summaryrefslogtreecommitdiff
path: root/tests/examplefiles/example.bug
diff options
context:
space:
mode:
authorJeffrey B. Arnold <jeffrey.arnold@gmail.com>2012-08-19 17:44:24 -0400
committerJeffrey B. Arnold <jeffrey.arnold@gmail.com>2012-08-19 17:44:24 -0400
commitba903b2335e334b19b6bda69fd730f0c2beb5b0a (patch)
treeb43a020ad421d159039d12ab0d40f5eef07f2de5 /tests/examplefiles/example.bug
parent66e5f39fd2817633090df4320ceaeb18da1efd55 (diff)
downloadpygments-ba903b2335e334b19b6bda69fd730f0c2beb5b0a.tar.gz
BugsLexer, JagsLexer, StanLexer: fixed filenames, added analyse_text functions
Diffstat (limited to 'tests/examplefiles/example.bug')
-rw-r--r--tests/examplefiles/example.bug55
1 files changed, 55 insertions, 0 deletions
diff --git a/tests/examplefiles/example.bug b/tests/examplefiles/example.bug
new file mode 100644
index 00000000..b5b2fe7f
--- /dev/null
+++ b/tests/examplefiles/example.bug
@@ -0,0 +1,55 @@
+# Alligators: multinomial - logistic regression
+# http://www.openbugs.info/Examples/Aligators.html
+model {
+
+ # PRIORS
+ alpha[1] <- 0; # zero contrast for baseline food
+ for (k in 2 : K) {
+ alpha[k] ~ dnorm(0, 0.00001) # vague priors
+ }
+ # Loop around lakes:
+ for (k in 1 : K){
+ beta[1, k] <- 0
+ } # corner-point contrast with first lake
+ for (i in 2 : I) {
+ beta[i, 1] <- 0 ; # zero contrast for baseline food
+ for (k in 2 : K){
+ beta[i, k] ~ dnorm(0, 0.00001) # vague priors
+ }
+ }
+ # Loop around sizes:
+ for (k in 1 : K){
+ gamma[1, k] <- 0 # corner-point contrast with first size
+ }
+ for (j in 2 : J) {
+ gamma[j, 1] <- 0 ; # zero contrast for baseline food
+ for ( k in 2 : K){
+ gamma[j, k] ~ dnorm(0, 0.00001) # vague priors
+ }
+ }
+
+ # LIKELIHOOD
+ for (i in 1 : I) { # loop around lakes
+ for (j in 1 : J) { # loop around sizes
+
+ # Fit standard Poisson regressions relative to baseline
+ lambda[i, j] ~ dflat() # vague priors
+ for (k in 1 : K) { # loop around foods
+ X[i, j, k] ~ dpois(mu[i, j, k])
+ log(mu[i, j, k]) <- lambda[i, j] + alpha[k] + beta[i, k] + gamma[j, k]
+ culmative.X[i, j, k] <- culmative(X[i, j, k], X[i, j, k])
+ }
+ }
+ }
+
+ # TRANSFORM OUTPUT TO ENABLE COMPARISON
+ # WITH AGRESTI'S RESULTS
+ for (k in 1 : K) { # loop around foods
+ for (i in 1 : I) { # loop around lakes
+ b[i, k] <- beta[i, k] - mean(beta[, k]); # sum to zero constraint
+ }
+ for (j in 1 : J) { # loop around sizes
+ g[j, k] <- gamma[j, k] - mean(gamma[, k]); # sum to zero constraint
+ }
+ }
+}