1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
/*
* An generic implementation of the SHA-2 hash family, this is endian neutral
* so should work just about anywhere.
*
* This code works much like the MD5 code provided by RSA. You sha_init()
* a "sha_state" then sha_process() the bytes you want and sha_done() to get
* the output.
*
* Originally written by Tom St Denis -- http://tomstdenis.home.dhs.org
* Adapted for PyCrypto by Jeethu Rao, Taylor Boon, and others.
* Turned into a generic template by Lorenz Quack <don@amberfisharts.com>
*
* ===================================================================
* The contents of this file are dedicated to the public domain. To
* the extent that dedication to the public domain is not available,
* everyone is granted a worldwide, perpetual, royalty-free,
* non-exclusive license to exercise all rights associated with the
* contents of this file for any purpose whatsoever.
* No rights are reserved.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
* ===================================================================
*
*/
#include "pycrypto_common.h"
/* compress one block */
static void sha_compress(hash_state * hs)
{
sha2_word_t S[8], W[SCHEDULE_SIZE], T1, T2;
int i;
/* copy state into S */
for (i = 0; i < 8; i++)
S[i] = hs->state[i];
/* copy the state into W[0..15] */
for (i = 0; i < 16; i++){
W[i] = (
(((sha2_word_t) hs->buf[(WORD_SIZE*i)+0]) << (WORD_SIZE_BITS- 8)) |
(((sha2_word_t) hs->buf[(WORD_SIZE*i)+1]) << (WORD_SIZE_BITS-16)) |
(((sha2_word_t) hs->buf[(WORD_SIZE*i)+2]) << (WORD_SIZE_BITS-24)) |
(((sha2_word_t) hs->buf[(WORD_SIZE*i)+3]) << (WORD_SIZE_BITS-32))
#if (WORD_SIZE_BITS == 64)
|
(((sha2_word_t) hs->buf[(WORD_SIZE*i)+4]) << (WORD_SIZE_BITS-40)) |
(((sha2_word_t) hs->buf[(WORD_SIZE*i)+5]) << (WORD_SIZE_BITS-48)) |
(((sha2_word_t) hs->buf[(WORD_SIZE*i)+6]) << (WORD_SIZE_BITS-56)) |
(((sha2_word_t) hs->buf[(WORD_SIZE*i)+7]))
#endif
);
}
/* fill W[16..SCHEDULE_SIZE] */
for (i = 16; i < SCHEDULE_SIZE; i++)
W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
/* Compress */
for (i = 0; i < SCHEDULE_SIZE; i++) {
T1 = S[7] + Sigma1(S[4]) + Ch(S[4], S[5], S[6]) + K[i] + W[i];
T2 = Sigma0(S[0]) + Maj(S[0], S[1], S[2]);
S[7] = S[6];
S[6] = S[5];
S[5] = S[4];
S[4] = S[3] + T1;
S[3] = S[2];
S[2] = S[1];
S[1] = S[0];
S[0] = T1 + T2;
}
/* feedback */
for (i = 0; i < 8; i++)
hs->state[i] += S[i];
}
/* adds *inc* to the length of the hash_state *hs*
* return 1 on success
* return 0 if the length overflows
*/
static int add_length(hash_state *hs, sha2_word_t inc) {
sha2_word_t overflow_detector;
overflow_detector = hs->length_lower;
hs->length_lower += inc;
if (overflow_detector > hs->length_lower) {
overflow_detector = hs->length_upper;
hs->length_upper++;
if (hs->length_upper > hs->length_upper)
return 0;
}
return 1;
}
/* init the SHA state */
static void sha_init(hash_state * hs)
{
int i;
hs->curlen = hs->length_upper = hs->length_lower = 0;
for (i = 0; i < 8; ++i)
hs->state[i] = H[i];
}
static void sha_process(hash_state * hs, unsigned char *buf, int len)
{
while (len--) {
/* copy byte */
hs->buf[hs->curlen++] = *buf++;
/* is a block full? */
if (hs->curlen == BLOCK_SIZE) {
sha_compress(hs);
add_length(hs, BLOCK_SIZE_BITS);
hs->curlen = 0;
}
}
}
static void sha_done(hash_state * hs, unsigned char *hash)
{
int i;
/* increase the length of the message */
add_length(hs, hs->curlen * 8);
/* append the '1' bit */
hs->buf[hs->curlen++] = 0x80;
/* if the length is currently above LAST_BLOCK_SIZE bytes we append
* zeros then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (hs->curlen > LAST_BLOCK_SIZE) {
for (; hs->curlen < BLOCK_SIZE;)
hs->buf[hs->curlen++] = 0;
sha_compress(hs);
hs->curlen = 0;
}
/* pad upto LAST_BLOCK_SIZE bytes of zeroes */
for (; hs->curlen < LAST_BLOCK_SIZE;)
hs->buf[hs->curlen++] = 0;
/* append length */
for (i = 0; i < WORD_SIZE; i++)
hs->buf[i + LAST_BLOCK_SIZE] =
(hs->length_upper >> ((WORD_SIZE - 1 - i) * 8)) & 0xFF;
for (i = 0; i < WORD_SIZE; i++)
hs->buf[i + LAST_BLOCK_SIZE + WORD_SIZE] =
(hs->length_lower >> ((WORD_SIZE - 1 - i) * 8)) & 0xFF;
sha_compress(hs);
/* copy output */
for (i = 0; i < DIGEST_SIZE; i++)
hash[i] = (hs->state[i / WORD_SIZE] >>
((WORD_SIZE - 1 - (i % WORD_SIZE)) * 8)) & 0xFF;
}
// Done
static void hash_init (hash_state *ptr)
{
sha_init(ptr);
}
// Done
static void
hash_update (hash_state *self, const U8 *buf, int len)
{
sha_process(self,(unsigned char *)buf, len);
}
// Done
static void
hash_copy(hash_state *src, hash_state *dest)
{
memcpy(dest,src,sizeof(hash_state));
}
// Done
static PyObject *
hash_digest (const hash_state *self)
{
unsigned char digest[DIGEST_SIZE];
hash_state temp;
hash_copy((hash_state*)self,&temp);
sha_done(&temp,digest);
return PyBytes_FromStringAndSize((char *)digest, DIGEST_SIZE);
}
#include "hash_template.c"
|