError: # Some builds/versions of Python don't have a hashlib module hashlib = hmac = None # os.urandom() is less noisy when profiling, but it doesn't exist in Python < 2.4 try: urandom = os.urandom except AttributeError: urandom = get_random_bytes from Crypto.Random import random as pycrypto_random import random as stdlib_random class Benchmark: def __init__(self): self.__random_data = None def random_keys(self, bytes, n=10**5): """Return random keys of the specified number of bytes. If this function has been called before with the same number of bytes, cached keys are used instead of randomly generating new ones. """ return self.random_blocks(bytes, n) def random_blocks(self, bytes_per_block, blocks): bytes = bytes_per_block * blocks data = self.random_data(bytes) retval = [] for i in range(blocks): p = i * bytes_per_block retval.append(data[p:p+bytes_per_block]) return retval def random_data(self, bytes): if self.__random_data is None: self.__random_data = self._random_bytes(bytes) return self.__random_data elif bytes == len(self.__random_data): return self.__random_data elif bytes < len(self.__random_data): return self.__random_data[:bytes] else: self.__random_data += self._random_bytes(bytes - len(self.__random_data)) return self.__random_data def _random_bytes(self, b): return urandom(b) def announce_start(self, test_name): sys.stdout.write("%s: " % (test_name,)) sys.stdout.flush() def announce_result(self, value, units): sys.stdout.write("%.2f %s\n" % (value, units)) sys.stdout.flush() def test_random_module(self, module_name, module): self.announce_start("%s.choice" % (module_name,)) alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" t0 = time.time() for i in range(5000): module.choice(alphabet) t = time.time() invocations_per_second = 5000 / (t - t0) self.announce_result(invocations_per_second, "invocations/sec") def test_pubkey_setup(self, pubkey_name, module, key_bytes): self.announce_start("%s pubkey setup" % (pubkey_name,)) keys = self.random_keys(key_bytes)[:5] t0 = time.time() for k in keys: module.generate(key_bytes*8) t = time.time() pubkey_setups_per_second = len(keys) / (t - t0) self.announce_result(pubkey_setups_per_second, "Keys/sec") def test_key_setup(self, cipher_name, module, key_bytes, mode): self.announce_start("%s key setup" % (cipher_name,)) # Generate random keys for use with the tests keys = self.random_keys(key_bytes, n=5000) if hasattr(module, "MODE_CCM") and mode==module.MODE_CCM: iv = b"\xAA"*8 else: iv = b"\xAA"*module.block_size # Perform key setups if mode is None: t0 = time.time() for k in keys: module.new(k) t = time.time() else: t0 = time.time() if mode==module.MODE_CTR: for k in keys: ctr = Crypto.Util.Counter.new(module.block_size*8, initial_value=bytes_to_long(iv)) module.new(k, module.MODE_CTR, counter=ctr) else: for k in keys: module.new(k, mode, iv) t = time.time() key_setups_per_second = len(keys) / (t - t0) self.announce_result(key_setups_per_second/1000, "kKeys/sec") def test_encryption(self, cipher_name, module, key_bytes, mode): self.announce_start("%s encryption" % (cipher_name,)) # Generate random keys for use with the tests rand = self.random_data(key_bytes + module.block_size) key, iv = rand[:key_bytes], rand[key_bytes:] blocks = self.random_blocks(16384, 1000) if mode is None: cipher = module.new(key) elif mode == "CTR-BE": from Crypto.Util import Counter cipher = module.new(key, module.MODE_CTR, counter=Counter.new(module.block_size*8, little_endian=False)) elif mode == "CTR-LE": from Crypto.Util import Counter cipher = module.new(key, module.MODE_CTR, counter=Counter.new(module.block_size*8, little_endian=True)) elif hasattr(module, 'MODE_CCM') and mode==module.MODE_CCM: cipher = module.new(key, mode, iv[:8], msg_len=len(rand)*len(blocks)) elif mode==module.MODE_CTR: ctr = Crypto.Util.Counter.new(module.block_size*8, initial_value=bytes_to_long(iv), allow_wraparound=True) cipher = module.new(key, module.MODE_CTR, counter=ctr) elif mode==module.MODE_ECB: cipher = module.new(key, module.MODE_ECB) else: cipher = module.new(key, mode, iv) # Perform encryption t0 = time.time() for b in blocks: cipher.encrypt(b) t = time.time() encryption_speed = (len(blocks) * len(blocks[0])) / (t - t0) self.announce_result(encryption_speed / 10**6, "MBps") def test_hash_small(self, hash_name, hash_constructor, digest_size): self.announce_start("%s (%d-byte inputs)" % (hash_name, digest_size)) blocks = self.random_blocks(digest_size, 10000) # Initialize hashes t0 = time.time() for b in blocks: hash_constructor(b).digest() t = time.time() hashes_per_second = len(blocks) / (t - t0) self.announce_result(hashes_per_second / 1000, "kHashes/sec") def test_hash_large(self, hash_name, hash_constructor, digest_size): self.announce_start("%s (single large input)" % (hash_name,)) blocks = self.random_blocks(16384, 10000) # Perform hashing t0 = time.time() h = hash_constructor() for b in blocks: h.update(b) h.digest() t = time.time() hash_speed = len(blocks) * len(blocks[0]) / (t - t0) self.announce_result(hash_speed / 10**6, "MBps") def test_hmac_small(self, mac_name, hmac_constructor, digestmod, digest_size): keys = iter(self.random_keys(digest_size)) if sys.version_info[0] == 2: mac_constructor = lambda data=None: hmac_constructor(keys.next(), data, digestmod) else: mac_constructor = lambda data=None: hmac_constructor(keys.__next__(), data, digestmod) self.test_hash_small(mac_name, mac_constructor, digest_size) def test_hmac_large(self, mac_name, hmac_constructor, digestmod, digest_size): key = self.random_keys(digest_size)[0] mac_constructor = lambda data=None: hmac_constructor(key, data, digestmod) self.test_hash_large(mac_name, mac_constructor, digest_size) def test_cmac_small(self, mac_name, cmac_constructor, ciphermod, key_size): keys = iter(self.random_keys(key_size)) if sys.version_info[0] == 2: mac_constructor = lambda data=None: cmac_constructor(keys.next(), data, ciphermod) else: mac_constructor = lambda data=None: cmac_constructor(keys.__next__(), data, ciphermod) self.test_hash_small(mac_name, mac_constructor, ciphermod.block_size) def test_cmac_large(self, mac_name, cmac_constructor, ciphermod, key_size): key = self.random_keys(key_size)[0] mac_constructor = lambda data=None: cmac_constructor(key, data, ciphermod) self.test_hash_large(mac_name, mac_constructor, ciphermod.block_size) def test_pkcs1_sign(self, scheme_name, scheme_constructor, hash_name, hash_constructor, digest_size): self.announce_start("%s signing %s (%d-byte inputs)" % (scheme_name, hash_name, digest_size)) # Make a key k = RSA.generate(2048) sigscheme = scheme_constructor(k) # Make some hashes blocks = self.random_blocks(digest_size, 50) hashes = [] for b in blocks: hashes.append(hash_constructor(b)) # Perform signing t0 = time.time() for h in hashes: sigscheme.sign(h) t = time.time() speed = len(hashes) / (t - t0) self.announce_result(speed, "sigs/sec") def test_pkcs1_verify(self, scheme_name, scheme_constructor, hash_name, hash_constructor, digest_size): self.announce_start("%s verification %s (%d-byte inputs)" % (scheme_name, hash_name, digest_size)) # Make a key k = RSA.generate(2048) sigscheme = scheme_constructor(k) # Make some hashes blocks = self.random_blocks(digest_size, 50) hashes = [] for b in blocks: hashes.append(hash_constructor(b)) # Make some signatures signatures = [] for h in hashes: signatures.append(sigscheme.sign(h)) # Double the list, to make timing better hashes = hashes + hashes signatures = signatures + signatures # Perform verification t0 = time.time() for h, s in zip(hashes, signatures): sigscheme.verify(h, s) t = time.time() speed = len(hashes) / (t - t0) self.announce_result(speed, "sigs/sec") def run(self): pubkey_specs = [ ("RSA(1024)", RSA, int(1024/8)), ("RSA(2048)", RSA, int(2048/8)), ("RSA(4096)", RSA, int(4096/8)), ] block_specs = [ ("DES", DES, 8), ("DES3", DES3, 24), ("AES128", AES, 16), ("AES192", AES, 24), ("AES256", AES, 32), ("Blowfish(256)", Blowfish, 32), ("CAST(40)", CAST, 5), ("CAST(80)", CAST, 10), ("CAST(128)", CAST, 16), ] stream_specs = [ ("ARC2(128)", ARC2, 16), ("ARC4(128)", ARC4, 16), ("XOR(24)", XOR, 3), ("XOR(256)", XOR, 32), ] hash_specs = [ ("MD2", MD2), ("MD4", MD4), ("MD5", MD5), ("SHA1", SHA1), ("SHA224", SHA224), ("SHA256", SHA256), ("SHA384", SHA384), ("SHA512", SHA512), ] if RIPEMD160 is not None: hash_specs += [("RIPEMD160", RIPEMD160)] hashlib_specs = [] if hashlib is not None: if hasattr(hashlib, 'md5'): hashlib_specs.append(("hashlib.md5", hashlib.md5)) if hasattr(hashlib, 'sha1'): hashlib_specs.append(("hashlib.sha1", hashlib.sha1)) if hasattr(hashlib, 'sha224'): hashlib_specs.append(("hashlib.sha224", hashlib.sha224)) if hasattr(hashlib, 'sha256'): hashlib_specs.append(("hashlib.sha256", hashlib.sha256)) if hasattr(hashlib, 'sha384'): hashlib_specs.append(("hashlib.sha384", hashlib.sha384)) if hasattr(hashlib, 'sha512'): hashlib_specs.append(("hashlib.sha512", hashlib.sha512)) # stdlib random self.test_random_module("stdlib random", stdlib_random) # Crypto.Random.random self.test_random_module("Crypto.Random.random", pycrypto_random) # Crypto.PublicKey for pubkey_name, module, key_bytes in pubkey_specs: self.test_pubkey_setup(pubkey_name, module, key_bytes) # Crypto.Cipher (block ciphers) for cipher_name, module, key_bytes in block_specs: self.test_key_setup("%s-CBC" % (cipher_name,), module, key_bytes, module.MODE_CBC) self.test_encryption("%s-CBC" % (cipher_name,), module, key_bytes, module.MODE_CBC) self.test_encryption("%s-CFB-8" % (cipher_name,), module, key_bytes, module.MODE_CFB) self.test_encryption("%s-OFB" % (cipher_name,), module, key_bytes, module.MODE_OFB) self.test_encryption("%s-ECB" % (cipher_name,), module, key_bytes, module.MODE_ECB) self.test_key_setup("%s-CTR" % (cipher_name,), module, key_bytes, module.MODE_CTR) self.test_encryption("%s-CTR" % (cipher_name,), module, key_bytes, module.MODE_CTR) self.test_encryption("%s-OPENPGP" % (cipher_name,), module, key_bytes, module.MODE_OPENPGP) self.test_encryption("%s-CTR-BE" % (cipher_name,), module, key_bytes, "CTR-BE") self.test_encryption("%s-CTR-LE" % (cipher_name,), module, key_bytes, "CTR-LE") if hasattr(module, "MODE_CCM"): self.test_key_setup("%s-CCM" % (cipher_name,), module, key_bytes, module.MODE_CCM) self.test_encryption("%s-CCM" % (cipher_name,), module, key_bytes, module.MODE_CCM) if hasattr(module, "MODE_EAX"): self.test_key_setup("%s-EAX" % (cipher_name,), module, key_bytes, module.MODE_EAX) self.test_encryption("%s-EAX" % (cipher_name,), module, key_bytes, module.MODE_EAX) if hasattr(module, "MODE_GCM"): self.test_key_setup("%s-GCM" % (cipher_name,), module, key_bytes, module.MODE_GCM) self.test_encryption("%s-GCM" % (cipher_name,), module, key_bytes, module.MODE_GCM) # Crypto.Cipher (stream ciphers) for cipher_name, module, key_bytes in stream_specs: self.test_key_setup(cipher_name, module, key_bytes, None) self.test_encryption(cipher_name, module, key_bytes, None) # Crypto.Hash for hash_name, module in hash_specs: self.test_hash_small(hash_name, module.new, module.digest_size) self.test_hash_large(hash_name, module.new, module.digest_size) # standard hashlib for hash_name, func in hashlib_specs: self.test_hash_small(hash_name, func, func().digest_size) self.test_hash_large(hash_name, func, func().digest_size) # PyCrypto HMAC for hash_name, module in hash_specs: self.test_hmac_small("HMAC-"+hash_name, HMAC.new, module, module.digest_size) self.test_hmac_large("HMAC-"+hash_name, HMAC.new, module, module.digest_size) # standard hmac + hashlib for hash_name, func in hashlib_specs: self.test_hmac_small("hmac+"+hash_name, hmac.HMAC, func, func().digest_size) self.test_hmac_large("hmac+"+hash_name, hmac.HMAC, func, func().digest_size) # CMAC for cipher_name, module, key_size in (("AES128", AES, 16),): self.test_cmac_small(cipher_name+"-CMAC", CMAC.new, module, key_size) self.test_cmac_large(cipher_name+"-CMAC", CMAC.new, module, key_size) # PKCS1_v1_5 (sign) + Crypto.Hash for hash_name, module in hash_specs: self.test_pkcs1_sign("PKCS#1-v1.5", RSASSA_PKCS1_v1_5.new, hash_name, module.new, module.digest_size) # PKCS1_PSS (sign) + Crypto.Hash for hash_name, module in hash_specs: self.test_pkcs1_sign("PKCS#1-PSS", PKCS1_PSS.new, hash_name, module.new, module.digest_size) # PKCS1_v1_5 (verify) + Crypto.Hash for hash_name, module in hash_specs: self.test_pkcs1_verify("PKCS#1-v1.5", RSASSA_PKCS1_v1_5.new, hash_name, module.new, module.digest_size) # PKCS1_PSS (verify) + Crypto.Hash for hash_name, module in hash_specs: self.test_pkcs1_verify("PKCS#1-PSS", PKCS1_PSS.new, hash_name, module.new, module.digest_size) if __name__ == '__main__': Benchmark().run() # vim:set ts=4 sw=4 sts=4 expandtab: