summaryrefslogtreecommitdiff
path: root/src/RIPEMD160.c
blob: b12773cce2c7b606a305cc2e9fc96eaddce364f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
/*
 *
 *  RIPEMD160.c : RIPEMD-160 implementation
 *
 * Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
 *
 * ===================================================================
 * The contents of this file are dedicated to the public domain.  To
 * the extent that dedication to the public domain is not available,
 * everyone is granted a worldwide, perpetual, royalty-free,
 * non-exclusive license to exercise all rights associated with the
 * contents of this file for any purpose whatsoever.
 * No rights are reserved.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 * ===================================================================
 *
 * Country of origin: Canada
 *
 * This implementation (written in C) is based on an implementation the author
 * wrote in Python.
 *
 * This implementation was written with reference to the RIPEMD-160
 * specification, which is available at:
 * http://homes.esat.kuleuven.be/~cosicart/pdf/AB-9601/
 *
 * It is also documented in the _Handbook of Applied Cryptography_, as
 * Algorithm 9.55.  It's on page 30 of the following PDF file:
 * http://www.cacr.math.uwaterloo.ca/hac/about/chap9.pdf
 *
 * The RIPEMD-160 specification doesn't really tell us how to do padding, but
 * since RIPEMD-160 is inspired by MD4, you can use the padding algorithm from
 * RFC 1320.
 *
 * According to http://www.users.zetnet.co.uk/hopwood/crypto/scan/md.html:
 *   "RIPEMD-160 is big-bit-endian, little-byte-endian, and left-justified."
 */

#include "Python.h"
#include "config.h"
#if HAVE_STDINT_H
# include <stdint.h>
#elif HAVE_INTTYPES_H
# include <inttypes.h>
#elif HAVE_SYS_INTTYPES_H
# include <sys/inttypes.h>
#else
# error "stdint.h and inttypes.h not found"
#endif

#include <assert.h>
#include <string.h>
#include "pycrypto_compat.h"

#define RIPEMD160_DIGEST_SIZE 20
#define BLOCK_SIZE 64

static char MODULE__doc__[] =
    "RIPEMD-160 cryptographic hash algorithm.\n"
    "\n"
    "RIPEMD-160_ produces the 160 bit digest of a message.\n"
    "\n"
    "    >>> from Crypto.Hash import RIPEMD160\n"
    "    >>>\n"
    "    >>> h = RIPEMD160.new()\n"
    "    >>> h.update(b'Hello')\n"
    "    >>> print h.hexdigest()\n"
    "\n"
    "RIPEMD-160 stands for RACE Integrity Primitives Evaluation Message Digest\n"
    "with a 160 bit digest. It was invented by Dobbertin, Bosselaers, and Preneel.\n"
    "\n"
    "This algorithm is considered secure, although it has not been scrutinized as\n"
    "extensively as SHA-1. Moreover, it provides an informal security level of just\n"
    "80bits.\n"
    "\n"
    ".. _RIPEMD-160: http://homes.esat.kuleuven.be/~bosselae/ripemd160.html\n";

#define RIPEMD160_MAGIC 0x9f19dd68u
typedef struct {
    uint32_t magic;
    uint32_t h[5];      /* The current hash state */
    uint64_t length;    /* Total number of _bits_ (not bytes) added to the
                           hash.  This includes bits that have been buffered
                           but not not fed through the compression function yet. */
    union {
        uint32_t w[16];
        uint8_t b[64];
    } buf;
    uint8_t bufpos;     /* number of bytes currently in the buffer */
} ripemd160_state;


/* cyclic left-shift the 32-bit word n left by s bits */
#define ROL(s, n) (((n) << (s)) | ((n) >> (32-(s))))

/* Initial values for the chaining variables.
 * This is just 0123456789ABCDEFFEDCBA9876543210F0E1D2C3 in little-endian. */
static const uint32_t initial_h[5] = { 0x67452301u, 0xEFCDAB89u, 0x98BADCFEu, 0x10325476u, 0xC3D2E1F0u };

/* Ordering of message words.  Based on the permutations rho(i) and pi(i), defined as follows:
 *
 *  rho(i) := { 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8 }[i]  0 <= i <= 15
 *
 *  pi(i) := 9*i + 5 (mod 16)
 *
 *  Line  |  Round 1  |  Round 2  |  Round 3  |  Round 4  |  Round 5
 * -------+-----------+-----------+-----------+-----------+-----------
 *  left  |    id     |    rho    |   rho^2   |   rho^3   |   rho^4
 *  right |    pi     |   rho pi  |  rho^2 pi |  rho^3 pi |  rho^4 pi
 */

/* Left line */
static const uint8_t RL[5][16] = {
    { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },   /* Round 1: id */
    { 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8 },   /* Round 2: rho */
    { 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12 },   /* Round 3: rho^2 */
    { 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2 },   /* Round 4: rho^3 */
    { 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13 }    /* Round 5: rho^4 */
};

/* Right line */
static const uint8_t RR[5][16] = {
    { 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12 },   /* Round 1: pi */
    { 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2 },   /* Round 2: rho pi */
    { 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13 },   /* Round 3: rho^2 pi */
    { 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14 },   /* Round 4: rho^3 pi */
    { 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11 }    /* Round 5: rho^4 pi */
};

/*
 * Shifts - Since we don't actually re-order the message words according to
 * the permutations above (we could, but it would be slower), these tables
 * come with the permutations pre-applied.
 */

/* Shifts, left line */
static const uint8_t SL[5][16] = {
    { 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8 }, /* Round 1 */
    { 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12 }, /* Round 2 */
    { 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5 }, /* Round 3 */
    { 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12 }, /* Round 4 */
    { 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6 }  /* Round 5 */
};

/* Shifts, right line */
static const uint8_t SR[5][16] = {
    { 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6 }, /* Round 1 */
    { 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11 }, /* Round 2 */
    { 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5 }, /* Round 3 */
    { 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8 }, /* Round 4 */
    { 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 }  /* Round 5 */
};

/* Boolean functions */

#define F1(x, y, z) ((x) ^ (y) ^ (z))
#define F2(x, y, z) (((x) & (y)) | (~(x) & (z)))
#define F3(x, y, z) (((x) | ~(y)) ^ (z))
#define F4(x, y, z) (((x) & (z)) | ((y) & ~(z)))
#define F5(x, y, z) ((x) ^ ((y) | ~(z)))

/* Round constants, left line */
static const uint32_t KL[5] = {
    0x00000000u,    /* Round 1: 0 */
    0x5A827999u,    /* Round 2: floor(2**30 * sqrt(2)) */
    0x6ED9EBA1u,    /* Round 3: floor(2**30 * sqrt(3)) */
    0x8F1BBCDCu,    /* Round 4: floor(2**30 * sqrt(5)) */
    0xA953FD4Eu     /* Round 5: floor(2**30 * sqrt(7)) */
};

/* Round constants, right line */
static const uint32_t KR[5] = {
    0x50A28BE6u,    /* Round 1: floor(2**30 * cubert(2)) */
    0x5C4DD124u,    /* Round 2: floor(2**30 * cubert(3)) */
    0x6D703EF3u,    /* Round 3: floor(2**30 * cubert(5)) */
    0x7A6D76E9u,    /* Round 4: floor(2**30 * cubert(7)) */
    0x00000000u     /* Round 5: 0 */
};

static void ripemd160_init(ripemd160_state *self)
{

    memcpy(self->h, initial_h, RIPEMD160_DIGEST_SIZE);
    memset(&self->buf, 0, sizeof(self->buf));
    self->length = 0;
    self->bufpos = 0;
    self->magic = RIPEMD160_MAGIC;
}

/* NB: This is not currently called in the hash object's destructor. */
static void ripemd160_wipe(ripemd160_state *self)
{
    memset(self, 0, sizeof(ripemd160_state));
    self->magic = 0;
}

static inline void byteswap32(uint32_t *v)
{
    union { uint32_t w; uint8_t b[4]; } x, y;

    x.w = *v;
    y.b[0] = x.b[3];
    y.b[1] = x.b[2];
    y.b[2] = x.b[1];
    y.b[3] = x.b[0];
    *v = y.w;

    /* Wipe temporary variables */
    x.w = y.w = 0;
}

static inline void byteswap_digest(uint32_t *p)
{
    unsigned int i;

    for (i = 0; i < 4; i++) {
        byteswap32(p++);
        byteswap32(p++);
        byteswap32(p++);
        byteswap32(p++);
    }
}

/* The RIPEMD160 compression function.  Operates on self->buf */
static void ripemd160_compress(ripemd160_state *self)
{
    uint8_t w, round;
    uint32_t T;
    uint32_t AL, BL, CL, DL, EL;    /* left line */
    uint32_t AR, BR, CR, DR, ER;    /* right line */

    /* Sanity check */
    assert(self->magic == RIPEMD160_MAGIC);
    assert(self->bufpos == 64);
    if (self->magic != RIPEMD160_MAGIC || self->bufpos != 64) {
        ripemd160_wipe(self);
        return; /* error */
    }

    /* Byte-swap the buffer if we're on a big-endian machine */
#ifdef PCT_BIG_ENDIAN
    byteswap_digest(self->buf.w);
#endif

    /* Load the left and right lines with the initial state */
    AL = AR = self->h[0];
    BL = BR = self->h[1];
    CL = CR = self->h[2];
    DL = DR = self->h[3];
    EL = ER = self->h[4];

    /* Round 1 */
    round = 0;
    for (w = 0; w < 16; w++) { /* left line */
        T = ROL(SL[round][w], AL + F1(BL, CL, DL) + self->buf.w[RL[round][w]] + KL[round]) + EL;
        AL = EL; EL = DL; DL = ROL(10, CL); CL = BL; BL = T;
    }
    for (w = 0; w < 16; w++) { /* right line */
        T = ROL(SR[round][w], AR + F5(BR, CR, DR) + self->buf.w[RR[round][w]] + KR[round]) + ER;
        AR = ER; ER = DR; DR = ROL(10, CR); CR = BR; BR = T;
    }

    /* Round 2 */
    round++;
    for (w = 0; w < 16; w++) { /* left line */
        T = ROL(SL[round][w], AL + F2(BL, CL, DL) + self->buf.w[RL[round][w]] + KL[round]) + EL;
        AL = EL; EL = DL; DL = ROL(10, CL); CL = BL; BL = T;
    }
    for (w = 0; w < 16; w++) { /* right line */
        T = ROL(SR[round][w], AR + F4(BR, CR, DR) + self->buf.w[RR[round][w]] + KR[round]) + ER;
        AR = ER; ER = DR; DR = ROL(10, CR); CR = BR; BR = T;
    }

    /* Round 3 */
    round++;
    for (w = 0; w < 16; w++) { /* left line */
        T = ROL(SL[round][w], AL + F3(BL, CL, DL) + self->buf.w[RL[round][w]] + KL[round]) + EL;
        AL = EL; EL = DL; DL = ROL(10, CL); CL = BL; BL = T;
    }
    for (w = 0; w < 16; w++) { /* right line */
        T = ROL(SR[round][w], AR + F3(BR, CR, DR) + self->buf.w[RR[round][w]] + KR[round]) + ER;
        AR = ER; ER = DR; DR = ROL(10, CR); CR = BR; BR = T;
    }

    /* Round 4 */
    round++;
    for (w = 0; w < 16; w++) { /* left line */
        T = ROL(SL[round][w], AL + F4(BL, CL, DL) + self->buf.w[RL[round][w]] + KL[round]) + EL;
        AL = EL; EL = DL; DL = ROL(10, CL); CL = BL; BL = T;
    }
    for (w = 0; w < 16; w++) { /* right line */
        T = ROL(SR[round][w], AR + F2(BR, CR, DR) + self->buf.w[RR[round][w]] + KR[round]) + ER;
        AR = ER; ER = DR; DR = ROL(10, CR); CR = BR; BR = T;
    }

    /* Round 5 */
    round++;
    for (w = 0; w < 16; w++) { /* left line */
        T = ROL(SL[round][w], AL + F5(BL, CL, DL) + self->buf.w[RL[round][w]] + KL[round]) + EL;
        AL = EL; EL = DL; DL = ROL(10, CL); CL = BL; BL = T;
    }
    for (w = 0; w < 16; w++) { /* right line */
        T = ROL(SR[round][w], AR + F1(BR, CR, DR) + self->buf.w[RR[round][w]] + KR[round]) + ER;
        AR = ER; ER = DR; DR = ROL(10, CR); CR = BR; BR = T;
    }

    /* Final mixing stage */
    T = self->h[1] + CL + DR;
    self->h[1] = self->h[2] + DL + ER;
    self->h[2] = self->h[3] + EL + AR;
    self->h[3] = self->h[4] + AL + BR;
    self->h[4] = self->h[0] + BL + CR;
    self->h[0] = T;

    /* Clear the buffer and wipe the temporary variables */
    T = AL = BL = CL = DL = EL = AR = BR = CR = DR = ER = 0;
    memset(&self->buf, 0, sizeof(self->buf));
    self->bufpos = 0;
}

static void ripemd160_update(ripemd160_state *self, const unsigned char *p, int length)
{
    unsigned int bytes_needed;

    /* Some assertions */
    assert(self->magic == RIPEMD160_MAGIC);
    assert(p != NULL && length >= 0);

    /* NDEBUG is probably defined, so check for invalid inputs explicitly. */
    if (self->magic != RIPEMD160_MAGIC || p == NULL || length < 0) {
        /* error */
        ripemd160_wipe(self);
        return;
    }

    /* We never leave a full buffer */
    assert(self->bufpos < 64);

    while (length > 0) {
        /* Figure out how many bytes we need to fill the internal buffer. */
        bytes_needed = 64 - self->bufpos;

        if ((unsigned int) length >= bytes_needed) {
            /* We have enough bytes, so copy them into the internal buffer and run
             * the compression function. */
            memcpy(&self->buf.b[self->bufpos], p, bytes_needed);
            self->bufpos += bytes_needed;
            self->length += bytes_needed << 3;    /* length is in bits */
            p += bytes_needed;
            ripemd160_compress(self);
            length -= bytes_needed;
            continue;
        }

        /* We do not have enough bytes to fill the internal buffer.
         * Copy what's there and return. */
        memcpy(&self->buf.b[self->bufpos], p, length);
        self->bufpos += length;
        self->length += length << 3;    /* length is in bits */
        return;
    }
}

static void ripemd160_copy(const ripemd160_state *source, ripemd160_state *dest)
{
    memcpy(dest, source, sizeof(ripemd160_state));
}

static int ripemd160_digest(const ripemd160_state *self, unsigned char *out)
{
    ripemd160_state tmp;

    assert(self->magic == RIPEMD160_MAGIC);
    assert(out != NULL);
    if (self->magic != RIPEMD160_MAGIC || out == NULL) {
        return 0;
    }

    ripemd160_copy(self, &tmp);

    /* Append the padding */
    tmp.buf.b[tmp.bufpos++] = 0x80;

    if (tmp.bufpos > 56) {
        tmp.bufpos = 64;
        ripemd160_compress(&tmp);
    }

    /* Append the length */
    tmp.buf.w[14] = (uint32_t) (tmp.length & 0xFFFFffffu);
    tmp.buf.w[15] = (uint32_t) ((tmp.length >> 32) & 0xFFFFffffu);
#ifdef PCT_BIG_ENDIAN
    byteswap32(&tmp.buf.w[14]);
    byteswap32(&tmp.buf.w[15]);
#endif
    tmp.bufpos = 64;
    ripemd160_compress(&tmp);

    /* Copy the final state into the output buffer */
#ifdef PCT_BIG_ENDIAN
    byteswap_digest(tmp.h);
#endif
    memcpy(out, &tmp.h, RIPEMD160_DIGEST_SIZE);

    if (tmp.magic == RIPEMD160_MAGIC) {
        /* success */
        ripemd160_wipe(&tmp);
        return 1;
    } else {
        /* error */
        ripemd160_wipe(&tmp);
        memset(out, 0, RIPEMD160_DIGEST_SIZE);
        return 0;
    }
}

/* Template definitions */
#define MODULE_NAME RIPEMD160
#define DIGEST_SIZE RIPEMD160_DIGEST_SIZE
#define hash_state ripemd160_state
#define hash_init ripemd160_init
#define hash_update ripemd160_update
#define hash_copy ripemd160_copy
static PyObject *hash_digest(hash_state *self)
{
    char buf[DIGEST_SIZE];
    PyObject *retval;

    if (ripemd160_digest(self, (unsigned char *) buf)) {
        retval = PyBytes_FromStringAndSize(buf, DIGEST_SIZE);
    } else {
        PyErr_SetString(PyExc_RuntimeError, "Internal error occurred while executing ripemd160_digest");
        retval = NULL;
    }

    memset(buf, 0, DIGEST_SIZE);
    return retval;
}

#include "hash_template.c"

/* vim:set ts=4 sw=4 sts=4 expandtab: */