summaryrefslogtreecommitdiff
path: root/lib/Crypto/PublicKey/RSA.py
blob: 92600e0061d9f2cec42ec23b4fb28135e92684a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# -*- coding: utf-8 -*-
#
#  PublicKey/RSA.py : RSA public key primitive
#
# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
#
# ===================================================================
# The contents of this file are dedicated to the public domain.  To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================

"""RSA public-key cryptography algorithm.

:sort: generate,construct,importKey,error
:undocumented: _fastmath, __revision__, _impl
"""

__revision__ = "$Id$"

__all__ = ['generate', 'construct', 'error', 'importKey' ]

from Crypto.Util.python_compat import *
from Crypto.Util.number import getRandomRange

from Crypto.PublicKey import _RSA, _slowmath, pubkey
from Crypto import Random

from Crypto.Util.asn1 import DerObject, DerSequence
import binascii

from Crypto.Util.number import inverse

try:
    from Crypto.PublicKey import _fastmath
except ImportError:
    _fastmath = None

class _RSAobj(pubkey.pubkey):
    """Class defining an actual RSA key."""

    #: Dictionary of RSA parameters.
    #:
    #: A public key will only have the following entries:
    #:
    #:  - **n**, the modulus.
    #:  - **e**, the public exponent.
    #:
    #: A private key will also have:
    #:
    #:  - **d**, the private exponent.
    #:  - **p**, the first factor of n.
    #:  - **q**, the second factor of n.
    #:  - **u**, the CRT coefficient (1/p) mod q.
    keydata = ['n', 'e', 'd', 'p', 'q', 'u']

    def __init__(self, implementation, key, randfunc=None):
        self.implementation = implementation
        self.key = key
        if randfunc is None:
            randfunc = Random.new().read
        self._randfunc = randfunc

    def __getattr__(self, attrname):
        if attrname in self.keydata:
            # For backward compatibility, allow the user to get (not set) the
            # RSA key parameters directly from this object.
            return getattr(self.key, attrname)
        else:
            raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,))

    def _encrypt(self, c, K):
        return (self.key._encrypt(c),)

    def _decrypt(self, c):
        #(ciphertext,) = c
        (ciphertext,) = c[:1]  # HACK - We should use the previous line
                               # instead, but this is more compatible and we're
                               # going to replace the Crypto.PublicKey API soon
                               # anyway.

        # Blinded RSA decryption (to prevent timing attacks):
        # Step 1: Generate random secret blinding factor r, such that 0 < r < n-1
        r = getRandomRange(1, self.key.n-1, randfunc=self._randfunc)
        # Step 2: Compute c' = c * r**e mod n
        cp = self.key._blind(ciphertext, r)
        # Step 3: Compute m' = c'**d mod n       (ordinary RSA decryption)
        mp = self.key._decrypt(cp)
        # Step 4: Compute m = m**(r-1) mod n
        return self.key._unblind(mp, r)

    def _blind(self, m, r):
        return self.key._blind(m, r)

    def _unblind(self, m, r):
        return self.key._unblind(m, r)

    def _sign(self, m, K=None):
        return (self.key._sign(m),)

    def _verify(self, m, sig):
        #(s,) = sig
        (s,) = sig[:1]  # HACK - We should use the previous line instead, but
                        # this is more compatible and we're going to replace
                        # the Crypto.PublicKey API soon anyway.
        return self.key._verify(m, s)

    def has_private(self):
        return self.key.has_private()

    def size(self):
        return self.key.size()

    def can_blind(self):
        return True

    def can_encrypt(self):
        return True

    def can_sign(self):
        return True

    def publickey(self):
        return self.implementation.construct((self.key.n, self.key.e))

    def __getstate__(self):
        d = {}
        for k in self.keydata:
            try:
                d[k] = getattr(self.key, k)
            except AttributeError:
                pass
        return d

    def __setstate__(self, d):
        if not hasattr(self, 'implementation'):
            self.implementation = RSAImplementation()
        t = []
        for k in self.keydata:
            if not d.has_key(k):
                break
            t.append(d[k])
        self.key = self.implementation._math.rsa_construct(*tuple(t))

    def __repr__(self):
        attrs = []
        for k in self.keydata:
            if k == 'n':
                attrs.append("n(%d)" % (self.size()+1,))
            elif hasattr(self.key, k):
                attrs.append(k)
        if self.has_private():
            attrs.append("private")
        return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs))

    def exportKey(self, format='PEM'):
        """Export this RSA key.

        :Parameter format: The encoding to use to wrap the key.

            - *'DER'* for PKCS#1
            - *'PEM'* for RFC1421
        :Type format: string

        :Return: A string with the encoded public or private half.
        :Raise ValueError:
            When the format is unknown.
        """
        der = DerSequence()
        if self.has_private():
                keyType = "RSA PRIVATE"
                der[:] = [ 0, self.n, self.e, self.d, self.p, self.q,
                           self.d % (self.p-1), self.d % (self.q-1),
                           inverse(self.q, self.p) ]
        else:
                keyType = "PUBLIC"
                der.append('\x30\x0D\x06\x09\x2A\x86\x48\x86\xF7\x0D\x01\x01\x01\x05\x00')
                bitmap = DerObject('BIT STRING')
                derPK = DerSequence()
                derPK[:] = [ self.n, self.e ]
                bitmap.payload = '\x00' + derPK.encode()
                der.append(bitmap.encode())
        if format=='DER':
                return der.encode()
        if format=='PEM':
                pem = "-----BEGIN %s KEY-----\n" % keyType
                binaryKey = der.encode()
                # Each BASE64 line can take up to 64 characters (=48 bytes of data)
                chunks = [ binascii.b2a_base64(binaryKey[i:i+48]) for i in range(0, len(binaryKey), 48) ]
                pem += ''.join(chunks)
                pem += "-----END %s KEY-----" % keyType
                return pem
        return ValueError("Unknown key format '%s'. Cannot export the RSA key." % format)

class RSAImplementation(object):
    """
    An RSA key factory.

    This class is only internally used to implement the methods of the `Crypto.PublicKey.RSA` modulule.

    :sort: __init__,generate,construct,importKey
    :undocumented: _g*, _i*
    """

    def __init__(self, **kwargs):
        """Create a new RSA key factory.

        :Keywords:
         use_fast_math : bool
                                Specify which mathematic library to use:

                                - *None* (default). Use fastest math available.
                                - *True* . Use fast math.
                                - *False* . Use slow math.
         default_randfunc : callable
                                Specify how to collect random data:

                                - *None* (default). Use Random.new().read().
                                - not *Note* . Use the specified function directly.
        :Raise RuntimeError:
            When **use_fast_math** =True but fast math is not available.
        """
        use_fast_math = kwargs.get('use_fast_math', None)
        if use_fast_math is None:   # Automatic
            if _fastmath is not None:
                self._math = _fastmath
            else:
                self._math = _slowmath

        elif use_fast_math:     # Explicitly select fast math
            if _fastmath is not None:
                self._math = _fastmath
            else:
                raise RuntimeError("fast math module not available")

        else:   # Explicitly select slow math
            self._math = _slowmath

        self.error = self._math.error

        self._default_randfunc = kwargs.get('default_randfunc', None)
        self._current_randfunc = None

    def _get_randfunc(self, randfunc):
        if randfunc is not None:
            return randfunc
        elif self._current_randfunc is None:
            self._current_randfunc = Random.new().read
        return self._current_randfunc

    def generate(self, bits, randfunc=None, progress_func=None, e=65537):
        """Randomly generate a fresh, new RSA key object.

        :Parameters:
         bits : int
                            Key length, or size (in bits) of the RSA modulus.

                            It must be a multiple of 256, and no smaller than 1024.
         randfunc : callable
                            Random number generation function; it should accept
                            a single integer N and return a string of random data
                            N bytes long.
         progress_func : callable
                            Optional function that will be called with a short string
                            containing the key parameter currently being generated;
                            it's useful for interactive applications where a user is
                            waiting for a key to be generated.
         e : int
                            Public RSA exponent. It must be an odd positive integer.

                            It is typically a small number with very few ones in its
                            binary representation.

                            The default value 65537 (= ``0b10000000000000001`` ) is a safe
                            choice: other common values are 5, 7, 17, and 257.

        :attention: You should always use a cryptographically secure random number generator,
            such as the one defined in the ``Crypto.Random`` module; **don't** just use the
            current time and the ``random`` module.

        :attention: Exponent 3 is also widely used, but it requires very special care when padding
            the message.

        :Raise ValueError:
            When **bits** is too little or not a multiple of 256, or when
            **e** is not odd or smaller than 2.
        """
        if bits < 1024 or (bits & 0xff) != 0:
            # pubkey.getStrongPrime doesn't like anything that's not a multiple of 128 and > 512
            raise ValueError("RSA modulus length must be a multiple of 256 and >= 1024")
        if e%2==0 or e<3:
            raise ValueError("RSA public exponent must be a positive, odd integer larger than 2.")
        rf = self._get_randfunc(randfunc)
        obj = _RSA.generate_py(bits, rf, progress_func, e)    # TODO: Don't use legacy _RSA module
        key = self._math.rsa_construct(obj.n, obj.e, obj.d, obj.p, obj.q, obj.u)
        return _RSAobj(self, key)

    def construct(self, tup):
        """Construct an RSA key object from a tuple of valid RSA components.

        The modulus **n** must be the product of two primes.
        The public exponent **e** must be odd and larger than 1.

        In case of a private key, the following equations must apply:

        - e != 1
        - p*q = n
        - e*d = 1 mod (p-1)(q-1)
        - p*u = 1 mod q

        :Parameters:
         tup : tuple
                    A tuple of long integers, with at least 2 and no
                    more than 6 items. The items come in the following order:

                    1. RSA modulus (n).
                    2. Public exponent (e).
                    3. Private exponent (d). Only required if the key is private.
                    4. First factor of n (p). Optional.
                    5. Second factor of n (q). Optional.
                    6. CRT coefficient, (1/p) mod q (u). Optional.
        """
        key = self._math.rsa_construct(*tup)
        return _RSAobj(self, key)

    def _importKeyDER(self, externKey):
        """Import an RSA key (public or private half), encoded in DER form."""
        der = DerSequence()
        der.decode(externKey, True)
        if len(der)==9 and der.hasOnlyInts() and der[0]==0:
                # ASN.1 RSAPrivateKey element
                del der[6:]     # Remove d mod (p-1), d mod (q-1), and q^{-1} mod p
                der.append(inverse(der[4],der[5])) # Add p^{-1} mod q
                del der[0]      # Remove version
                return self.construct(der[:])
        if len(der)==2:
                # The DER object is a SubjectPublicKeyInfo SEQUENCE with two elements:
                # an algorithm SEQUENCE (or algorithmIdentifier) and a subjectPublicKey BIT STRING.
                #
                # The first element is always the same. It contains the oid of
                # the RSA algorithm and its parameters (none).
                # 0x30 0x0D     SEQUENCE, 12 bytes of payload
                #   0x06 0x09   OBJECT IDENTIFIER, 9 bytes of payload
                #     0x2A 0x86 0x48 0x86 0xF7 0x0D 0x01 0x01 0x01
                #               rsaEncryption (1 2 840 113549 1 1 1) (PKCS #1)
                #   0x05 0x00   NULL
                #
                # subjectPublicKey encapsulates the actual ASN.1 RSAPublicKey element.
                if der[0]=='\x30\x0D\x06\x09\x2A\x86\x48\x86\xF7\x0D\x01\x01\x01\x05\x00':
                        bitmap = DerObject()
                        bitmap.decode(der[1], True)
                        if bitmap.typeTag=='\x03' and bitmap.payload[0]=='\x00':
                                der.decode(bitmap.payload[1:], True)
                                if len(der)==2 and der.hasOnlyInts():
                                        return self.construct(der[:])
        raise ValueError("RSA key format is not supported")

    def importKey(self, externKey):
        """Import an RSA key (public or private half), encoded in standard form.

        :Parameter externKey:
            The RSA key to import, encoded as a string.

            The key can be in DER (PKCS#1) or in unencrypted PEM format (RFC1421).
        :Type externKey: string

        :Raise ValueError/IndexError:
            When the given key cannot be parsed.
        """
        if externKey.startswith('-----'):
                # This is probably a PEM encoded key
                lines = externKey.replace(" ",'').split()
                der = binascii.a2b_base64(''.join(lines[1:-1]))
                return self._importKeyDER(der)
        if externKey[0]=='\x30':
                # This is probably a DER encoded key
                return self._importKeyDER(externKey)
        raise ValueError("RSA key format is not supported")

_impl = RSAImplementation()
#:
#: Randomly generate a fresh, new RSA key object.
#:
#: See `RSAImplementation.generate`.
#:
generate = _impl.generate
#:
#: Construct an RSA key object from a tuple of valid RSA components.
#:
#: See `RSAImplementation.construct`.
#:
construct = _impl.construct
#:
#: Import an RSA key (public or private half), encoded in standard form.
#:
#: See `RSAImplementation.importKey`.
#:
importKey = _impl.importKey
error = _impl.error

# vim:set ts=4 sw=4 sts=4 expandtab: