#include #include #include #include "codegen.h" #include "symboltable.h" #include "stringbuffer.h" extern void yyerror(char* msg); static stringBuffer* staticVariableBuffer; static stringBuffer* classInitBuffer; static stringBuffer* currentMethodBuffer; static stringBuffer* finishedMethodsBuffer; static stringBuffer* mainBuffer; static int currentMethodBufferIndex; static int currentMethodStackSize; static int currentMethodStackSizeMax; static int currentMethodNumberOfLocals; static int classInitBufferIndex; static int classInitStackSize; static int classInitStackSizeMax; static int labelCounter = 0; static int global = 1; char tempString[MAX_LENGTH_OF_COMMAND]; extern char* className; /* from minako-syntax.y */ /* forward declarations */ static void increaseStackby(int stackdiff); char convertType(int type); void codegenInit() { staticVariableBuffer = newStringBuffer(); classInitBuffer = newStringBuffer(); currentMethodBuffer = 0; finishedMethodsBuffer = newStringBuffer(); mainBuffer = newStringBuffer(); stringBufferAppend(mainBuffer, "; ------- Header --------------------------------------------"); sprintf(tempString, ".class public synchronized %s", className); stringBufferAppend(mainBuffer, tempString); stringBufferAppend(mainBuffer, ".super java/lang/Object"); stringBufferAppend(mainBuffer, "; -----------------------------------------------------------"); stringBufferAppend(mainBuffer, ""); stringBufferAppend(finishedMethodsBuffer, "; ------- Constructor ---------------------------------------"); stringBufferAppend(finishedMethodsBuffer, ".method public ()V"); stringBufferAppend(finishedMethodsBuffer, "\t.limit stack 1"); stringBufferAppend(finishedMethodsBuffer, "\t.limit locals 1"); stringBufferAppend(finishedMethodsBuffer, "\taload_0"); stringBufferAppend(finishedMethodsBuffer, "\tinvokenonvirtual java/lang/Object/()V"); stringBufferAppend(finishedMethodsBuffer, "\treturn"); stringBufferAppend(finishedMethodsBuffer, ".end method"); stringBufferAppend(finishedMethodsBuffer, "; -----------------------------------------------------------"); stringBufferAppend(finishedMethodsBuffer, ""); stringBufferAppend(staticVariableBuffer, "; ------- Class Variables -----------------------------------"); stringBufferAppend(classInitBuffer, "; ------- Class Initializer ---------------------------------"); stringBufferAppend(classInitBuffer, ".method static ()V"); classInitBufferIndex = classInitBuffer->numberOfNextElement; stringBufferAppend(classInitBuffer, "\t.limit locals 0"); } void codegenAppendCommand(char* cmd, int stackdiff) { char tempString[MAX_LENGTH_OF_COMMAND]; sprintf(tempString, "\t%s", cmd); if (global) stringBufferAppend(classInitBuffer, tempString); else stringBufferAppend(currentMethodBuffer, tempString); increaseStackby(stackdiff); } void codegenInsertCommand(int address, char* cmd, int stackdiff) { char tempString[MAX_LENGTH_OF_COMMAND]; sprintf(tempString, "\t%s", cmd); if (global) stringBufferInsert(classInitBuffer, address, tempString); else stringBufferInsert(currentMethodBuffer, address, tempString); increaseStackby(stackdiff); } void codegenAppendLabel(int label) { char tempString[MAX_LENGTH_OF_COMMAND]; sprintf(tempString, "Label%d:", label); if (global) stringBufferAppend(classInitBuffer, tempString); else stringBufferAppend(currentMethodBuffer, tempString); } void codegenAddVariable(char* name, int type) { /*fprintf(stderr, "add variable %s(%d) global=%d ", name, convertType(type), global);*/ if (global) { if (type == TYPE_INT) sprintf(tempString, ".field static %s %c", name, 'I'); else if (type == TYPE_FLOAT) sprintf(tempString, ".field static %s %c", name, 'F'); else if (type == TYPE_BOOLEAN) sprintf(tempString, ".field static %s %c", name, 'Z'); else yyerror("compiler-intern error in codegenAddGlobalVariable().\n"); stringBufferAppend(staticVariableBuffer, tempString); } else { currentMethodNumberOfLocals++; } } int codegenGetNextLabel() { return labelCounter++; } int codegenGetCurrentAddress() { if (global) return classInitBuffer->numberOfNextElement; else return currentMethodBuffer->numberOfNextElement; } void codegenEnterFunction(symtabEntry* entry) { currentMethodBuffer = newStringBuffer(); currentMethodStackSize = 0; currentMethodStackSizeMax = 0; labelCounter = 1; global = 0; if (strcmp(entry->name, "main") == 0) { if (entry->idtype != TYPE_VOID) yyerror("main has to be void.\n"); currentMethodNumberOfLocals = 1; symtabInsert(strdup("#main-param#"), TYPE_VOID, CLASS_FUNC); stringBufferAppend(currentMethodBuffer, "; ------- Methode ---- void main() --------------------------"); stringBufferAppend(currentMethodBuffer, ".method public static main([Ljava/lang/String;)V"); } else { int i; currentMethodNumberOfLocals = entry->paramIndex; stringBufferAppend(currentMethodBuffer, "; ------- Methode -------------------------------------------"); sprintf(tempString, ".method public static %s(", entry->name); for (i=entry->paramIndex-1; i>=0; i--) { int type = entry->params[i]->idtype; tempString[strlen(tempString)+1] = 0; tempString[strlen(tempString)] = convertType(type); } tempString[strlen(tempString)+2] = 0; tempString[strlen(tempString)+1] = convertType(entry->idtype); tempString[strlen(tempString)] = ')'; stringBufferAppend(currentMethodBuffer, tempString); } currentMethodBufferIndex = currentMethodBuffer->numberOfNextElement; } void codegenLeaveFunction() { global = 1; sprintf(tempString, "\t.limit locals %d", currentMethodNumberOfLocals); stringBufferInsert(currentMethodBuffer, currentMethodBufferIndex, tempString); sprintf(tempString, "\t.limit stack %d", currentMethodStackSizeMax); stringBufferInsert(currentMethodBuffer, currentMethodBufferIndex, tempString); stringBufferAppend(currentMethodBuffer, "\treturn"); stringBufferAppend(currentMethodBuffer, ".end method"); stringBufferAppend(currentMethodBuffer, "; -----------------------------------------------------------"); stringBufferAppend(currentMethodBuffer, ""); stringBufferConcatenate(finishedMethodsBuffer, currentMethodBuffer); } void codegenFinishCode() { stringBufferAppend(staticVariableBuffer, "; -----------------------------------------------------------"); stringBufferAppend(staticVariableBuffer, ""); sprintf(tempString, "\t.limit stack %d", classInitStackSizeMax); stringBufferInsert(classInitBuffer, classInitBufferIndex, tempString); stringBufferAppend(classInitBuffer, "\treturn"); stringBufferAppend(classInitBuffer, ".end method"); stringBufferAppend(classInitBuffer, "; -----------------------------------------------------------"); stringBufferConcatenate(mainBuffer, staticVariableBuffer); stringBufferConcatenate(mainBuffer, finishedMethodsBuffer); stringBufferConcatenate(mainBuffer, classInitBuffer); stringBufferPrint(mainBuffer); } static void increaseStackby(int stackdiff) { if (global) { classInitStackSize += stackdiff; if (classInitStackSize > classInitStackSizeMax) classInitStackSizeMax = classInitStackSize; } else { currentMethodStackSize += stackdiff; if (currentMethodStackSize > currentMethodStackSizeMax) currentMethodStackSizeMax = currentMethodStackSize; } } char convertType(int type) { switch(type) { case TYPE_VOID: return 'V'; case TYPE_INT: return 'I'; case TYPE_FLOAT: return 'F'; case TYPE_BOOLEAN: return 'Z'; default: yyerror("compiler-intern error in convertType().\n"); } return 0; /* to avoid compiler-warning */ } //#include //#include int main() { int a = 12, b = 44; while (a != b) { if (a > b) a -= b; else b -= a; } printf("%d\n%d", a, 0X0);\ } /********************************************************************** array.c - $Author: murphy $ $Date: 2005-11-05 04:33:55 +0100 (Sa, 05 Nov 2005) $ created at: Fri Aug 6 09:46:12 JST 1993 Copyright (C) 1993-2003 Yukihiro Matsumoto Copyright (C) 2000 Network Applied Communication Laboratory, Inc. Copyright (C) 2000 Information-technology Promotion Agency, Japan **********************************************************************/ #include "ruby.h" #include "util.h" #include "st.h" #include "node.h" VALUE rb_cArray, rb_cValues; static ID id_cmp; #define ARY_DEFAULT_SIZE 16 void rb_mem_clear(mem, size) register VALUE *mem; register long size; { while (size--) { *mem++ = Qnil; } } static inline void memfill(mem, size, val) register VALUE *mem; register long size; register VALUE val; { while (size--) { *mem++ = val; } } #define ARY_TMPLOCK FL_USER1 static inline void rb_ary_modify_check(ary) VALUE ary; { if (OBJ_FROZEN(ary)) rb_error_frozen("array"); if (FL_TEST(ary, ARY_TMPLOCK)) rb_raise(rb_eRuntimeError, "can't modify array during iteration"); if (!OBJ_TAINTED(ary) && rb_safe_level() >= 4) rb_raise(rb_eSecurityError, "Insecure: can't modify array"); } static void rb_ary_modify(ary) VALUE ary; { VALUE *ptr; rb_ary_modify_check(ary); if (FL_TEST(ary, ELTS_SHARED)) { ptr = ALLOC_N(VALUE, RARRAY(ary)->len); FL_UNSET(ary, ELTS_SHARED); RARRAY(ary)->aux.capa = RARRAY(ary)->len; MEMCPY(ptr, RARRAY(ary)->ptr, VALUE, RARRAY(ary)->len); RARRAY(ary)->ptr = ptr; } } VALUE rb_ary_freeze(ary) VALUE ary; { return rb_obj_freeze(ary); } /* * call-seq: * array.frozen? -> true or false * * Return true if this array is frozen (or temporarily frozen * while being sorted). */ static VALUE rb_ary_frozen_p(ary) VALUE ary; { if (OBJ_FROZEN(ary)) return Qtrue; if (FL_TEST(ary, ARY_TMPLOCK)) return Qtrue; return Qfalse; } static VALUE ary_alloc(VALUE); static VALUE ary_alloc(klass) VALUE klass; { NEWOBJ(ary, struct RArray); OBJSETUP(ary, klass, T_ARRAY); ary->len = 0; ary->ptr = 0; ary->aux.capa = 0; return (VALUE)ary; } static VALUE ary_new(klass, len) VALUE klass; long len; { VALUE ary; if (len < 0) { rb_raise(rb_eArgError, "negative array size (or size too big)"); } if (len > 0 && len * sizeof(VALUE) <= len) { rb_raise(rb_eArgError, "array size too big"); } if (len == 0) len++; ary = ary_alloc(klass); RARRAY(ary)->ptr = ALLOC_N(VALUE, len); RARRAY(ary)->aux.capa = len; return ary; } VALUE rb_ary_new2(len) long len; { return ary_new(rb_cArray, len); } VALUE rb_ary_new() { return rb_ary_new2(ARY_DEFAULT_SIZE); } #ifdef HAVE_STDARG_PROTOTYPES #include #define va_init_list(a,b) va_start(a,b) #else #include #define va_init_list(a,b) va_start(a) #endif VALUE #ifdef HAVE_STDARG_PROTOTYPES rb_ary_new3(long n, ...) #else rb_ary_new3(n, va_alist) long n; va_dcl #endif { va_list ar; VALUE ary; long i; ary = rb_ary_new2(n); va_init_list(ar, n); for (i=0; iptr[i] = va_arg(ar, VALUE); } va_end(ar); RARRAY(ary)->len = n; return ary; } VALUE rb_ary_new4(n, elts) long n; const VALUE *elts; { VALUE ary; ary = rb_ary_new2(n); if (n > 0 && elts) { MEMCPY(RARRAY(ary)->ptr, elts, VALUE, n); } RARRAY(ary)->len = n; return ary; } VALUE #ifdef HAVE_STDARG_PROTOTYPES rb_values_new(long n, ...) #else rb_values_new(n, va_alist) long n; va_dcl #endif { va_list ar; VALUE val; long i; val = ary_new(rb_cValues, n); va_init_list(ar, n); for (i=0; iptr[i] = va_arg(ar, VALUE); } va_end(ar); RARRAY(val)->len = n; return val; } VALUE rb_values_new2(n, elts) long n; const VALUE *elts; { VALUE val; val = ary_new(rb_cValues, n); if (n > 0 && elts) { RARRAY(val)->len = n; MEMCPY(RARRAY(val)->ptr, elts, VALUE, n); } return val; } static VALUE ary_make_shared(ary) VALUE ary; { if (!FL_TEST(ary, ELTS_SHARED)) { NEWOBJ(shared, struct RArray); OBJSETUP(shared, rb_cArray, T_ARRAY); shared->len = RARRAY(ary)->len; shared->ptr = RARRAY(ary)->ptr; shared->aux.capa = RARRAY(ary)->aux.capa; RARRAY(ary)->aux.shared = (VALUE)shared; FL_SET(ary, ELTS_SHARED); OBJ_FREEZE(shared); return (VALUE)shared; } else { return RARRAY(ary)->aux.shared; } } static VALUE ary_shared_array(klass, ary) VALUE klass, ary; { VALUE val = ary_alloc(klass); ary_make_shared(ary); RARRAY(val)->ptr = RARRAY(ary)->ptr; RARRAY(val)->len = RARRAY(ary)->len; RARRAY(val)->aux.shared = RARRAY(ary)->aux.shared; FL_SET(val, ELTS_SHARED); return val; } VALUE rb_values_from_ary(ary) VALUE ary; { return ary_shared_array(rb_cValues, ary); } VALUE rb_ary_from_values(val) VALUE val; { return ary_shared_array(rb_cArray, val); } VALUE rb_assoc_new(car, cdr) VALUE car, cdr; { return rb_values_new(2, car, cdr); } static VALUE to_ary(ary) VALUE ary; { return rb_convert_type(ary, T_ARRAY, "Array", "to_ary"); } static VALUE to_a(ary) VALUE ary; { return rb_convert_type(ary, T_ARRAY, "Array", "to_a"); } VALUE rb_check_array_type(ary) VALUE ary; { return rb_check_convert_type(ary, T_ARRAY, "Array", "to_ary"); } static VALUE rb_ary_replace _((VALUE, VALUE)); /* * call-seq: * Array.new(size=0, obj=nil) * Array.new(array) * Array.new(size) {|index| block } * * Returns a new array. In the first form, the new array is * empty. In the second it is created with _size_ copies of _obj_ * (that is, _size_ references to the same * _obj_). The third form creates a copy of the array * passed as a parameter (the array is generated by calling * to_ary on the parameter). In the last form, an array * of the given size is created. Each element in this array is * calculated by passing the element's index to the given block and * storing the return value. * * Array.new * Array.new(2) * Array.new(5, "A") * * # only one copy of the object is created * a = Array.new(2, Hash.new) * a[0]['cat'] = 'feline' * a * a[1]['cat'] = 'Felix' * a * * # here multiple copies are created * a = Array.new(2) { Hash.new } * a[0]['cat'] = 'feline' * a * * squares = Array.new(5) {|i| i*i} * squares * * copy = Array.new(squares) */ static VALUE rb_ary_initialize(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { long len; VALUE size, val; if (rb_scan_args(argc, argv, "02", &size, &val) == 0) { RARRAY(ary)->len = 0; if (rb_block_given_p()) { rb_warning("given block not used"); } return ary; } if (argc == 1 && !FIXNUM_P(size)) { val = rb_check_array_type(size); if (!NIL_P(val)) { rb_ary_replace(ary, val); return ary; } } len = NUM2LONG(size); if (len < 0) { rb_raise(rb_eArgError, "negative array size"); } if (len > 0 && len * (long)sizeof(VALUE) <= len) { rb_raise(rb_eArgError, "array size too big"); } rb_ary_modify(ary); if (len > RARRAY(ary)->aux.capa) { REALLOC_N(RARRAY(ary)->ptr, VALUE, len); RARRAY(ary)->aux.capa = len; } if (rb_block_given_p()) { long i; if (argc == 2) { rb_warn("block supersedes default value argument"); } for (i=0; ilen = i + 1; } } else { memfill(RARRAY(ary)->ptr, len, val); RARRAY(ary)->len = len; } return ary; } /* * Returns a new array populated with the given objects. * * Array.[]( 1, 'a', /^A/ ) * Array[ 1, 'a', /^A/ ] * [ 1, 'a', /^A/ ] */ static VALUE rb_ary_s_create(argc, argv, klass) int argc; VALUE *argv; VALUE klass; { VALUE ary = ary_alloc(klass); if (argc > 0) { RARRAY(ary)->ptr = ALLOC_N(VALUE, argc); MEMCPY(RARRAY(ary)->ptr, argv, VALUE, argc); } RARRAY(ary)->len = RARRAY(ary)->aux.capa = argc; return ary; } void rb_ary_store(ary, idx, val) VALUE ary; long idx; VALUE val; { if (idx < 0) { idx += RARRAY(ary)->len; if (idx < 0) { rb_raise(rb_eIndexError, "index %ld out of array", idx - RARRAY(ary)->len); } } rb_ary_modify(ary); if (idx >= RARRAY(ary)->aux.capa) { long new_capa = RARRAY(ary)->aux.capa / 2; if (new_capa < ARY_DEFAULT_SIZE) { new_capa = ARY_DEFAULT_SIZE; } new_capa += idx; if (new_capa * (long)sizeof(VALUE) <= new_capa) { rb_raise(rb_eArgError, "index too big"); } REALLOC_N(RARRAY(ary)->ptr, VALUE, new_capa); RARRAY(ary)->aux.capa = new_capa; } if (idx > RARRAY(ary)->len) { rb_mem_clear(RARRAY(ary)->ptr + RARRAY(ary)->len, idx-RARRAY(ary)->len + 1); } if (idx >= RARRAY(ary)->len) { RARRAY(ary)->len = idx + 1; } RARRAY(ary)->ptr[idx] = val; } static VALUE ary_shared_first(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { VALUE nv, result; long n; rb_scan_args(argc, argv, "1", &nv); n = NUM2LONG(nv); if (n > RARRAY(ary)->len) { n = RARRAY(ary)->len; } else if (n < 0) { rb_raise(rb_eArgError, "negative array size"); } result = ary_shared_array(rb_cArray, ary); RARRAY(result)->len = n; return result; } static VALUE ary_shared_last(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { VALUE result = ary_shared_first(argc, argv, ary); RARRAY(result)->ptr += RARRAY(ary)->len - RARRAY(result)->len; return result; } /* * call-seq: * array << obj -> array * * Append---Pushes the given object on to the end of this array. This * expression returns the array itself, so several appends * may be chained together. * * [ 1, 2 ] << "c" << "d" << [ 3, 4 ] * #=> [ 1, 2, "c", "d", [ 3, 4 ] ] * */ VALUE rb_ary_push(ary, item) VALUE ary; VALUE item; { rb_ary_store(ary, RARRAY(ary)->len, item); return ary; } /* * call-seq: * array.push(obj, ... ) -> array * * Append---Pushes the given object(s) on to the end of this array. This * expression returns the array itself, so several appends * may be chained together. * * a = [ "a", "b", "c" ] * a.push("d", "e", "f") * #=> ["a", "b", "c", "d", "e", "f"] */ static VALUE rb_ary_push_m(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { while (argc--) { rb_ary_push(ary, *argv++); } return ary; } VALUE rb_ary_pop(ary) VALUE ary; { rb_ary_modify_check(ary); if (RARRAY(ary)->len == 0) return Qnil; if (!FL_TEST(ary, ELTS_SHARED) && RARRAY(ary)->len * 2 < RARRAY(ary)->aux.capa && RARRAY(ary)->aux.capa > ARY_DEFAULT_SIZE) { RARRAY(ary)->aux.capa = RARRAY(ary)->len * 2; REALLOC_N(RARRAY(ary)->ptr, VALUE, RARRAY(ary)->aux.capa); } return RARRAY(ary)->ptr[--RARRAY(ary)->len]; } /* * call-seq: * array.pop -> obj or nil * * Removes the last element from self and returns it, or * nil if the array is empty. * * a = [ "a", "b", "c", "d" ] * a.pop #=> "d" * a.pop(2) #=> ["b", "c"] * a #=> ["a"] */ static VALUE rb_ary_pop_m(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { VALUE result; if (argc == 0) { return rb_ary_pop(ary); } rb_ary_modify_check(ary); result = ary_shared_last(argc, argv, ary); RARRAY(ary)->len -= RARRAY(result)->len; return result; } VALUE rb_ary_shift(ary) VALUE ary; { VALUE top; rb_ary_modify_check(ary); if (RARRAY(ary)->len == 0) return Qnil; top = RARRAY(ary)->ptr[0]; ary_make_shared(ary); RARRAY(ary)->ptr++; /* shift ptr */ RARRAY(ary)->len--; return top; } /* * call-seq: * array.shift -> obj or nil * * Returns the first element of self and removes it (shifting all * other elements down by one). Returns nil if the array * is empty. * * args = [ "-m", "-q", "filename" ] * args.shift #=> "-m" * args #=> ["-q", "filename"] * * args = [ "-m", "-q", "filename" ] * args.shift(2) #=> ["-m", "-q"] * args #=> ["filename"] */ static VALUE rb_ary_shift_m(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { VALUE result; long n; if (argc == 0) { return rb_ary_shift(ary); } rb_ary_modify_check(ary); result = ary_shared_first(argc, argv, ary); n = RARRAY(result)->len; RARRAY(ary)->ptr += n; RARRAY(ary)->len -= n; return result; } VALUE rb_ary_unshift(ary, item) VALUE ary, item; { rb_ary_modify(ary); if (RARRAY(ary)->len == RARRAY(ary)->aux.capa) { long capa_inc = RARRAY(ary)->aux.capa / 2; if (capa_inc < ARY_DEFAULT_SIZE) { capa_inc = ARY_DEFAULT_SIZE; } RARRAY(ary)->aux.capa += capa_inc; REALLOC_N(RARRAY(ary)->ptr, VALUE, RARRAY(ary)->aux.capa); } /* sliding items */ MEMMOVE(RARRAY(ary)->ptr + 1, RARRAY(ary)->ptr, VALUE, RARRAY(ary)->len); RARRAY(ary)->len++; RARRAY(ary)->ptr[0] = item; return ary; } /* * call-seq: * array.unshift(obj, ...) -> array * * Prepends objects to the front of array. * other elements up one. * * a = [ "b", "c", "d" ] * a.unshift("a") #=> ["a", "b", "c", "d"] * a.unshift(1, 2) #=> [ 1, 2, "a", "b", "c", "d"] */ static VALUE rb_ary_unshift_m(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { long len = RARRAY(ary)->len; if (argc == 0) return ary; /* make rooms by setting the last item */ rb_ary_store(ary, len + argc - 1, Qnil); /* sliding items */ MEMMOVE(RARRAY(ary)->ptr + argc, RARRAY(ary)->ptr, VALUE, len); MEMCPY(RARRAY(ary)->ptr, argv, VALUE, argc); return ary; } /* faster version - use this if you don't need to treat negative offset */ static inline VALUE rb_ary_elt(ary, offset) VALUE ary; long offset; { if (RARRAY(ary)->len == 0) return Qnil; if (offset < 0 || RARRAY(ary)->len <= offset) { return Qnil; } return RARRAY(ary)->ptr[offset]; } VALUE rb_ary_entry(ary, offset) VALUE ary; long offset; { if (offset < 0) { offset += RARRAY(ary)->len; } return rb_ary_elt(ary, offset); } static VALUE rb_ary_subseq(ary, beg, len) VALUE ary; long beg, len; { VALUE klass, ary2, shared; VALUE *ptr; if (beg > RARRAY(ary)->len) return Qnil; if (beg < 0 || len < 0) return Qnil; if (beg + len > RARRAY(ary)->len) { len = RARRAY(ary)->len - beg; if (len < 0) len = 0; } klass = rb_obj_class(ary); if (len == 0) return ary_new(klass, 0); shared = ary_make_shared(ary); ptr = RARRAY(ary)->ptr; ary2 = ary_alloc(klass); RARRAY(ary2)->ptr = ptr + beg; RARRAY(ary2)->len = len; RARRAY(ary2)->aux.shared = shared; FL_SET(ary2, ELTS_SHARED); return ary2; } /* * call-seq: * array[index] -> obj or nil * array[start, length] -> an_array or nil * array[range] -> an_array or nil * array.slice(index) -> obj or nil * array.slice(start, length) -> an_array or nil * array.slice(range) -> an_array or nil * * Element Reference---Returns the element at _index_, * or returns a subarray starting at _start_ and * continuing for _length_ elements, or returns a subarray * specified by _range_. * Negative indices count backward from the end of the * array (-1 is the last element). Returns nil if the index * (or starting index) are out of range. * * a = [ "a", "b", "c", "d", "e" ] * a[2] + a[0] + a[1] #=> "cab" * a[6] #=> nil * a[1, 2] #=> [ "b", "c" ] * a[1..3] #=> [ "b", "c", "d" ] * a[4..7] #=> [ "e" ] * a[6..10] #=> nil * a[-3, 3] #=> [ "c", "d", "e" ] * # special cases * a[5] #=> nil * a[5, 1] #=> [] * a[5..10] #=> [] * */ VALUE rb_ary_aref(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { VALUE arg; long beg, len; if (argc == 2) { beg = NUM2LONG(argv[0]); len = NUM2LONG(argv[1]); if (beg < 0) { beg += RARRAY(ary)->len; } return rb_ary_subseq(ary, beg, len); } if (argc != 1) { rb_scan_args(argc, argv, "11", 0, 0); } arg = argv[0]; /* special case - speeding up */ if (FIXNUM_P(arg)) { return rb_ary_entry(ary, FIX2LONG(arg)); } /* check if idx is Range */ switch (rb_range_beg_len(arg, &beg, &len, RARRAY(ary)->len, 0)) { case Qfalse: break; case Qnil: return Qnil; default: return rb_ary_subseq(ary, beg, len); } return rb_ary_entry(ary, NUM2LONG(arg)); } /* * call-seq: * array.at(index) -> obj or nil * * Returns the element at _index_. A * negative index counts from the end of _self_. Returns +nil+ * if the index is out of range. See also Array#[]. * (Array#at is slightly faster than Array#[], * as it does not accept ranges and so on.) * * a = [ "a", "b", "c", "d", "e" ] * a.at(0) #=> "a" * a.at(-1) #=> "e" */ static VALUE rb_ary_at(ary, pos) VALUE ary, pos; { return rb_ary_entry(ary, NUM2LONG(pos)); } /* * call-seq: * array.first -> obj or nil * array.first(n) -> an_array * * Returns the first element of the array. If the array is empty, * returns nil. * * a = [ "q", "r", "s", "t" ] * a.first #=> "q" * a.first(2) #=> ["q", "r"] */ static VALUE rb_ary_first(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { if (argc == 0) { if (RARRAY(ary)->len == 0) return Qnil; return RARRAY(ary)->ptr[0]; } else { return ary_shared_first(argc, argv, ary); } } /* * call-seq: * array.last -> obj or nil * array.last(n) -> an_array * * Returns the last element(s) of self. If the array is empty, * the first form returns nil. * * a = [ "w", "x", "y", "z" ] * a.last #=> "z" * a.last(2) #=> ["y", "z"] */ static VALUE rb_ary_last(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { if (argc == 0) { if (RARRAY(ary)->len == 0) return Qnil; return RARRAY(ary)->ptr[RARRAY(ary)->len-1]; } else { return ary_shared_last(argc, argv, ary); } } /* * call-seq: * array.fetch(index) -> obj * array.fetch(index, default ) -> obj * array.fetch(index) {|index| block } -> obj * * Tries to return the element at position index. If the index * lies outside the array, the first form throws an * IndexError exception, the second form returns * default, and the third form returns the value of invoking * the block, passing in the index. Negative values of index * count from the end of the array. * * a = [ 11, 22, 33, 44 ] * a.fetch(1) #=> 22 * a.fetch(-1) #=> 44 * a.fetch(4, 'cat') #=> "cat" * a.fetch(4) { |i| i*i } #=> 16 */ static VALUE rb_ary_fetch(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { VALUE pos, ifnone; long block_given; long idx; rb_scan_args(argc, argv, "11", &pos, &ifnone); block_given = rb_block_given_p(); if (block_given && argc == 2) { rb_warn("block supersedes default value argument"); } idx = NUM2LONG(pos); if (idx < 0) { idx += RARRAY(ary)->len; } if (idx < 0 || RARRAY(ary)->len <= idx) { if (block_given) return rb_yield(pos); if (argc == 1) { rb_raise(rb_eIndexError, "index %ld out of array", idx); } return ifnone; } return RARRAY(ary)->ptr[idx]; } /* * call-seq: * array.index(obj) -> int or nil * array.index {|item| block} -> int or nil * * Returns the index of the first object in self such that is * == to obj. If a block is given instead of an * argument, returns first object for which block is true. * Returns nil if no match is found. * * a = [ "a", "b", "c" ] * a.index("b") #=> 1 * a.index("z") #=> nil * a.index{|x|x=="b"} #=> 1 */ static VALUE rb_ary_index(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { VALUE val; long i; if (rb_scan_args(argc, argv, "01", &val) == 0) { for (i=0; ilen; i++) { if (RTEST(rb_yield(RARRAY(ary)->ptr[i]))) { return LONG2NUM(i); } } } else { for (i=0; ilen; i++) { if (rb_equal(RARRAY(ary)->ptr[i], val)) return LONG2NUM(i); } } return Qnil; } /* * call-seq: * array.rindex(obj) -> int or nil * * Returns the index of the last object in array * == to obj. If a block is given instead of an * argument, returns first object for which block is * true. Returns nil if no match is found. * * a = [ "a", "b", "b", "b", "c" ] * a.rindex("b") #=> 3 * a.rindex("z") #=> nil * a.rindex{|x|x=="b"} #=> 3 */ static VALUE rb_ary_rindex(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { VALUE val; long i = RARRAY(ary)->len; if (rb_scan_args(argc, argv, "01", &val) == 0) { while (i--) { if (RTEST(rb_yield(RARRAY(ary)->ptr[i]))) return LONG2NUM(i); if (i > RARRAY(ary)->len) { i = RARRAY(ary)->len; } } } else { while (i--) { if (rb_equal(RARRAY(ary)->ptr[i], val)) return LONG2NUM(i); if (i > RARRAY(ary)->len) { i = RARRAY(ary)->len; } } } return Qnil; } VALUE rb_ary_to_ary(obj) VALUE obj; { if (TYPE(obj) == T_ARRAY) { return obj; } if (rb_respond_to(obj, rb_intern("to_ary"))) { return to_ary(obj); } return rb_ary_new3(1, obj); } static void rb_ary_splice(ary, beg, len, rpl) VALUE ary; long beg, len; VALUE rpl; { long rlen; if (len < 0) rb_raise(rb_eIndexError, "negative length (%ld)", len); if (beg < 0) { beg += RARRAY(ary)->len; if (beg < 0) { beg -= RARRAY(ary)->len; rb_raise(rb_eIndexError, "index %ld out of array", beg); } } if (beg + len > RARRAY(ary)->len) { len = RARRAY(ary)->len - beg; } if (rpl == Qundef) { rlen = 0; } else { rpl = rb_ary_to_ary(rpl); rlen = RARRAY(rpl)->len; } rb_ary_modify(ary); if (beg >= RARRAY(ary)->len) { len = beg + rlen; if (len >= RARRAY(ary)->aux.capa) { REALLOC_N(RARRAY(ary)->ptr, VALUE, len); RARRAY(ary)->aux.capa = len; } rb_mem_clear(RARRAY(ary)->ptr + RARRAY(ary)->len, beg - RARRAY(ary)->len); if (rlen > 0) { MEMCPY(RARRAY(ary)->ptr + beg, RARRAY(rpl)->ptr, VALUE, rlen); } RARRAY(ary)->len = len; } else { long alen; if (beg + len > RARRAY(ary)->len) { len = RARRAY(ary)->len - beg; } alen = RARRAY(ary)->len + rlen - len; if (alen >= RARRAY(ary)->aux.capa) { REALLOC_N(RARRAY(ary)->ptr, VALUE, alen); RARRAY(ary)->aux.capa = alen; } if (len != rlen) { MEMMOVE(RARRAY(ary)->ptr + beg + rlen, RARRAY(ary)->ptr + beg + len, VALUE, RARRAY(ary)->len - (beg + len)); RARRAY(ary)->len = alen; } if (rlen > 0) { MEMMOVE(RARRAY(ary)->ptr + beg, RARRAY(rpl)->ptr, VALUE, rlen); } } } /* * call-seq: * array[index] = obj -> obj * array[start, length] = obj or an_array or nil -> obj or an_array or nil * array[range] = obj or an_array or nil -> obj or an_array or nil * * Element Assignment---Sets the element at _index_, * or replaces a subarray starting at _start_ and * continuing for _length_ elements, or replaces a subarray * specified by _range_. If indices are greater than * the current capacity of the array, the array grows * automatically. A negative indices will count backward * from the end of the array. Inserts elements if _length_ is * zero. An +IndexError+ is raised if a negative index points * past the beginning of the array. See also * Array#push, and Array#unshift. * * a = Array.new * a[4] = "4"; #=> [nil, nil, nil, nil, "4"] * a[0, 3] = [ 'a', 'b', 'c' ] #=> ["a", "b", "c", nil, "4"] * a[1..2] = [ 1, 2 ] #=> ["a", 1, 2, nil, "4"] * a[0, 2] = "?" #=> ["?", 2, nil, "4"] * a[0..2] = "A" #=> ["A", "4"] * a[-1] = "Z" #=> ["A", "Z"] * a[1..-1] = nil #=> ["A", nil] * a[1..-1] = [] #=> ["A"] */ static VALUE rb_ary_aset(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { long offset, beg, len; if (argc == 3) { rb_ary_splice(ary, NUM2LONG(argv[0]), NUM2LONG(argv[1]), argv[2]); return argv[2]; } if (argc != 2) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 2)", argc); } if (FIXNUM_P(argv[0])) { offset = FIX2LONG(argv[0]); goto fixnum; } if (rb_range_beg_len(argv[0], &beg, &len, RARRAY(ary)->len, 1)) { /* check if idx is Range */ rb_ary_splice(ary, beg, len, argv[1]); return argv[1]; } offset = NUM2LONG(argv[0]); fixnum: rb_ary_store(ary, offset, argv[1]); return argv[1]; } /* * call-seq: * array.insert(index, obj...) -> array * * Inserts the given values before the element with the given index * (which may be negative). * * a = %w{ a b c d } * a.insert(2, 99) #=> ["a", "b", 99, "c", "d"] * a.insert(-2, 1, 2, 3) #=> ["a", "b", 99, "c", 1, 2, 3, "d"] */ static VALUE rb_ary_insert(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { long pos; if (argc < 1) { rb_raise(rb_eArgError, "wrong number of arguments (at least 1)"); } pos = NUM2LONG(argv[0]); if (pos == -1) { pos = RARRAY(ary)->len; } else if (pos < 0) { pos++; } if (argc == 1) return ary; rb_ary_splice(ary, pos, 0, rb_ary_new4(argc - 1, argv + 1)); return ary; } /* * call-seq: * array.each {|item| block } -> array * * Calls block once for each element in self, passing that * element as a parameter. * * a = [ "a", "b", "c" ] * a.each {|x| print x, " -- " } * * produces: * * a -- b -- c -- */ VALUE rb_ary_each(ary) VALUE ary; { long i; for (i=0; ilen; i++) { rb_yield(RARRAY(ary)->ptr[i]); } return ary; } /* * call-seq: * array.each_index {|index| block } -> array * * Same as Array#each, but passes the index of the element * instead of the element itself. * * a = [ "a", "b", "c" ] * a.each_index {|x| print x, " -- " } * * produces: * * 0 -- 1 -- 2 -- */ static VALUE rb_ary_each_index(ary) VALUE ary; { long i; for (i=0; ilen; i++) { rb_yield(LONG2NUM(i)); } return ary; } /* * call-seq: * array.reverse_each {|item| block } * * Same as Array#each, but traverses self in reverse * order. * * a = [ "a", "b", "c" ] * a.reverse_each {|x| print x, " " } * * produces: * * c b a */ static VALUE rb_ary_reverse_each(ary) VALUE ary; { long len = RARRAY(ary)->len; while (len--) { rb_yield(RARRAY(ary)->ptr[len]); if (RARRAY(ary)->len < len) { len = RARRAY(ary)->len; } } return ary; } /* * call-seq: * array.length -> int * * Returns the number of elements in self. May be zero. * * [ 1, 2, 3, 4, 5 ].length #=> 5 */ static VALUE rb_ary_length(ary) VALUE ary; { return LONG2NUM(RARRAY(ary)->len); } /* * call-seq: * array.empty? -> true or false * * Returns true if self array contains no elements. * * [].empty? #=> true */ static VALUE rb_ary_empty_p(ary) VALUE ary; { if (RARRAY(ary)->len == 0) return Qtrue; return Qfalse; } VALUE rb_ary_dup(ary) VALUE ary; { VALUE dup = rb_ary_new2(RARRAY(ary)->len); DUPSETUP(dup, ary); MEMCPY(RARRAY(dup)->ptr, RARRAY(ary)->ptr, VALUE, RARRAY(ary)->len); RARRAY(dup)->len = RARRAY(ary)->len; return dup; } extern VALUE rb_output_fs; static VALUE recursive_join(ary, arg, recur) VALUE ary; VALUE *arg; int recur; { if (recur) { return rb_str_new2("[...]"); } return rb_ary_join(arg[0], arg[1]); } VALUE rb_ary_join(ary, sep) VALUE ary, sep; { long len = 1, i; int taint = Qfalse; VALUE result, tmp; if (RARRAY(ary)->len == 0) return rb_str_new(0, 0); if (OBJ_TAINTED(ary) || OBJ_TAINTED(sep)) taint = Qtrue; for (i=0; ilen; i++) { tmp = rb_check_string_type(RARRAY(ary)->ptr[i]); len += NIL_P(tmp) ? 10 : RSTRING(tmp)->len; } if (!NIL_P(sep)) { StringValue(sep); len += RSTRING(sep)->len * (RARRAY(ary)->len - 1); } result = rb_str_buf_new(len); for (i=0; ilen; i++) { tmp = RARRAY(ary)->ptr[i]; switch (TYPE(tmp)) { case T_STRING: break; case T_ARRAY: { VALUE args[2]; args[0] = tmp; args[1] = sep; tmp = rb_exec_recursive(recursive_join, ary, (VALUE)args); } break; default: tmp = rb_obj_as_string(tmp); } if (i > 0 && !NIL_P(sep)) rb_str_buf_append(result, sep); rb_str_buf_append(result, tmp); if (OBJ_TAINTED(tmp)) taint = Qtrue; } if (taint) OBJ_TAINT(result); return result; } /* * call-seq: * array.join(sep=$,) -> str * * Returns a string created by converting each element of the array to * a string, separated by sep. * * [ "a", "b", "c" ].join #=> "abc" * [ "a", "b", "c" ].join("-") #=> "a-b-c" */ static VALUE rb_ary_join_m(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { VALUE sep; rb_scan_args(argc, argv, "01", &sep); if (NIL_P(sep)) sep = rb_output_fs; return rb_ary_join(ary, sep); } /* * call-seq: * array.to_s -> string * * Returns _self_.join. * * [ "a", "e", "i", "o" ].to_s #=> "aeio" * */ VALUE rb_ary_to_s(ary) VALUE ary; { if (RARRAY(ary)->len == 0) return rb_str_new(0, 0); return rb_ary_join(ary, rb_output_fs); } static VALUE inspect_ary(ary, dummy, recur) VALUE ary; VALUE dummy; int recur; { int tainted = OBJ_TAINTED(ary); long i; VALUE s, str; if (recur) return rb_tainted_str_new2("[...]"); str = rb_str_buf_new2("["); for (i=0; ilen; i++) { s = rb_inspect(RARRAY(ary)->ptr[i]); if (OBJ_TAINTED(s)) tainted = Qtrue; if (i > 0) rb_str_buf_cat2(str, ", "); rb_str_buf_append(str, s); } rb_str_buf_cat2(str, "]"); if (tainted) OBJ_TAINT(str); return str; } /* * call-seq: * array.inspect -> string * * Create a printable version of array. */ static VALUE rb_ary_inspect(ary) VALUE ary; { if (RARRAY(ary)->len == 0) return rb_str_new2("[]"); return rb_exec_recursive(inspect_ary, ary, 0); } /* * call-seq: * array.to_a -> array * * Returns _self_. If called on a subclass of Array, converts * the receiver to an Array object. */ static VALUE rb_ary_to_a(ary) VALUE ary; { if (rb_obj_class(ary) != rb_cArray) { VALUE dup = rb_ary_new2(RARRAY(ary)->len); rb_ary_replace(dup, ary); return dup; } return ary; } /* * call-seq: * array.to_ary -> array * * Returns _self_. */ static VALUE rb_ary_to_ary_m(ary) VALUE ary; { return ary; } VALUE rb_ary_reverse(ary) VALUE ary; { VALUE *p1, *p2; VALUE tmp; rb_ary_modify(ary); if (RARRAY(ary)->len > 1) { p1 = RARRAY(ary)->ptr; p2 = p1 + RARRAY(ary)->len - 1; /* points last item */ while (p1 < p2) { tmp = *p1; *p1++ = *p2; *p2-- = tmp; } } return ary; } /* * call-seq: * array.reverse! -> array * * Reverses _self_ in place. * * a = [ "a", "b", "c" ] * a.reverse! #=> ["c", "b", "a"] * a #=> ["c", "b", "a"] */ static VALUE rb_ary_reverse_bang(ary) VALUE ary; { return rb_ary_reverse(ary); } /* * call-seq: * array.reverse -> an_array * * Returns a new array containing self's elements in reverse order. * * [ "a", "b", "c" ].reverse #=> ["c", "b", "a"] * [ 1 ].reverse #=> [1] */ static VALUE rb_ary_reverse_m(ary) VALUE ary; { return rb_ary_reverse(rb_ary_dup(ary)); } struct ary_sort_data { VALUE ary; VALUE *ptr; long len; }; static void ary_sort_check(data) struct ary_sort_data *data; { if (RARRAY(data->ary)->ptr != data->ptr || RARRAY(data->ary)->len != data->len) { rb_raise(rb_eRuntimeError, "array modified during sort"); } } static int sort_1(a, b, data) VALUE *a, *b; struct ary_sort_data *data; { VALUE retval = rb_yield_values(2, *a, *b); int n; n = rb_cmpint(retval, *a, *b); ary_sort_check(data); return n; } static int sort_2(ap, bp, data) VALUE *ap, *bp; struct ary_sort_data *data; { VALUE retval; VALUE a = *ap, b = *bp; int n; if (FIXNUM_P(a) && FIXNUM_P(b)) { if ((long)a > (long)b) return 1; if ((long)a < (long)b) return -1; return 0; } if (TYPE(a) == T_STRING && TYPE(b) == T_STRING) { return rb_str_cmp(a, b); } retval = rb_funcall(a, id_cmp, 1, b); n = rb_cmpint(retval, a, b); ary_sort_check(data); return n; } static VALUE sort_internal(ary) VALUE ary; { struct ary_sort_data data; data.ary = ary; data.ptr = RARRAY(ary)->ptr; data.len = RARRAY(ary)->len; qsort(RARRAY(ary)->ptr, RARRAY(ary)->len, sizeof(VALUE), rb_block_given_p()?sort_1:sort_2, &data); return ary; } static VALUE sort_unlock(ary) VALUE ary; { FL_UNSET(ary, ARY_TMPLOCK); return ary; } /* * call-seq: * array.sort! -> array * array.sort! {| a,b | block } -> array * * Sorts _self_. Comparisons for * the sort will be done using the <=> operator or using * an optional code block. The block implements a comparison between * a and b, returning -1, 0, or +1. See also * Enumerable#sort_by. * * a = [ "d", "a", "e", "c", "b" ] * a.sort #=> ["a", "b", "c", "d", "e"] * a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"] */ VALUE rb_ary_sort_bang(ary) VALUE ary; { rb_ary_modify(ary); if (RARRAY(ary)->len > 1) { FL_SET(ary, ARY_TMPLOCK); /* prohibit modification during sort */ rb_ensure(sort_internal, ary, sort_unlock, ary); } return ary; } /* * call-seq: * array.sort -> an_array * array.sort {| a,b | block } -> an_array * * Returns a new array created by sorting self. Comparisons for * the sort will be done using the <=> operator or using * an optional code block. The block implements a comparison between * a and b, returning -1, 0, or +1. See also * Enumerable#sort_by. * * a = [ "d", "a", "e", "c", "b" ] * a.sort #=> ["a", "b", "c", "d", "e"] * a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"] */ VALUE rb_ary_sort(ary) VALUE ary; { ary = rb_ary_dup(ary); rb_ary_sort_bang(ary); return ary; } /* * call-seq: * array.collect {|item| block } -> an_array * array.map {|item| block } -> an_array * * Invokes block once for each element of self. Creates a * new array containing the values returned by the block. * See also Enumerable#collect. * * a = [ "a", "b", "c", "d" ] * a.collect {|x| x + "!" } #=> ["a!", "b!", "c!", "d!"] * a #=> ["a", "b", "c", "d"] */ static VALUE rb_ary_collect(ary) VALUE ary; { long i; VALUE collect; if (!rb_block_given_p()) { return rb_ary_new4(RARRAY(ary)->len, RARRAY(ary)->ptr); } collect = rb_ary_new2(RARRAY(ary)->len); for (i = 0; i < RARRAY(ary)->len; i++) { rb_ary_push(collect, rb_yield(RARRAY(ary)->ptr[i])); } return collect; } /* * call-seq: * array.collect! {|item| block } -> array * array.map! {|item| block } -> array * * Invokes the block once for each element of _self_, replacing the * element with the value returned by _block_. * See also Enumerable#collect. * * a = [ "a", "b", "c", "d" ] * a.collect! {|x| x + "!" } * a #=> [ "a!", "b!", "c!", "d!" ] */ static VALUE rb_ary_collect_bang(ary) VALUE ary; { long i; rb_ary_modify(ary); for (i = 0; i < RARRAY(ary)->len; i++) { rb_ary_store(ary, i, rb_yield(RARRAY(ary)->ptr[i])); } return ary; } VALUE rb_get_values_at(obj, olen, argc, argv, func) VALUE obj; long olen; int argc; VALUE *argv; VALUE (*func) _((VALUE,long)); { VALUE result = rb_ary_new2(argc); long beg, len, i, j; for (i=0; i an_array * * Returns an array containing the elements in * _self_ corresponding to the given selector(s). The selectors * may be either integer indices or ranges. * See also Array#select. * * a = %w{ a b c d e f } * a.values_at(1, 3, 5) * a.values_at(1, 3, 5, 7) * a.values_at(-1, -3, -5, -7) * a.values_at(1..3, 2...5) */ static VALUE rb_ary_values_at(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { return rb_get_values_at(ary, RARRAY(ary)->len, argc, argv, rb_ary_entry); } /* * call-seq: * array.select {|item| block } -> an_array * * Invokes the block passing in successive elements from array, * returning an array containing those elements for which the block * returns a true value (equivalent to Enumerable#select). * * a = %w{ a b c d e f } * a.select {|v| v =~ /[aeiou]/} #=> ["a", "e"] */ static VALUE rb_ary_select(ary) VALUE ary; { VALUE result; long i; result = rb_ary_new2(RARRAY(ary)->len); for (i = 0; i < RARRAY(ary)->len; i++) { if (RTEST(rb_yield(RARRAY(ary)->ptr[i]))) { rb_ary_push(result, rb_ary_elt(ary, i)); } } return result; } /* * call-seq: * array.delete(obj) -> obj or nil * array.delete(obj) { block } -> obj or nil * * Deletes items from self that are equal to obj. If * the item is not found, returns nil. If the optional * code block is given, returns the result of block if the item * is not found. * * a = [ "a", "b", "b", "b", "c" ] * a.delete("b") #=> "b" * a #=> ["a", "c"] * a.delete("z") #=> nil * a.delete("z") { "not found" } #=> "not found" */ VALUE rb_ary_delete(ary, item) VALUE ary; VALUE item; { long i1, i2; for (i1 = i2 = 0; i1 < RARRAY(ary)->len; i1++) { VALUE e = RARRAY(ary)->ptr[i1]; if (rb_equal(e, item)) continue; if (i1 != i2) { rb_ary_store(ary, i2, e); } i2++; } if (RARRAY(ary)->len == i2) { if (rb_block_given_p()) { return rb_yield(item); } return Qnil; } rb_ary_modify(ary); if (RARRAY(ary)->len > i2) { RARRAY(ary)->len = i2; if (i2 * 2 < RARRAY(ary)->aux.capa && RARRAY(ary)->aux.capa > ARY_DEFAULT_SIZE) { REALLOC_N(RARRAY(ary)->ptr, VALUE, i2 * 2); RARRAY(ary)->aux.capa = i2 * 2; } } return item; } VALUE rb_ary_delete_at(ary, pos) VALUE ary; long pos; { long i, len = RARRAY(ary)->len; VALUE del; if (pos >= len) return Qnil; if (pos < 0) { pos += len; if (pos < 0) return Qnil; } rb_ary_modify(ary); del = RARRAY(ary)->ptr[pos]; for (i = pos + 1; i < len; i++, pos++) { RARRAY(ary)->ptr[pos] = RARRAY(ary)->ptr[i]; } RARRAY(ary)->len = pos; return del; } /* * call-seq: * array.delete_at(index) -> obj or nil * * Deletes the element at the specified index, returning that element, * or nil if the index is out of range. See also * Array#slice!. * * a = %w( ant bat cat dog ) * a.delete_at(2) #=> "cat" * a #=> ["ant", "bat", "dog"] * a.delete_at(99) #=> nil */ static VALUE rb_ary_delete_at_m(ary, pos) VALUE ary, pos; { return rb_ary_delete_at(ary, NUM2LONG(pos)); } /* * call-seq: * array.slice!(index) -> obj or nil * array.slice!(start, length) -> sub_array or nil * array.slice!(range) -> sub_array or nil * * Deletes the element(s) given by an index (optionally with a length) * or by a range. Returns the deleted object, subarray, or * nil if the index is out of range. Equivalent to: * * def slice!(*args) * result = self[*args] * self[*args] = nil * result * end * * a = [ "a", "b", "c" ] * a.slice!(1) #=> "b" * a #=> ["a", "c"] * a.slice!(-1) #=> "c" * a #=> ["a"] * a.slice!(100) #=> nil * a #=> ["a"] */ static VALUE rb_ary_slice_bang(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { VALUE arg1, arg2; long pos, len; if (rb_scan_args(argc, argv, "11", &arg1, &arg2) == 2) { pos = NUM2LONG(arg1); len = NUM2LONG(arg2); delete_pos_len: if (pos < 0) { pos = RARRAY(ary)->len + pos; } arg2 = rb_ary_subseq(ary, pos, len); rb_ary_splice(ary, pos, len, Qundef); /* Qnil/rb_ary_new2(0) */ return arg2; } if (!FIXNUM_P(arg1) && rb_range_beg_len(arg1, &pos, &len, RARRAY(ary)->len, 1)) { goto delete_pos_len; } return rb_ary_delete_at(ary, NUM2LONG(arg1)); } /* * call-seq: * array.reject! {|item| block } -> array or nil * * Equivalent to Array#delete_if, deleting elements from * _self_ for which the block evaluates to true, but returns * nil if no changes were made. Also see * Enumerable#reject. */ static VALUE rb_ary_reject_bang(ary) VALUE ary; { long i1, i2; rb_ary_modify(ary); for (i1 = i2 = 0; i1 < RARRAY(ary)->len; i1++) { VALUE v = RARRAY(ary)->ptr[i1]; if (RTEST(rb_yield(v))) continue; if (i1 != i2) { rb_ary_store(ary, i2, v); } i2++; } if (RARRAY(ary)->len == i2) return Qnil; if (i2 < RARRAY(ary)->len) RARRAY(ary)->len = i2; return ary; } /* * call-seq: * array.reject {|item| block } -> an_array * * Returns a new array containing the items in _self_ * for which the block is not true. */ static VALUE rb_ary_reject(ary) VALUE ary; { ary = rb_ary_dup(ary); rb_ary_reject_bang(ary); return ary; } /* * call-seq: * array.delete_if {|item| block } -> array * * Deletes every element of self for which block evaluates * to true. * * a = [ "a", "b", "c" ] * a.delete_if {|x| x >= "b" } #=> ["a"] */ static VALUE rb_ary_delete_if(ary) VALUE ary; { rb_ary_reject_bang(ary); return ary; } /* * call-seq: * array.zip(arg, ...) -> an_array * array.zip(arg, ...) {| arr | block } -> nil * * Converts any arguments to arrays, then merges elements of * self with corresponding elements from each argument. This * generates a sequence of self.size n-element * arrays, where n is one more that the count of arguments. If * the size of any argument is less than enumObj.size, * nil values are supplied. If a block given, it is * invoked for each output array, otherwise an array of arrays is * returned. * * a = [ 4, 5, 6 ] * b = [ 7, 8, 9 ] * * [1,2,3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]] * [1,2].zip(a,b) #=> [[1, 4, 7], [2, 5, 8]] * a.zip([1,2],[8]) #=> [[4,1,8], [5,2,nil], [6,nil,nil]] */ static VALUE rb_ary_zip(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { int i, j; long len; VALUE result; for (i=0; ilen; i++) { VALUE tmp = rb_ary_new2(argc+1); rb_ary_push(tmp, rb_ary_elt(ary, i)); for (j=0; jlen; result = rb_ary_new2(len); for (i=0; i an_array * * Assumes that self is an array of arrays and transposes the * rows and columns. * * a = [[1,2], [3,4], [5,6]] * a.transpose #=> [[1, 3, 5], [2, 4, 6]] */ static VALUE rb_ary_transpose(ary) VALUE ary; { long elen = -1, alen, i, j; VALUE tmp, result = 0; alen = RARRAY(ary)->len; if (alen == 0) return rb_ary_dup(ary); for (i=0; ilen; result = rb_ary_new2(elen); for (j=0; jlen) { rb_raise(rb_eIndexError, "element size differs (%d should be %d)", RARRAY(tmp)->len, elen); } for (j=0; j array * * Replaces the contents of self with the contents of * other_array, truncating or expanding if necessary. * * a = [ "a", "b", "c", "d", "e" ] * a.replace([ "x", "y", "z" ]) #=> ["x", "y", "z"] * a #=> ["x", "y", "z"] */ static VALUE rb_ary_replace(copy, orig) VALUE copy, orig; { VALUE shared; rb_ary_modify(copy); orig = to_ary(orig); if (copy == orig) return copy; shared = ary_make_shared(orig); if (RARRAY(copy)->ptr && !FL_TEST(copy, ELTS_SHARED)) free(RARRAY(copy)->ptr); RARRAY(copy)->ptr = RARRAY(orig)->ptr; RARRAY(copy)->len = RARRAY(orig)->len; RARRAY(copy)->aux.shared = shared; FL_SET(copy, ELTS_SHARED); return copy; } /* * call-seq: * array.clear -> array * * Removes all elements from _self_. * * a = [ "a", "b", "c", "d", "e" ] * a.clear #=> [ ] */ VALUE rb_ary_clear(ary) VALUE ary; { rb_ary_modify(ary); RARRAY(ary)->len = 0; if (ARY_DEFAULT_SIZE * 2 < RARRAY(ary)->aux.capa) { REALLOC_N(RARRAY(ary)->ptr, VALUE, ARY_DEFAULT_SIZE * 2); RARRAY(ary)->aux.capa = ARY_DEFAULT_SIZE * 2; } return ary; } /* * call-seq: * array.fill(obj) -> array * array.fill(obj, start [, length]) -> array * array.fill(obj, range ) -> array * array.fill {|index| block } -> array * array.fill(start [, length] ) {|index| block } -> array * array.fill(range) {|index| block } -> array * * The first three forms set the selected elements of self (which * may be the entire array) to obj. A start of * nil is equivalent to zero. A length of * nil is equivalent to self.length. The last three * forms fill the array with the value of the block. The block is * passed the absolute index of each element to be filled. * * a = [ "a", "b", "c", "d" ] * a.fill("x") #=> ["x", "x", "x", "x"] * a.fill("z", 2, 2) #=> ["x", "x", "z", "z"] * a.fill("y", 0..1) #=> ["y", "y", "z", "z"] * a.fill {|i| i*i} #=> [0, 1, 4, 9] * a.fill(-2) {|i| i*i*i} #=> [0, 1, 8, 27] */ static VALUE rb_ary_fill(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { VALUE item, arg1, arg2; long beg, end, len; VALUE *p, *pend; int block_p = Qfalse; if (rb_block_given_p()) { block_p = Qtrue; rb_scan_args(argc, argv, "02", &arg1, &arg2); argc += 1; /* hackish */ } else { rb_scan_args(argc, argv, "12", &item, &arg1, &arg2); } switch (argc) { case 1: beg = 0; len = RARRAY(ary)->len; break; case 2: if (rb_range_beg_len(arg1, &beg, &len, RARRAY(ary)->len, 1)) { break; } /* fall through */ case 3: beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1); if (beg < 0) { beg = RARRAY(ary)->len + beg; if (beg < 0) beg = 0; } len = NIL_P(arg2) ? RARRAY(ary)->len - beg : NUM2LONG(arg2); break; } rb_ary_modify(ary); end = beg + len; if (end > RARRAY(ary)->len) { if (end >= RARRAY(ary)->aux.capa) { REALLOC_N(RARRAY(ary)->ptr, VALUE, end); RARRAY(ary)->aux.capa = end; } if (beg > RARRAY(ary)->len) { rb_mem_clear(RARRAY(ary)->ptr + RARRAY(ary)->len, end - RARRAY(ary)->len); } RARRAY(ary)->len = end; } if (block_p) { VALUE v; long i; for (i=beg; i=RARRAY(ary)->len) break; RARRAY(ary)->ptr[i] = v; } } else { p = RARRAY(ary)->ptr + beg; pend = p + len; while (p < pend) { *p++ = item; } } return ary; } /* * call-seq: * array + other_array -> an_array * * Concatenation---Returns a new array built by concatenating the * two arrays together to produce a third array. * * [ 1, 2, 3 ] + [ 4, 5 ] #=> [ 1, 2, 3, 4, 5 ] */ VALUE rb_ary_plus(x, y) VALUE x, y; { VALUE z; long len; y = to_ary(y); len = RARRAY(x)->len + RARRAY(y)->len; z = rb_ary_new2(len); MEMCPY(RARRAY(z)->ptr, RARRAY(x)->ptr, VALUE, RARRAY(x)->len); MEMCPY(RARRAY(z)->ptr + RARRAY(x)->len, RARRAY(y)->ptr, VALUE, RARRAY(y)->len); RARRAY(z)->len = len; return z; } /* * call-seq: * array.concat(other_array) -> array * * Appends the elements in other_array to _self_. * * [ "a", "b" ].concat( ["c", "d"] ) #=> [ "a", "b", "c", "d" ] */ VALUE rb_ary_concat(x, y) VALUE x, y; { y = to_ary(y); if (RARRAY(y)->len > 0) { rb_ary_splice(x, RARRAY(x)->len, 0, y); } return x; } /* * call-seq: * array * int -> an_array * array * str -> a_string * * Repetition---With a String argument, equivalent to * self.join(str). Otherwise, returns a new array * built by concatenating the _int_ copies of _self_. * * * [ 1, 2, 3 ] * 3 #=> [ 1, 2, 3, 1, 2, 3, 1, 2, 3 ] * [ 1, 2, 3 ] * "," #=> "1,2,3" * */ static VALUE rb_ary_times(ary, times) VALUE ary, times; { VALUE ary2, tmp; long i, len; tmp = rb_check_string_type(times); if (!NIL_P(tmp)) { return rb_ary_join(ary, tmp); } len = NUM2LONG(times); if (len == 0) return ary_new(rb_obj_class(ary), 0); if (len < 0) { rb_raise(rb_eArgError, "negative argument"); } if (LONG_MAX/len < RARRAY(ary)->len) { rb_raise(rb_eArgError, "argument too big"); } len *= RARRAY(ary)->len; ary2 = ary_new(rb_obj_class(ary), len); RARRAY(ary2)->len = len; for (i=0; ilen) { MEMCPY(RARRAY(ary2)->ptr+i, RARRAY(ary)->ptr, VALUE, RARRAY(ary)->len); } OBJ_INFECT(ary2, ary); return ary2; } /* * call-seq: * array.assoc(obj) -> an_array or nil * * Searches through an array whose elements are also arrays * comparing _obj_ with the first element of each contained array * using obj.==. * Returns the first contained array that matches (that * is, the first associated array), * or +nil+ if no match is found. * See also Array#rassoc. * * s1 = [ "colors", "red", "blue", "green" ] * s2 = [ "letters", "a", "b", "c" ] * s3 = "foo" * a = [ s1, s2, s3 ] * a.assoc("letters") #=> [ "letters", "a", "b", "c" ] * a.assoc("foo") #=> nil */ VALUE rb_ary_assoc(ary, key) VALUE ary, key; { long i; VALUE v; for (i = 0; i < RARRAY(ary)->len; ++i) { v = RARRAY(ary)->ptr[i]; if (TYPE(v) == T_ARRAY && RARRAY(v)->len > 0 && rb_equal(RARRAY(v)->ptr[0], key)) return v; } return Qnil; } /* * call-seq: * array.rassoc(key) -> an_array or nil * * Searches through the array whose elements are also arrays. Compares * key with the second element of each contained array using * ==. Returns the first contained array that matches. See * also Array#assoc. * * a = [ [ 1, "one"], [2, "two"], [3, "three"], ["ii", "two"] ] * a.rassoc("two") #=> [2, "two"] * a.rassoc("four") #=> nil */ VALUE rb_ary_rassoc(ary, value) VALUE ary, value; { long i; VALUE v; for (i = 0; i < RARRAY(ary)->len; ++i) { v = RARRAY(ary)->ptr[i]; if (TYPE(v) == T_ARRAY && RARRAY(v)->len > 1 && rb_equal(RARRAY(v)->ptr[1], value)) return v; } return Qnil; } /* * call-seq: * array == other_array -> bool * * Equality---Two arrays are equal if they contain the same number * of elements and if each element is equal to (according to * Object.==) the corresponding element in the other array. * * [ "a", "c" ] == [ "a", "c", 7 ] #=> false * [ "a", "c", 7 ] == [ "a", "c", 7 ] #=> true * [ "a", "c", 7 ] == [ "a", "d", "f" ] #=> false * */ static VALUE rb_ary_equal(ary1, ary2) VALUE ary1, ary2; { long i; if (ary1 == ary2) return Qtrue; if (TYPE(ary2) != T_ARRAY) { if (!rb_respond_to(ary2, rb_intern("to_ary"))) { return Qfalse; } return rb_equal(ary2, ary1); } if (RARRAY(ary1)->len != RARRAY(ary2)->len) return Qfalse; for (i=0; ilen; i++) { if (!rb_equal(rb_ary_elt(ary1, i), rb_ary_elt(ary2, i))) return Qfalse; } return Qtrue; } /* * call-seq: * array.eql?(other) -> true or false * * Returns true if _array_ and _other_ are the same object, * or are both arrays with the same content. */ static VALUE rb_ary_eql(ary1, ary2) VALUE ary1, ary2; { long i; if (ary1 == ary2) return Qtrue; if (TYPE(ary2) != T_ARRAY) return Qfalse; if (RARRAY(ary1)->len != RARRAY(ary2)->len) return Qfalse; for (i=0; ilen; i++) { if (!rb_eql(rb_ary_elt(ary1, i), rb_ary_elt(ary2, i))) return Qfalse; } return Qtrue; } static VALUE recursive_hash(ary, dummy, recur) VALUE ary, dummy; int recur; { long i, h; VALUE n; if (recur) { return LONG2FIX(0); } h = RARRAY(ary)->len; for (i=0; ilen; i++) { h = (h << 1) | (h<0 ? 1 : 0); n = rb_hash(RARRAY(ary)->ptr[i]); h ^= NUM2LONG(n); } return LONG2FIX(h); } /* * call-seq: * array.hash -> fixnum * * Compute a hash-code for this array. Two arrays with the same content * will have the same hash code (and will compare using eql?). */ static VALUE rb_ary_hash(ary) VALUE ary; { return rb_exec_recursive(recursive_hash, ary, 0); } /* * call-seq: * array.include?(obj) -> true or false * * Returns true if the given object is present in * self (that is, if any object == anObject), * false otherwise. * * a = [ "a", "b", "c" ] * a.include?("b") #=> true * a.include?("z") #=> false */ VALUE rb_ary_includes(ary, item) VALUE ary; VALUE item; { long i; for (i=0; ilen; i++) { if (rb_equal(RARRAY(ary)->ptr[i], item)) { return Qtrue; } } return Qfalse; } /* * call-seq: * array <=> other_array -> -1, 0, +1 * * Comparison---Returns an integer (-1, 0, * or +1) if this array is less than, equal to, or greater than * other_array. Each object in each array is compared * (using <=>). If any value isn't * equal, then that inequality is the return value. If all the * values found are equal, then the return is based on a * comparison of the array lengths. Thus, two arrays are * ``equal'' according to Array#<=> if and only if they have * the same length and the value of each element is equal to the * value of the corresponding element in the other array. * * [ "a", "a", "c" ] <=> [ "a", "b", "c" ] #=> -1 * [ 1, 2, 3, 4, 5, 6 ] <=> [ 1, 2 ] #=> +1 * */ VALUE rb_ary_cmp(ary1, ary2) VALUE ary1, ary2; { long i, len; ary2 = to_ary(ary2); len = RARRAY(ary1)->len; if (len > RARRAY(ary2)->len) { len = RARRAY(ary2)->len; } for (i=0; ilen - RARRAY(ary2)->len; if (len == 0) return INT2FIX(0); if (len > 0) return INT2FIX(1); return INT2FIX(-1); } static VALUE ary_make_hash(ary1, ary2) VALUE ary1, ary2; { VALUE hash = rb_hash_new(); long i; for (i=0; ilen; i++) { rb_hash_aset(hash, RARRAY(ary1)->ptr[i], Qtrue); } if (ary2) { for (i=0; ilen; i++) { rb_hash_aset(hash, RARRAY(ary2)->ptr[i], Qtrue); } } return hash; } /* * call-seq: * array - other_array -> an_array * * Array Difference---Returns a new array that is a copy of * the original array, removing any items that also appear in * other_array. (If you need set-like behavior, see the * library class Set.) * * [ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ] #=> [ 3, 3, 5 ] */ static VALUE rb_ary_diff(ary1, ary2) VALUE ary1, ary2; { VALUE ary3, hash; long i; hash = ary_make_hash(to_ary(ary2), 0); ary3 = rb_ary_new(); for (i=0; ilen; i++) { if (st_lookup(RHASH(hash)->tbl, RARRAY(ary1)->ptr[i], 0)) continue; rb_ary_push(ary3, rb_ary_elt(ary1, i)); } return ary3; } /* * call-seq: * array & other_array * * Set Intersection---Returns a new array * containing elements common to the two arrays, with no duplicates. * * [ 1, 1, 3, 5 ] & [ 1, 2, 3 ] #=> [ 1, 3 ] */ static VALUE rb_ary_and(ary1, ary2) VALUE ary1, ary2; { VALUE hash, ary3, v, vv; long i; ary2 = to_ary(ary2); ary3 = rb_ary_new2(RARRAY(ary1)->len < RARRAY(ary2)->len ? RARRAY(ary1)->len : RARRAY(ary2)->len); hash = ary_make_hash(ary2, 0); for (i=0; ilen; i++) { v = vv = rb_ary_elt(ary1, i); if (st_delete(RHASH(hash)->tbl, (st_data_t*)&vv, 0)) { rb_ary_push(ary3, v); } } return ary3; } /* * call-seq: * array | other_array -> an_array * * Set Union---Returns a new array by joining this array with * other_array, removing duplicates. * * [ "a", "b", "c" ] | [ "c", "d", "a" ] * #=> [ "a", "b", "c", "d" ] */ static VALUE rb_ary_or(ary1, ary2) VALUE ary1, ary2; { VALUE hash, ary3; VALUE v, vv; long i; ary2 = to_ary(ary2); ary3 = rb_ary_new2(RARRAY(ary1)->len+RARRAY(ary2)->len); hash = ary_make_hash(ary1, ary2); for (i=0; ilen; i++) { v = vv = rb_ary_elt(ary1, i); if (st_delete(RHASH(hash)->tbl, (st_data_t*)&vv, 0)) { rb_ary_push(ary3, v); } } for (i=0; ilen; i++) { v = vv = rb_ary_elt(ary2, i); if (st_delete(RHASH(hash)->tbl, (st_data_t*)&vv, 0)) { rb_ary_push(ary3, v); } } return ary3; } /* * call-seq: * array.uniq! -> array or nil * * Removes duplicate elements from _self_. * Returns nil if no changes are made (that is, no * duplicates are found). * * a = [ "a", "a", "b", "b", "c" ] * a.uniq! #=> ["a", "b", "c"] * b = [ "a", "b", "c" ] * b.uniq! #=> nil */ static VALUE rb_ary_uniq_bang(ary) VALUE ary; { VALUE hash, v, vv; long i, j; hash = ary_make_hash(ary, 0); if (RARRAY(ary)->len == RHASH(hash)->tbl->num_entries) { return Qnil; } for (i=j=0; ilen; i++) { v = vv = rb_ary_elt(ary, i); if (st_delete(RHASH(hash)->tbl, (st_data_t*)&vv, 0)) { rb_ary_store(ary, j++, v); } } RARRAY(ary)->len = j; return ary; } /* * call-seq: * array.uniq -> an_array * * Returns a new array by removing duplicate values in self. * * a = [ "a", "a", "b", "b", "c" ] * a.uniq #=> ["a", "b", "c"] */ static VALUE rb_ary_uniq(ary) VALUE ary; { ary = rb_ary_dup(ary); rb_ary_uniq_bang(ary); return ary; } /* * call-seq: * array.compact! -> array or nil * * Removes +nil+ elements from array. * Returns +nil+ if no changes were made. * * [ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ] * [ "a", "b", "c" ].compact! #=> nil */ static VALUE rb_ary_compact_bang(ary) VALUE ary; { VALUE *p, *t, *end; rb_ary_modify(ary); p = t = RARRAY(ary)->ptr; end = p + RARRAY(ary)->len; while (t < end) { if (NIL_P(*t)) t++; else *p++ = *t++; } if (RARRAY(ary)->len == (p - RARRAY(ary)->ptr)) { return Qnil; } RARRAY(ary)->len = RARRAY(ary)->aux.capa = (p - RARRAY(ary)->ptr); REALLOC_N(RARRAY(ary)->ptr, VALUE, RARRAY(ary)->len); return ary; } /* * call-seq: * array.compact -> an_array * * Returns a copy of _self_ with all +nil+ elements removed. * * [ "a", nil, "b", nil, "c", nil ].compact * #=> [ "a", "b", "c" ] */ static VALUE rb_ary_compact(ary) VALUE ary; { ary = rb_ary_dup(ary); rb_ary_compact_bang(ary); return ary; } /* * call-seq: * array.nitems -> int * * Returns the number of non-nil elements in _self_. * May be zero. * * [ 1, nil, 3, nil, 5 ].nitems #=> 3 */ static VALUE rb_ary_nitems(ary) VALUE ary; { long n = 0; VALUE *p, *pend; p = RARRAY(ary)->ptr; pend = p + RARRAY(ary)->len; while (p < pend) { if (!NIL_P(*p)) n++; p++; } return LONG2NUM(n); } static long flatten(ary, idx, ary2, memo) VALUE ary; long idx; VALUE ary2, memo; { VALUE id; long i = idx; long n, lim = idx + RARRAY(ary2)->len; id = rb_obj_id(ary2); if (rb_ary_includes(memo, id)) { rb_raise(rb_eArgError, "tried to flatten recursive array"); } rb_ary_push(memo, id); rb_ary_splice(ary, idx, 1, ary2); while (i < lim) { VALUE tmp; tmp = rb_check_array_type(rb_ary_elt(ary, i)); if (!NIL_P(tmp)) { n = flatten(ary, i, tmp, memo); i += n; lim += n; } i++; } rb_ary_pop(memo); return lim - idx - 1; /* returns number of increased items */ } /* * call-seq: * array.flatten! -> array or nil * * Flattens _self_ in place. * Returns nil if no modifications were made (i.e., * array contains no subarrays.) * * a = [ 1, 2, [3, [4, 5] ] ] * a.flatten! #=> [1, 2, 3, 4, 5] * a.flatten! #=> nil * a #=> [1, 2, 3, 4, 5] */ static VALUE rb_ary_flatten_bang(ary) VALUE ary; { long i = 0; int mod = 0; VALUE memo = Qnil; while (ilen) { VALUE ary2 = RARRAY(ary)->ptr[i]; VALUE tmp; tmp = rb_check_array_type(ary2); if (!NIL_P(tmp)) { if (NIL_P(memo)) { memo = rb_ary_new(); } i += flatten(ary, i, tmp, memo); mod = 1; } i++; } if (mod == 0) return Qnil; return ary; } /* * call-seq: * array.flatten -> an_array * * Returns a new array that is a one-dimensional flattening of this * array (recursively). That is, for every element that is an array, * extract its elements into the new array. * * s = [ 1, 2, 3 ] #=> [1, 2, 3] * t = [ 4, 5, 6, [7, 8] ] #=> [4, 5, 6, [7, 8]] * a = [ s, t, 9, 10 ] #=> [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10] * a.flatten #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10 */ static VALUE rb_ary_flatten(ary) VALUE ary; { ary = rb_ary_dup(ary); rb_ary_flatten_bang(ary); return ary; } /* Arrays are ordered, integer-indexed collections of any object. * Array indexing starts at 0, as in C or Java. A negative index is * assumed to be relative to the end of the array---that is, an index of -1 * indicates the last element of the array, -2 is the next to last * element in the array, and so on. */ void Init_Array() { rb_cArray = rb_define_class("Array", rb_cObject); rb_include_module(rb_cArray, rb_mEnumerable); rb_define_alloc_func(rb_cArray, ary_alloc); rb_define_singleton_method(rb_cArray, "[]", rb_ary_s_create, -1); rb_define_method(rb_cArray, "initialize", rb_ary_initialize, -1); rb_define_method(rb_cArray, "initialize_copy", rb_ary_replace, 1); rb_define_method(rb_cArray, "to_s", rb_ary_to_s, 0); rb_define_method(rb_cArray, "inspect", rb_ary_inspect, 0); rb_define_method(rb_cArray, "to_a", rb_ary_to_a, 0); rb_define_method(rb_cArray, "to_ary", rb_ary_to_ary_m, 0); rb_define_method(rb_cArray, "frozen?", rb_ary_frozen_p, 0); rb_define_method(rb_cArray, "==", rb_ary_equal, 1); rb_define_method(rb_cArray, "eql?", rb_ary_eql, 1); rb_define_method(rb_cArray, "hash", rb_ary_hash, 0); rb_define_method(rb_cArray, "[]", rb_ary_aref, -1); rb_define_method(rb_cArray, "[]=", rb_ary_aset, -1); rb_define_method(rb_cArray, "at", rb_ary_at, 1); rb_define_method(rb_cArray, "fetch", rb_ary_fetch, -1); rb_define_method(rb_cArray, "first", rb_ary_first, -1); rb_define_method(rb_cArray, "last", rb_ary_last, -1); rb_define_method(rb_cArray, "concat", rb_ary_concat, 1); rb_define_method(rb_cArray, "<<", rb_ary_push, 1); rb_define_method(rb_cArray, "push", rb_ary_push_m, -1); rb_define_method(rb_cArray, "pop", rb_ary_pop_m, -1); rb_define_method(rb_cArray, "shift", rb_ary_shift_m, -1); rb_define_method(rb_cArray, "unshift", rb_ary_unshift_m, -1); rb_define_method(rb_cArray, "insert", rb_ary_insert, -1); rb_define_method(rb_cArray, "each", rb_ary_each, 0); rb_define_method(rb_cArray, "each_index", rb_ary_each_index, 0); rb_define_method(rb_cArray, "reverse_each", rb_ary_reverse_each, 0); rb_define_method(rb_cArray, "length", rb_ary_length, 0); rb_define_alias(rb_cArray, "size", "length"); rb_define_method(rb_cArray, "empty?", rb_ary_empty_p, 0); rb_define_method(rb_cArray, "index", rb_ary_index, -1); rb_define_method(rb_cArray, "rindex", rb_ary_rindex, -1); rb_define_method(rb_cArray, "join", rb_ary_join_m, -1); rb_define_method(rb_cArray, "reverse", rb_ary_reverse_m, 0); rb_define_method(rb_cArray, "reverse!", rb_ary_reverse_bang, 0); rb_define_method(rb_cArray, "sort", rb_ary_sort, 0); rb_define_method(rb_cArray, "sort!", rb_ary_sort_bang, 0); rb_define_method(rb_cArray, "collect", rb_ary_collect, 0); rb_define_method(rb_cArray, "collect!", rb_ary_collect_bang, 0); rb_define_method(rb_cArray, "map", rb_ary_collect, 0); rb_define_method(rb_cArray, "map!", rb_ary_collect_bang, 0); rb_define_method(rb_cArray, "select", rb_ary_select, 0); rb_define_method(rb_cArray, "values_at", rb_ary_values_at, -1); rb_define_method(rb_cArray, "delete", rb_ary_delete, 1); rb_define_method(rb_cArray, "delete_at", rb_ary_delete_at_m, 1); rb_define_method(rb_cArray, "delete_if", rb_ary_delete_if, 0); rb_define_method(rb_cArray, "reject", rb_ary_reject, 0); rb_define_method(rb_cArray, "reject!", rb_ary_reject_bang, 0); rb_define_method(rb_cArray, "zip", rb_ary_zip, -1); rb_define_method(rb_cArray, "transpose", rb_ary_transpose, 0); rb_define_method(rb_cArray, "replace", rb_ary_replace, 1); rb_define_method(rb_cArray, "clear", rb_ary_clear, 0); rb_define_method(rb_cArray, "fill", rb_ary_fill, -1); rb_define_method(rb_cArray, "include?", rb_ary_includes, 1); rb_define_method(rb_cArray, "<=>", rb_ary_cmp, 1); rb_define_method(rb_cArray, "slice", rb_ary_aref, -1); rb_define_method(rb_cArray, "slice!", rb_ary_slice_bang, -1); rb_define_method(rb_cArray, "assoc", rb_ary_assoc, 1); rb_define_method(rb_cArray, "rassoc", rb_ary_rassoc, 1); rb_define_method(rb_cArray, "+", rb_ary_plus, 1); rb_define_method(rb_cArray, "*", rb_ary_times, 1); rb_define_method(rb_cArray, "-", rb_ary_diff, 1); rb_define_method(rb_cArray, "&", rb_ary_and, 1); rb_define_method(rb_cArray, "|", rb_ary_or, 1); rb_define_method(rb_cArray, "uniq", rb_ary_uniq, 0); rb_define_method(rb_cArray, "uniq!", rb_ary_uniq_bang, 0); rb_define_method(rb_cArray, "compact", rb_ary_compact, 0); rb_define_method(rb_cArray, "compact!", rb_ary_compact_bang, 0); rb_define_method(rb_cArray, "flatten", rb_ary_flatten, 0); rb_define_method(rb_cArray, "flatten!", rb_ary_flatten_bang, 0); rb_define_method(rb_cArray, "nitems", rb_ary_nitems, 0); id_cmp = rb_intern("<=>"); rb_cValues = rb_define_class("Values", rb_cArray); } /********************************************************************** ascii.c - Oniguruma (regular expression library) **********************************************************************/ /*- * Copyright (c) 2002-2004 K.Kosako * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "regenc.h" static int ascii_is_code_ctype(OnigCodePoint code, unsigned int ctype) { if (code < 128) return ONIGENC_IS_ASCII_CODE_CTYPE(code, ctype); else return FALSE; } OnigEncodingType OnigEncodingASCII = { onigenc_single_byte_mbc_enc_len, "US-ASCII", /* name */ 1, /* max byte length */ 1, /* min byte length */ ONIGENC_AMBIGUOUS_MATCH_ASCII_CASE, { (OnigCodePoint )'\\' /* esc */ , (OnigCodePoint )ONIG_INEFFECTIVE_META_CHAR /* anychar '.' */ , (OnigCodePoint )ONIG_INEFFECTIVE_META_CHAR /* anytime '*' */ , (OnigCodePoint )ONIG_INEFFECTIVE_META_CHAR /* zero or one time '?' */ , (OnigCodePoint )ONIG_INEFFECTIVE_META_CHAR /* one or more time '+' */ , (OnigCodePoint )ONIG_INEFFECTIVE_META_CHAR /* anychar anytime */ }, onigenc_is_mbc_newline_0x0a, onigenc_single_byte_mbc_to_code, onigenc_single_byte_code_to_mbclen, onigenc_single_byte_code_to_mbc, onigenc_ascii_mbc_to_normalize, onigenc_ascii_is_mbc_ambiguous, onigenc_ascii_get_all_pair_ambig_codes, onigenc_nothing_get_all_comp_ambig_codes, ascii_is_code_ctype, onigenc_not_support_get_ctype_code_range, onigenc_single_byte_left_adjust_char_head, onigenc_always_true_is_allowed_reverse_match }; /********************************************************************** bignum.c - $Author: murphy $ $Date: 2005-11-05 04:33:55 +0100 (Sa, 05 Nov 2005) $ created at: Fri Jun 10 00:48:55 JST 1994 Copyright (C) 1993-2003 Yukihiro Matsumoto **********************************************************************/ #include "ruby.h" #include #include #ifdef HAVE_IEEEFP_H #include #endif VALUE rb_cBignum; #if defined __MINGW32__ #define USHORT _USHORT #endif #define BDIGITS(x) ((BDIGIT*)RBIGNUM(x)->digits) #define BITSPERDIG (SIZEOF_BDIGITS*CHAR_BIT) #define BIGRAD ((BDIGIT_DBL)1 << BITSPERDIG) #define DIGSPERLONG ((unsigned int)(SIZEOF_LONG/SIZEOF_BDIGITS)) #if HAVE_LONG_LONG # define DIGSPERLL ((unsigned int)(SIZEOF_LONG_LONG/SIZEOF_BDIGITS)) #endif #define BIGUP(x) ((BDIGIT_DBL)(x) << BITSPERDIG) #define BIGDN(x) RSHIFT(x,BITSPERDIG) #define BIGLO(x) ((BDIGIT)((x) & (BIGRAD-1))) #define BDIGMAX ((BDIGIT)-1) #define BIGZEROP(x) (RBIGNUM(x)->len == 0 || (RBIGNUM(x)->len == 1 && BDIGITS(x)[0] == 0)) static VALUE bignew_1(klass, len, sign) VALUE klass; long len; char sign; { NEWOBJ(big, struct RBignum); OBJSETUP(big, klass, T_BIGNUM); big->sign = sign; big->len = len; big->digits = ALLOC_N(BDIGIT, len); return (VALUE)big; } #define bignew(len,sign) bignew_1(rb_cBignum,len,sign) VALUE rb_big_clone(x) VALUE x; { VALUE z = bignew_1(CLASS_OF(x), RBIGNUM(x)->len, RBIGNUM(x)->sign); MEMCPY(BDIGITS(z), BDIGITS(x), BDIGIT, RBIGNUM(x)->len); return z; } static void get2comp(x, carry) /* get 2's complement */ VALUE x; int carry; { long i = RBIGNUM(x)->len; BDIGIT *ds = BDIGITS(x); BDIGIT_DBL num; while (i--) ds[i] = ~ds[i]; i = 0; num = 1; do { num += ds[i]; ds[i++] = BIGLO(num); num = BIGDN(num); } while (i < RBIGNUM(x)->len); if (!carry) return; if ((ds[RBIGNUM(x)->len-1] & (1<<(BITSPERDIG-1))) == 0) { REALLOC_N(RBIGNUM(x)->digits, BDIGIT, ++RBIGNUM(x)->len); ds = BDIGITS(x); ds[RBIGNUM(x)->len-1] = ~0; } } void rb_big_2comp(x) /* get 2's complement */ VALUE x; { get2comp(x, Qtrue); } static VALUE bignorm(x) VALUE x; { if (!FIXNUM_P(x)) { long len = RBIGNUM(x)->len; BDIGIT *ds = BDIGITS(x); while (len-- && !ds[len]) ; RBIGNUM(x)->len = ++len; if (len*SIZEOF_BDIGITS <= sizeof(VALUE)) { long num = 0; while (len--) { num = BIGUP(num) + ds[len]; } if (num >= 0) { if (RBIGNUM(x)->sign) { if (POSFIXABLE(num)) return LONG2FIX(num); } else if (NEGFIXABLE(-(long)num)) return LONG2FIX(-(long)num); } } } return x; } VALUE rb_big_norm(x) VALUE x; { return bignorm(x); } VALUE rb_uint2big(n) unsigned long n; { BDIGIT_DBL num = n; long i = 0; BDIGIT *digits; VALUE big; big = bignew(DIGSPERLONG, 1); digits = BDIGITS(big); while (i < DIGSPERLONG) { digits[i++] = BIGLO(num); num = BIGDN(num); } i = DIGSPERLONG; while (--i && !digits[i]) ; RBIGNUM(big)->len = i+1; return big; } VALUE rb_int2big(n) long n; { long neg = 0; VALUE big; if (n < 0) { n = -n; neg = 1; } big = rb_uint2big(n); if (neg) { RBIGNUM(big)->sign = 0; } return big; } VALUE rb_uint2inum(n) unsigned long n; { if (POSFIXABLE(n)) return LONG2FIX(n); return rb_uint2big(n); } VALUE rb_int2inum(n) long n; { if (FIXABLE(n)) return LONG2FIX(n); return rb_int2big(n); } #ifdef HAVE_LONG_LONG void rb_quad_pack(buf, val) char *buf; VALUE val; { LONG_LONG q; val = rb_to_int(val); if (FIXNUM_P(val)) { q = FIX2LONG(val); } else { long len = RBIGNUM(val)->len; BDIGIT *ds; if (len > SIZEOF_LONG_LONG/SIZEOF_BDIGITS) { len = SIZEOF_LONG/SIZEOF_BDIGITS; } ds = BDIGITS(val); q = 0; while (len--) { q = BIGUP(q); q += ds[len]; } if (!RBIGNUM(val)->sign) q = -q; } memcpy(buf, (char*)&q, SIZEOF_LONG_LONG); } VALUE rb_quad_unpack(buf, sign) const char *buf; int sign; { unsigned LONG_LONG q; long neg = 0; long i; BDIGIT *digits; VALUE big; memcpy(&q, buf, SIZEOF_LONG_LONG); if (sign) { if (FIXABLE((LONG_LONG)q)) return LONG2FIX((LONG_LONG)q); if ((LONG_LONG)q < 0) { q = -(LONG_LONG)q; neg = 1; } } else { if (POSFIXABLE(q)) return LONG2FIX(q); } i = 0; big = bignew(DIGSPERLL, 1); digits = BDIGITS(big); while (i < DIGSPERLL) { digits[i++] = BIGLO(q); q = BIGDN(q); } i = DIGSPERLL; while (i-- && !digits[i]) ; RBIGNUM(big)->len = i+1; if (neg) { RBIGNUM(big)->sign = 0; } return bignorm(big); } #else #define QUAD_SIZE 8 void rb_quad_pack(buf, val) char *buf; VALUE val; { long len; memset(buf, 0, QUAD_SIZE); val = rb_to_int(val); if (FIXNUM_P(val)) { val = rb_int2big(FIX2LONG(val)); } len = RBIGNUM(val)->len * SIZEOF_BDIGITS; if (len > QUAD_SIZE) { rb_raise(rb_eRangeError, "bignum too big to convert into `quad int'"); } memcpy(buf, (char*)BDIGITS(val), len); if (!RBIGNUM(val)->sign) { len = QUAD_SIZE; while (len--) { *buf = ~*buf; buf++; } } } #define BNEG(b) (RSHIFT(((BDIGIT*)b)[QUAD_SIZE/SIZEOF_BDIGITS-1],BITSPERDIG-1) != 0) VALUE rb_quad_unpack(buf, sign) const char *buf; int sign; { VALUE big = bignew(QUAD_SIZE/SIZEOF_BDIGITS, 1); memcpy((char*)BDIGITS(big), buf, QUAD_SIZE); if (sign && BNEG(buf)) { long len = QUAD_SIZE; char *tmp = (char*)BDIGITS(big); RBIGNUM(big)->sign = 0; while (len--) { *tmp = ~*tmp; tmp++; } } return bignorm(big); } #endif VALUE rb_cstr_to_inum(str, base, badcheck) const char *str; int base; int badcheck; { const char *s = str; char *end; char sign = 1, nondigit = 0; int c; BDIGIT_DBL num; long len, blen = 1; long i; VALUE z; BDIGIT *zds; if (!str) { if (badcheck) goto bad; return INT2FIX(0); } if (badcheck) { while (ISSPACE(*str)) str++; } else { while (ISSPACE(*str) || *str == '_') str++; } if (str[0] == '+') { str++; } else if (str[0] == '-') { str++; sign = 0; } if (str[0] == '+' || str[0] == '-') { if (badcheck) goto bad; return INT2FIX(0); } if (base <= 0) { if (str[0] == '0') { switch (str[1]) { case 'x': case 'X': base = 16; break; case 'b': case 'B': base = 2; break; case 'o': case 'O': base = 8; break; case 'd': case 'D': base = 10; break; default: base = 8; } } else if (base < -1) { base = -base; } else { base = 10; } } switch (base) { case 2: len = 1; if (str[0] == '0' && (str[1] == 'b'||str[1] == 'B')) { str += 2; } break; case 3: len = 2; break; case 8: if (str[0] == '0' && (str[1] == 'o'||str[1] == 'O')) { str += 2; } case 4: case 5: case 6: case 7: len = 3; break; case 10: if (str[0] == '0' && (str[1] == 'd'||str[1] == 'D')) { str += 2; } case 9: case 11: case 12: case 13: case 14: case 15: len = 4; break; case 16: len = 4; if (str[0] == '0' && (str[1] == 'x'||str[1] == 'X')) { str += 2; } break; default: if (base < 2 || 36 < base) { rb_raise(rb_eArgError, "illegal radix %d", base); } if (base <= 32) { len = 5; } else { len = 6; } break; } if (*str == '0') { /* squeeze preceeding 0s */ while (*++str == '0'); --str; } len *= strlen(str)*sizeof(char); if (len <= (sizeof(VALUE)*CHAR_BIT)) { unsigned long val = strtoul((char*)str, &end, base); if (*end == '_') goto bigparse; if (badcheck) { if (end == str) goto bad; /* no number */ while (*end && ISSPACE(*end)) end++; if (*end) goto bad; /* trailing garbage */ } if (POSFIXABLE(val)) { if (sign) return LONG2FIX(val); else { long result = -(long)val; return LONG2FIX(result); } } else { VALUE big = rb_uint2big(val); RBIGNUM(big)->sign = sign; return bignorm(big); } } bigparse: len = (len/BITSPERDIG)+1; if (badcheck && *str == '_') goto bad; z = bignew(len, sign); zds = BDIGITS(z); for (i=len;i--;) zds[i]=0; while (c = *str++) { if (c == '_') { if (badcheck) { if (nondigit) goto bad; nondigit = c; } continue; } else if (!ISASCII(c)) { break; } else if (isdigit(c)) { c -= '0'; } else if (islower(c)) { c -= 'a' - 10; } else if (isupper(c)) { c -= 'A' - 10; } else { break; } if (c >= base) break; nondigit = 0; i = 0; num = c; for (;;) { while (iptr; } if (s) { len = RSTRING(str)->len; if (s[len]) { /* no sentinel somehow */ char *p = ALLOCA_N(char, len+1); MEMCPY(p, s, char, len); p[len] = '\0'; s = p; } } return rb_cstr_to_inum(s, base, badcheck); } #if HAVE_LONG_LONG VALUE rb_ull2big(n) unsigned LONG_LONG n; { BDIGIT_DBL num = n; long i = 0; BDIGIT *digits; VALUE big; big = bignew(DIGSPERLL, 1); digits = BDIGITS(big); while (i < DIGSPERLL) { digits[i++] = BIGLO(num); num = BIGDN(num); } i = DIGSPERLL; while (i-- && !digits[i]) ; RBIGNUM(big)->len = i+1; return big; } VALUE rb_ll2big(n) LONG_LONG n; { long neg = 0; VALUE big; if (n < 0) { n = -n; neg = 1; } big = rb_ull2big(n); if (neg) { RBIGNUM(big)->sign = 0; } return big; } VALUE rb_ull2inum(n) unsigned LONG_LONG n; { if (POSFIXABLE(n)) return LONG2FIX(n); return rb_ull2big(n); } VALUE rb_ll2inum(n) LONG_LONG n; { if (FIXABLE(n)) return LONG2FIX(n); return rb_ll2big(n); } #endif /* HAVE_LONG_LONG */ VALUE rb_cstr2inum(str, base) const char *str; int base; { return rb_cstr_to_inum(str, base, base==0); } VALUE rb_str2inum(str, base) VALUE str; int base; { return rb_str_to_inum(str, base, base==0); } const char ruby_digitmap[] = "0123456789abcdefghijklmnopqrstuvwxyz"; VALUE rb_big2str(x, base) VALUE x; int base; { volatile VALUE t; BDIGIT *ds; long i, j, hbase; VALUE ss; char *s, c; if (FIXNUM_P(x)) { return rb_fix2str(x, base); } i = RBIGNUM(x)->len; if (BIGZEROP(x)) { return rb_str_new2("0"); } j = SIZEOF_BDIGITS*CHAR_BIT*i; switch (base) { case 2: break; case 3: j = j * 647L / 1024; break; case 4: case 5: case 6: case 7: j /= 2; break; case 8: case 9: j /= 3; break; case 10: case 11: case 12: case 13: case 14: case 15: j = j * 241L / 800; break; case 16: case 17: case 18: case 19: case 20: case 21: case 22: case 23: case 24: case 25: case 26: case 27: case 28: case 29: case 30: case 31: j /= 4; break; case 32: case 33: case 34: case 35: case 36: j /= 5; break; default: rb_raise(rb_eArgError, "illegal radix %d", base); break; } j += 2; hbase = base * base; #if SIZEOF_BDIGITS > 2 hbase *= hbase; #endif t = rb_big_clone(x); ds = BDIGITS(t); ss = rb_str_new(0, j); s = RSTRING(ss)->ptr; s[0] = RBIGNUM(x)->sign ? '+' : '-'; while (i && j) { long k = i; BDIGIT_DBL num = 0; while (k--) { num = BIGUP(num) + ds[k]; ds[k] = (BDIGIT)(num / hbase); num %= hbase; } if (ds[i-1] == 0) i--; k = SIZEOF_BDIGITS; while (k--) { c = (char)(num % base); s[--j] = ruby_digitmap[(int)c]; num /= base; if (i == 0 && num == 0) break; } } while (s[j] == '0') j++; RSTRING(ss)->len -= RBIGNUM(x)->sign?j:j-1; memmove(RBIGNUM(x)->sign?s:s+1, s+j, RSTRING(ss)->len); s[RSTRING(ss)->len] = '\0'; return ss; } /* * call-seq: * big.to_s(base=10) => string * * Returns a string containing the representation of big radix * base (2 through 36). * * 12345654321.to_s #=> "12345654321" * 12345654321.to_s(2) #=> "1011011111110110111011110000110001" * 12345654321.to_s(8) #=> "133766736061" * 12345654321.to_s(16) #=> "2dfdbbc31" * 78546939656932.to_s(36) #=> "rubyrules" */ static VALUE rb_big_to_s(argc, argv, x) int argc; VALUE *argv; VALUE x; { VALUE b; int base; rb_scan_args(argc, argv, "01", &b); if (argc == 0) base = 10; else base = NUM2INT(b); return rb_big2str(x, base); } static unsigned long big2ulong(x, type, check) VALUE x; char *type; int check; { long len = RBIGNUM(x)->len; BDIGIT_DBL num; BDIGIT *ds; if (len > SIZEOF_LONG/SIZEOF_BDIGITS) { if (check) rb_raise(rb_eRangeError, "bignum too big to convert into `%s'", type); len = SIZEOF_LONG/SIZEOF_BDIGITS; } ds = BDIGITS(x); num = 0; while (len--) { num = BIGUP(num); num += ds[len]; } return num; } unsigned long rb_big2ulong_pack(x) VALUE x; { unsigned long num = big2ulong(x, "unsigned long", Qfalse); if (!RBIGNUM(x)->sign) { return -num; } return num; } unsigned long rb_big2ulong(x) VALUE x; { unsigned long num = big2ulong(x, "unsigned long", Qtrue); if (!RBIGNUM(x)->sign) { if ((long)num < 0) { rb_raise(rb_eRangeError, "bignum out of range of unsigned long"); } return -num; } return num; } long rb_big2long(x) VALUE x; { unsigned long num = big2ulong(x, "long", Qtrue); if ((long)num < 0 && (RBIGNUM(x)->sign || (long)num != LONG_MIN)) { rb_raise(rb_eRangeError, "bignum too big to convert into `long'"); } if (!RBIGNUM(x)->sign) return -(long)num; return num; } #if HAVE_LONG_LONG static unsigned LONG_LONG big2ull(x, type) VALUE x; char *type; { long len = RBIGNUM(x)->len; BDIGIT_DBL num; BDIGIT *ds; if (len > SIZEOF_LONG_LONG/SIZEOF_BDIGITS) rb_raise(rb_eRangeError, "bignum too big to convert into `%s'", type); ds = BDIGITS(x); num = 0; while (len--) { num = BIGUP(num); num += ds[len]; } return num; } unsigned LONG_LONG rb_big2ull(x) VALUE x; { unsigned LONG_LONG num = big2ull(x, "unsigned long long"); if (!RBIGNUM(x)->sign) return -num; return num; } LONG_LONG rb_big2ll(x) VALUE x; { unsigned LONG_LONG num = big2ull(x, "long long"); if ((LONG_LONG)num < 0 && (RBIGNUM(x)->sign || (LONG_LONG)num != LLONG_MIN)) { rb_raise(rb_eRangeError, "bignum too big to convert into `long long'"); } if (!RBIGNUM(x)->sign) return -(LONG_LONG)num; return num; } #endif /* HAVE_LONG_LONG */ static VALUE dbl2big(d) double d; { long i = 0; BDIGIT c; BDIGIT *digits; VALUE z; double u = (d < 0)?-d:d; if (isinf(d)) { rb_raise(rb_eFloatDomainError, d < 0 ? "-Infinity" : "Infinity"); } if (isnan(d)) { rb_raise(rb_eFloatDomainError, "NaN"); } while (!POSFIXABLE(u) || 0 != (long)u) { u /= (double)(BIGRAD); i++; } z = bignew(i, d>=0); digits = BDIGITS(z); while (i--) { u *= BIGRAD; c = (BDIGIT)u; u -= c; digits[i] = c; } return z; } VALUE rb_dbl2big(d) double d; { return bignorm(dbl2big(d)); } double rb_big2dbl(x) VALUE x; { double d = 0.0; long i = RBIGNUM(x)->len; BDIGIT *ds = BDIGITS(x); while (i--) { d = ds[i] + BIGRAD*d; } if (isinf(d)) { rb_warn("Bignum out of Float range"); d = HUGE_VAL; } if (!RBIGNUM(x)->sign) d = -d; return d; } /* * call-seq: * big.to_f -> float * * Converts big to a Float. If big doesn't * fit in a Float, the result is infinity. * */ static VALUE rb_big_to_f(x) VALUE x; { return rb_float_new(rb_big2dbl(x)); } /* * call-seq: * big <=> numeric => -1, 0, +1 * * Comparison---Returns -1, 0, or +1 depending on whether big is * less than, equal to, or greater than numeric. This is the * basis for the tests in Comparable. * */ static VALUE rb_big_cmp(x, y) VALUE x, y; { long xlen = RBIGNUM(x)->len; switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; case T_FLOAT: return rb_dbl_cmp(rb_big2dbl(x), RFLOAT(y)->value); default: return rb_num_coerce_cmp(x, y); } if (RBIGNUM(x)->sign > RBIGNUM(y)->sign) return INT2FIX(1); if (RBIGNUM(x)->sign < RBIGNUM(y)->sign) return INT2FIX(-1); if (xlen < RBIGNUM(y)->len) return (RBIGNUM(x)->sign) ? INT2FIX(-1) : INT2FIX(1); if (xlen > RBIGNUM(y)->len) return (RBIGNUM(x)->sign) ? INT2FIX(1) : INT2FIX(-1); while(xlen-- && (BDIGITS(x)[xlen]==BDIGITS(y)[xlen])); if (-1 == xlen) return INT2FIX(0); return (BDIGITS(x)[xlen] > BDIGITS(y)[xlen]) ? (RBIGNUM(x)->sign ? INT2FIX(1) : INT2FIX(-1)) : (RBIGNUM(x)->sign ? INT2FIX(-1) : INT2FIX(1)); } /* * call-seq: * big == obj => true or false * * Returns true only if obj has the same value * as big. Contrast this with Bignum#eql?, which * requires obj to be a Bignum. * * 68719476736 == 68719476736.0 #=> true */ static VALUE rb_big_eq(x, y) VALUE x, y; { switch (TYPE(y)) { case T_FIXNUM: y = rb_int2big(FIX2LONG(y)); break; case T_BIGNUM: break; case T_FLOAT: { volatile double a, b; a = RFLOAT(y)->value; b = rb_big2dbl(x); if (isnan(a) || isnan(b)) return Qfalse; return (a == b)?Qtrue:Qfalse; } default: return rb_equal(y, x); } if (RBIGNUM(x)->sign != RBIGNUM(y)->sign) return Qfalse; if (RBIGNUM(x)->len != RBIGNUM(y)->len) return Qfalse; if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM(y)->len) != 0) return Qfalse; return Qtrue; } /* * call-seq: * big.eql?(obj) => true or false * * Returns true only if obj is a * Bignum with the same value as big. Contrast this * with Bignum#==, which performs type conversions. * * 68719476736.eql?(68719476736.0) #=> false */ static VALUE rb_big_eql(x, y) VALUE x, y; { if (TYPE(y) != T_BIGNUM) return Qfalse; if (RBIGNUM(x)->sign != RBIGNUM(y)->sign) return Qfalse; if (RBIGNUM(x)->len != RBIGNUM(y)->len) return Qfalse; if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM(y)->len) != 0) return Qfalse; return Qtrue; } /* * call-seq: * -big => other_big * * Unary minus (returns a new Bignum whose value is 0-big) */ static VALUE rb_big_uminus(x) VALUE x; { VALUE z = rb_big_clone(x); RBIGNUM(z)->sign = !RBIGNUM(x)->sign; return bignorm(z); } /* * call-seq: * ~big => integer * * Inverts the bits in big. As Bignums are conceptually infinite * length, the result acts as if it had an infinite number of one * bits to the left. In hex representations, this is displayed * as two periods to the left of the digits. * * sprintf("%X", ~0x1122334455) #=> "..FEEDDCCBBAA" */ static VALUE rb_big_neg(x) VALUE x; { VALUE z = rb_big_clone(x); long i = RBIGNUM(x)->len; BDIGIT *ds = BDIGITS(z); if (!RBIGNUM(x)->sign) get2comp(z, Qtrue); while (i--) ds[i] = ~ds[i]; if (RBIGNUM(x)->sign) get2comp(z, Qfalse); RBIGNUM(z)->sign = !RBIGNUM(z)->sign; return bignorm(z); } static VALUE bigsub(x, y) VALUE x, y; { VALUE z = 0; BDIGIT *zds; BDIGIT_DBL_SIGNED num; long i = RBIGNUM(x)->len; /* if x is larger than y, swap */ if (RBIGNUM(x)->len < RBIGNUM(y)->len) { z = x; x = y; y = z; /* swap x y */ } else if (RBIGNUM(x)->len == RBIGNUM(y)->len) { while (i > 0) { i--; if (BDIGITS(x)[i] > BDIGITS(y)[i]) { break; } if (BDIGITS(x)[i] < BDIGITS(y)[i]) { z = x; x = y; y = z; /* swap x y */ break; } } } z = bignew(RBIGNUM(x)->len, (z == 0)?1:0); zds = BDIGITS(z); for (i = 0, num = 0; i < RBIGNUM(y)->len; i++) { num += (BDIGIT_DBL_SIGNED)BDIGITS(x)[i] - BDIGITS(y)[i]; zds[i] = BIGLO(num); num = BIGDN(num); } while (num && i < RBIGNUM(x)->len) { num += BDIGITS(x)[i]; zds[i++] = BIGLO(num); num = BIGDN(num); } while (i < RBIGNUM(x)->len) { zds[i] = BDIGITS(x)[i]; i++; } return z; }