diff options
author | Jeffrey B. Arnold <jeffrey.arnold@gmail.com> | 2012-08-19 17:44:24 -0400 |
---|---|---|
committer | Jeffrey B. Arnold <jeffrey.arnold@gmail.com> | 2012-08-19 17:44:24 -0400 |
commit | ba903b2335e334b19b6bda69fd730f0c2beb5b0a (patch) | |
tree | b43a020ad421d159039d12ab0d40f5eef07f2de5 /tests/examplefiles/example.bug | |
parent | 66e5f39fd2817633090df4320ceaeb18da1efd55 (diff) | |
download | pygments-ba903b2335e334b19b6bda69fd730f0c2beb5b0a.tar.gz |
BugsLexer, JagsLexer, StanLexer: fixed filenames, added analyse_text functions
Diffstat (limited to 'tests/examplefiles/example.bug')
-rw-r--r-- | tests/examplefiles/example.bug | 55 |
1 files changed, 55 insertions, 0 deletions
diff --git a/tests/examplefiles/example.bug b/tests/examplefiles/example.bug new file mode 100644 index 00000000..b5b2fe7f --- /dev/null +++ b/tests/examplefiles/example.bug @@ -0,0 +1,55 @@ +# Alligators: multinomial - logistic regression +# http://www.openbugs.info/Examples/Aligators.html +model { + + # PRIORS + alpha[1] <- 0; # zero contrast for baseline food + for (k in 2 : K) { + alpha[k] ~ dnorm(0, 0.00001) # vague priors + } + # Loop around lakes: + for (k in 1 : K){ + beta[1, k] <- 0 + } # corner-point contrast with first lake + for (i in 2 : I) { + beta[i, 1] <- 0 ; # zero contrast for baseline food + for (k in 2 : K){ + beta[i, k] ~ dnorm(0, 0.00001) # vague priors + } + } + # Loop around sizes: + for (k in 1 : K){ + gamma[1, k] <- 0 # corner-point contrast with first size + } + for (j in 2 : J) { + gamma[j, 1] <- 0 ; # zero contrast for baseline food + for ( k in 2 : K){ + gamma[j, k] ~ dnorm(0, 0.00001) # vague priors + } + } + + # LIKELIHOOD + for (i in 1 : I) { # loop around lakes + for (j in 1 : J) { # loop around sizes + + # Fit standard Poisson regressions relative to baseline + lambda[i, j] ~ dflat() # vague priors + for (k in 1 : K) { # loop around foods + X[i, j, k] ~ dpois(mu[i, j, k]) + log(mu[i, j, k]) <- lambda[i, j] + alpha[k] + beta[i, k] + gamma[j, k] + culmative.X[i, j, k] <- culmative(X[i, j, k], X[i, j, k]) + } + } + } + + # TRANSFORM OUTPUT TO ENABLE COMPARISON + # WITH AGRESTI'S RESULTS + for (k in 1 : K) { # loop around foods + for (i in 1 : I) { # loop around lakes + b[i, k] <- beta[i, k] - mean(beta[, k]); # sum to zero constraint + } + for (j in 1 : J) { # loop around sizes + g[j, k] <- gamma[j, k] - mean(gamma[, k]); # sum to zero constraint + } + } +} |