/- Theorems/Exercises from "Logical Investigations, with the Nuprl Proof Assistant" by Robert L. Constable and Anne Trostle http://www.nuprl.org/MathLibrary/LogicalInvestigations/ -/ import logic -- 2. The Minimal Implicational Calculus theorem thm1 {A B : Prop} : A → B → A := assume Ha Hb, Ha theorem thm2 {A B C : Prop} : (A → B) → (A → B → C) → (A → C) := assume Hab Habc Ha, Habc Ha (Hab Ha) theorem thm3 {A B C : Prop} : (A → B) → (B → C) → (A → C) := assume Hab Hbc Ha, Hbc (Hab Ha) -- 3. False Propositions and Negation theorem thm4 {P Q : Prop} : ¬P → P → Q := assume Hnp Hp, absurd Hp Hnp theorem thm5 {P : Prop} : P → ¬¬P := assume (Hp : P) (HnP : ¬P), absurd Hp HnP theorem thm6 {P Q : Prop} : (P → Q) → (¬Q → ¬P) := assume (Hpq : P → Q) (Hnq : ¬Q) (Hp : P), have Hq : Q, from Hpq Hp, show false, from absurd Hq Hnq theorem thm7 {P Q : Prop} : (P → ¬P) → (P → Q) := assume Hpnp Hp, absurd Hp (Hpnp Hp) theorem thm8 {P Q : Prop} : ¬(P → Q) → (P → ¬Q) := assume (Hn : ¬(P → Q)) (Hp : P) (Hq : Q), -- Rermak we don't even need the hypothesis Hp have H : P → Q, from assume H', Hq, absurd H Hn -- 4. Conjunction and Disjunction theorem thm9 {P : Prop} : (P ∨ ¬P) → (¬¬P → P) := assume (em : P ∨ ¬P) (Hnn : ¬¬P), or_elim em (assume Hp, Hp) (assume Hn, absurd Hn Hnn) theorem thm10 {P : Prop} : ¬¬(P ∨ ¬P) := assume Hnem : ¬(P ∨ ¬P), have Hnp : ¬P, from assume Hp : P, have Hem : P ∨ ¬P, from or_inl Hp, absurd Hem Hnem, have Hem : P ∨ ¬P, from or_inr Hnp, absurd Hem Hnem theorem thm11 {P Q : Prop} : ¬P ∨ ¬Q → ¬(P ∧ Q) := assume (H : ¬P ∨ ¬Q) (Hn : P ∧ Q), or_elim H (assume Hnp : ¬P, absurd (and_elim_left Hn) Hnp) (assume Hnq : ¬Q, absurd (and_elim_right Hn) Hnq) theorem thm12 {P Q : Prop} : ¬(P ∨ Q) → ¬P ∧ ¬Q := assume H : ¬(P ∨ Q), have Hnp : ¬P, from assume Hp : P, absurd (or_inl Hp) H, have Hnq : ¬Q, from assume Hq : Q, absurd (or_inr Hq) H, and_intro Hnp Hnq theorem thm13 {P Q : Prop} : ¬P ∧ ¬Q → ¬(P ∨ Q) := assume (H : ¬P ∧ ¬Q) (Hn : P ∨ Q), or_elim Hn (assume Hp : P, absurd Hp (and_elim_left H)) (assume Hq : Q, absurd Hq (and_elim_right H)) theorem thm14 {P Q : Prop} : ¬P ∨ Q → P → Q := assume (Hor : ¬P ∨ Q) (Hp : P), or_elim Hor (assume Hnp : ¬P, absurd Hp Hnp) (assume Hq : Q, Hq) theorem thm15 {P Q : Prop} : (P → Q) → ¬¬(¬P ∨ Q) := assume (Hpq : P → Q) (Hn : ¬(¬P ∨ Q)), have H1 : ¬¬P ∧ ¬Q, from thm12 Hn, have Hnp : ¬P, from mt Hpq (and_elim_right H1), absurd Hnp (and_elim_left H1) theorem thm16 {P Q : Prop} : (P → Q) ∧ ((P ∨ ¬P) ∨ (Q ∨ ¬Q)) → ¬P ∨ Q := assume H : (P → Q) ∧ ((P ∨ ¬P) ∨ (Q ∨ ¬Q)), have Hpq : P → Q, from and_elim_left H, or_elim (and_elim_right H) (assume Hem1 : P ∨ ¬P, or_elim Hem1 (assume Hp : P, or_inr (Hpq Hp)) (assume Hnp : ¬P, or_inl Hnp)) (assume Hem2 : Q ∨ ¬Q, or_elim Hem2 (assume Hq : Q, or_inr Hq) (assume Hnq : ¬Q, or_inl (mt Hpq Hnq))) -- 5. First-Order Logic: All and Exists section parameters {T : Type} {C : Prop} {P : T → Prop} theorem thm17a : (C → ∀x, P x) → (∀x, C → P x) := assume H : C → ∀x, P x, take x : T, assume Hc : C, H Hc x theorem thm17b : (∀x, C → P x) → (C → ∀x, P x) := assume (H : ∀x, C → P x) (Hc : C), take x : T, H x Hc theorem thm18a : ((∃x, P x) → C) → (∀x, P x → C) := assume H : (∃x, P x) → C, take x, assume Hp : P x, have Hex : ∃x, P x, from exists_intro x Hp, H Hex theorem thm18b : (∀x, P x → C) → (∃x, P x) → C := assume (H1 : ∀x, P x → C) (H2 : ∃x, P x), obtain (w : T) (Hw : P w), from H2, H1 w Hw theorem thm19a : (C ∨ ¬C) → (∃x : T, true) → (C → (∃x, P x)) → (∃x, C → P x) := assume (Hem : C ∨ ¬C) (Hin : ∃x : T, true) (H1 : C → ∃x, P x), or_elim Hem (assume Hc : C, obtain (w : T) (Hw : P w), from H1 Hc, have Hr : C → P w, from assume Hc, Hw, exists_intro w Hr) (assume Hnc : ¬C, obtain (w : T) (Hw : true), from Hin, have Hr : C → P w, from assume Hc, absurd Hc Hnc, exists_intro w Hr) theorem thm19b : (∃x, C → P x) → C → (∃x, P x) := assume (H : ∃x, C → P x) (Hc : C), obtain (w : T) (Hw : C → P w), from H, exists_intro w (Hw Hc) theorem thm20a : (C ∨ ¬C) → (∃x : T, true) → ((¬∀x, P x) → ∃x, ¬P x) → ((∀x, P x) → C) → (∃x, P x → C) := assume Hem Hin Hnf H, or_elim Hem (assume Hc : C, obtain (w : T) (Hw : true), from Hin, exists_intro w (assume H : P w, Hc)) (assume Hnc : ¬C, have H1 : ¬(∀x, P x), from mt H Hnc, have H2 : ∃x, ¬P x, from Hnf H1, obtain (w : T) (Hw : ¬P w), from H2, exists_intro w (assume H : P w, absurd H Hw)) theorem thm20b : (∃x, P x → C) → (∀ x, P x) → C := assume Hex Hall, obtain (w : T) (Hw : P w → C), from Hex, Hw (Hall w) theorem thm21a : (∃x : T, true) → ((∃x, P x) ∨ C) → (∃x, P x ∨ C) := assume Hin H, or_elim H (assume Hex : ∃x, P x, obtain (w : T) (Hw : P w), from Hex, exists_intro w (or_inl Hw)) (assume Hc : C, obtain (w : T) (Hw : true), from Hin, exists_intro w (or_inr Hc)) theorem thm21b : (∃x, P x ∨ C) → ((∃x, P x) ∨ C) := assume H, obtain (w : T) (Hw : P w ∨ C), from H, or_elim Hw (assume H : P w, or_inl (exists_intro w H)) (assume Hc : C, or_inr Hc) theorem thm22a : (∀x, P x) ∨ C → ∀x, P x ∨ C := assume H, take x, or_elim H (assume Hl, or_inl (Hl x)) (assume Hr, or_inr Hr) theorem thm22b : (C ∨ ¬C) → (∀x, P x ∨ C) → ((∀x, P x) ∨ C) := assume Hem H1, or_elim Hem (assume Hc : C, or_inr Hc) (assume Hnc : ¬C, have Hx : ∀x, P x, from take x, have H1 : P x ∨ C, from H1 x, resolve_left H1 Hnc, or_inl Hx) theorem thm23a : (∃x, P x) ∧ C → (∃x, P x ∧ C) := assume H, have Hex : ∃x, P x, from and_elim_left H, have Hc : C, from and_elim_right H, obtain (w : T) (Hw : P w), from Hex, exists_intro w (and_intro Hw Hc) theorem thm23b : (∃x, P x ∧ C) → (∃x, P x) ∧ C := assume H, obtain (w : T) (Hw : P w ∧ C), from H, have Hex : ∃x, P x, from exists_intro w (and_elim_left Hw), and_intro Hex (and_elim_right Hw) theorem thm24a : (∀x, P x) ∧ C → (∀x, P x ∧ C) := assume H, take x, and_intro (and_elim_left H x) (and_elim_right H) theorem thm24b : (∃x : T, true) → (∀x, P x ∧ C) → (∀x, P x) ∧ C := assume Hin H, obtain (w : T) (Hw : true), from Hin, have Hc : C, from and_elim_right (H w), have Hx : ∀x, P x, from take x, and_elim_left (H x), and_intro Hx Hc end -- of section