1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
|
#
# $Id: prob2.dem,v 1.9 2006/06/14 03:24:09 sfeam Exp $
#
# Demo Statistical Approximations version 1.1
#
# Copyright (c) 1991, Jos van der Woude, jvdwoude@hut.nl
# History:
# -- --- 1991 Jos van der Woude: 1st version
# 06 Jun 2006 Dan Sebald: Added plot methods for better visual effect.
print ""
print ""
print ""
print ""
print ""
print ""
print " Statistical Approximations, version 1.1"
print ""
print " Copyright (c) 1991, 1992, Jos van de Woude, jvdwoude@hut.nl"
print ""
print ""
print ""
print ""
print ""
print ""
print ""
print ""
print ""
print ""
print ""
print " NOTE: contains 10 plots and consequently takes some time to run"
print " Press Ctrl-C to exit right now"
print ""
pause -1 " Press Return to start demo ..."
load "stat.inc"
rnd(x) = floor(x+0.5)
r_xmin = -1
r_sigma = 4.0
# Binomial PDF using normal approximation
n = 25; p = 0.15
mu = n * p
sigma = sqrt(n * p * (1.0 - p))
xmin = floor(mu - r_sigma * sigma)
xmin = xmin < r_xmin ? r_xmin : xmin
xmax = ceil(mu + r_sigma * sigma)
ymax = 1.1 * binom(floor((n+1)*p), n, p) #mode of binomial PDF used
set key box
unset zeroaxis
set xrange [xmin - 1 : xmax + 1]
set yrange [0 : ymax]
set xlabel "k, x ->"
set ylabel "probability density ->"
set ytics 0, ymax / 10.0, ymax
set format x "%2.0f"
set format y "%3.2f"
set sample 200
set title "binomial PDF using normal approximation"
set arrow from mu, 0 to mu, normal(mu, mu, sigma) nohead
set arrow from mu, normal(mu + sigma, mu, sigma) \
to mu + sigma, normal(mu + sigma, mu, sigma) nohead
set label "mu" at mu + 0.5, ymax / 10
set label "sigma" at mu + 0.5 + sigma, normal(mu + sigma, mu, sigma)
plot binom(rnd(x), n, p) with histeps, normal(x, mu, sigma)
pause -1 "Hit return to continue"
unset arrow
unset label
# Binomial PDF using poisson approximation
n = 50; p = 0.1
mu = n * p
sigma = sqrt(mu)
xmin = floor(mu - r_sigma * sigma)
xmin = xmin < r_xmin ? r_xmin : xmin
xmax = ceil(mu + r_sigma * sigma)
ymax = 1.1 * binom(floor((n+1)*p), n, p) #mode of binomial PDF used
set key box
unset zeroaxis
set xrange [xmin - 1 : xmax + 1]
set yrange [0 : ymax]
set xlabel "k ->"
set ylabel "probability density ->"
set ytics 0, ymax / 10.0, ymax
set format x "%2.0f"
set format y "%3.2f"
set sample (xmax - xmin + 3)
set title "binomial PDF using poisson approximation"
set arrow from mu, 0 to mu, normal(mu, mu, sigma) nohead
set arrow from mu, normal(mu + sigma, mu, sigma) \
to mu + sigma, normal(mu + sigma, mu, sigma) nohead
set label "mu" at mu + 0.5, ymax / 10
set label "sigma" at mu + 0.5 + sigma, normal(mu + sigma, mu, sigma)
plot binom(x, n, p) with histeps, poisson(x, mu) with histeps
pause -1 "Hit return to continue"
unset arrow
unset label
# Geometric PDF using gamma approximation
p = 0.3
mu = (1.0 - p) / p
sigma = sqrt(mu / p)
lambda = p
rho = 1.0 - p
xmin = floor(mu - r_sigma * sigma)
xmin = xmin < r_xmin ? r_xmin : xmin
xmax = ceil(mu + r_sigma * sigma)
ymax = 1.1 * p
set key box
unset zeroaxis
set xrange [xmin - 1 : xmax + 1]
set yrange [0 : ymax]
set xlabel "k, x ->"
set ylabel "probability density ->"
set ytics 0, ymax / 10.0, ymax
set format x "%2.0f"
set format y "%3.2f"
set sample 200
set title "geometric PDF using gamma approximation"
set arrow from mu, 0 to mu, gmm(mu, rho, lambda) nohead
set arrow from mu, gmm(mu + sigma, rho, lambda) \
to mu + sigma, gmm(mu + sigma, rho, lambda) nohead
set label "mu" at mu + 0.5, ymax / 10
set label "sigma" at mu + 0.5 + sigma, gmm(mu + sigma, rho, lambda)
plot geometric(rnd(x),p) with histeps, gmm(x, rho, lambda)
pause -1 "Hit return to continue"
unset arrow
unset label
# Geometric PDF using normal approximation
p = 0.3
mu = (1.0 - p) / p
sigma = sqrt(mu / p)
xmin = floor(mu - r_sigma * sigma)
xmin = xmin < r_xmin ? r_xmin : xmin
xmax = ceil(mu + r_sigma * sigma)
ymax = 1.1 * p
set key box
unset zeroaxis
set xrange [xmin - 1 : xmax + 1]
set yrange [0 : ymax]
set xlabel "k, x ->"
set ylabel "probability density ->"
set ytics 0, ymax / 10.0, ymax
set format x "%2.0f"
set format y "%3.2f"
set sample 200
set title "geometric PDF using normal approximation"
set arrow from mu, 0 to mu, normal(mu, mu, sigma) nohead
set arrow from mu, normal(mu + sigma, mu, sigma) \
to mu + sigma, normal(mu + sigma, mu, sigma) nohead
set label "mu" at mu + 0.5, ymax / 10
set label "sigma" at mu + 0.5 + sigma, normal(mu + sigma, mu, sigma)
plot geometric(rnd(x),p) with histeps, normal(x, mu, sigma)
pause -1 "Hit return to continue"
unset arrow
unset label
# Hypergeometric PDF using binomial approximation
nn = 75; mm = 25; n = 10
p = real(mm) / nn
mu = n * p
sigma = sqrt(real(nn - n) / (nn - 1.0) * n * p * (1.0 - p))
xmin = floor(mu - r_sigma * sigma)
xmin = xmin < r_xmin ? r_xmin : xmin
xmax = ceil(mu + r_sigma * sigma)
ymax = 1.1 * hypgeo(floor(mu), nn, mm, n) #mode of binom PDF used
set key box
unset zeroaxis
set xrange [xmin - 1 : xmax + 1]
set yrange [0 : ymax]
set xlabel "k ->"
set ylabel "probability density ->"
set ytics 0, ymax / 10.0, ymax
set format x "%2.0f"
set format y "%3.2f"
set sample (xmax - xmin + 3)
set title "hypergeometric PDF using binomial approximation"
set arrow from mu, 0 to mu, binom(floor(mu), n, p) nohead
set arrow from mu, binom(floor(mu + sigma), n, p) \
to mu + sigma, binom(floor(mu + sigma), n, p) nohead
set label "mu" at mu + 0.5, ymax / 10
set label "sigma" at mu + 0.5 + sigma, binom(floor(mu + sigma), n, p)
plot hypgeo(x, nn, mm, n) with histeps, binom(x, n, p) with histeps
pause -1 "Hit return to continue"
unset arrow
unset label
# Hypergeometric PDF using normal approximation
nn = 75; mm = 25; n = 10
p = real(mm) / nn
mu = n * p
sigma = sqrt(real(nn - n) / (nn - 1.0) * n * p * (1.0 - p))
xmin = floor(mu - r_sigma * sigma)
xmin = xmin < r_xmin ? r_xmin : xmin
xmax = ceil(mu + r_sigma * sigma)
ymax = 1.1 * hypgeo(floor(mu), nn, mm, n) #mode of binom PDF used
set key box
unset zeroaxis
set xrange [xmin - 1 : xmax + 1]
set yrange [0 : ymax]
set xlabel "k, x ->"
set ylabel "probability density ->"
set ytics 0, ymax / 10.0, ymax
set format x "%2.0f"
set format y "%3.2f"
set sample 200
set title "hypergeometric PDF using normal approximation"
set arrow from mu, 0 to mu, normal(mu, mu, sigma) nohead
set arrow from mu, normal(mu + sigma, mu, sigma) \
to mu + sigma, normal(mu + sigma, mu, sigma) nohead
set label "mu" at mu + 0.5, ymax / 10
set label "sigma" at mu + 0.5 + sigma, normal(mu + sigma, mu, sigma)
plot hypgeo(rnd(x), nn, mm, n) with histeps, normal(x, mu, sigma)
pause -1 "Hit return to continue"
unset arrow
unset label
# Negative binomial PDF using gamma approximation
r = 8; p = 0.6
mu = r * (1.0 - p) / p
sigma = sqrt(mu / p)
lambda = p
rho = r * (1.0 - p)
xmin = floor(mu - r_sigma * sigma)
xmin = xmin < r_xmin ? r_xmin : xmin
xmax = ceil(mu + r_sigma * sigma)
ymax = 1.1 * gmm((rho - 1) / lambda, rho, lambda) #mode of gamma PDF used
set key box
unset zeroaxis
set xrange [xmin - 1 : xmax + 1]
set yrange [0 : ymax]
set xlabel "k, x ->"
set ylabel "probability density ->"
set ytics 0, ymax / 10.0, ymax
set format x "%2.0f"
set format y "%3.2f"
set sample 200
set title "negative binomial PDF using gamma approximation"
set arrow from mu, 0 to mu, gmm(mu, rho, lambda) nohead
set arrow from mu, gmm(mu + sigma, rho, lambda) \
to mu + sigma, gmm(mu + sigma, rho, lambda) nohead
set label "mu" at mu + 0.5, ymax / 10
set label "sigma" at mu + 0.5 + sigma, gmm(mu + sigma, rho, lambda)
plot negbin(rnd(x), r, p) with histeps, gmm(x, rho, lambda)
pause -1 "Hit return to continue"
unset arrow
unset label
# Negative binomial PDF using normal approximation
r = 8; p = 0.4
mu = r * (1.0 - p) / p
sigma = sqrt(mu / p)
xmin = floor(mu - r_sigma * sigma)
xmin = xmin < r_xmin ? r_xmin : xmin
xmax = ceil(mu + r_sigma * sigma)
ymax = 1.1 * negbin(floor((r-1)*(1-p)/p), r, p) #mode of gamma PDF used
set key box
unset zeroaxis
set xrange [xmin - 1 : xmax + 1]
set yrange [0 : ymax]
set xlabel "k, x ->"
set ylabel "probability density ->"
set ytics 0, ymax / 10.0, ymax
set format x "%2.0f"
set format y "%3.2f"
set sample 200
set title "negative binomial PDF using normal approximation"
set arrow from mu, 0 to mu, normal(mu, mu, sigma) nohead
set arrow from mu, normal(mu + sigma, mu, sigma) \
to mu + sigma, normal(mu + sigma, mu, sigma) nohead
set label "mu" at mu + 0.5, ymax / 10
set label "sigma" at mu + 0.5 + sigma, normal(mu + sigma, mu, sigma)
plot negbin(rnd(x), r, p) with histeps, normal(x, mu, sigma)
pause -1 "Hit return to continue"
unset arrow
unset label
# Normal PDF using logistic approximation
mu = 1.0; sigma = 1.5
a = mu
lambda = pi / (sqrt(3.0) * sigma)
xmin = mu - r_sigma * sigma
xmax = mu + r_sigma * sigma
ymax = 1.1 * logistic(mu, a, lambda) #mode of logistic PDF used
set key box
unset zeroaxis
set xrange [xmin: xmax]
set yrange [0 : ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set ytics 0, ymax / 10.0, ymax
set format x "%.1f"
set format y "%.2f"
set sample 200
set title "normal PDF using logistic approximation"
set arrow from mu,0 to mu, normal(mu, mu, sigma) nohead
set arrow from mu, normal(mu + sigma, mu, sigma) \
to mu + sigma, normal(mu + sigma, mu, sigma) nohead
set label "mu" at mu + 0.5, ymax / 10
set label "sigma" at mu + 0.5 + sigma, normal(mu + sigma, mu, sigma)
plot logistic(x, a, lambda), normal(x, mu, sigma)
pause -1 "Hit return to continue"
unset arrow
unset label
# Poisson PDF using normal approximation
mu = 5.0
sigma = sqrt(mu)
xmin = floor(mu - r_sigma * sigma)
xmin = xmin < r_xmin ? r_xmin : xmin
xmax = ceil(mu + r_sigma * sigma)
ymax = 1.1 * poisson(mu, mu) #mode of poisson PDF used
set key box
unset zeroaxis
set xrange [xmin - 1 : xmax + 1]
set yrange [0 : ymax]
set xlabel "k, x ->"
set ylabel "probability density ->"
set ytics 0, ymax / 10.0, ymax
set format x "%2.0f"
set format y "%3.2f"
set sample 200
set title "poisson PDF using normal approximation"
set arrow from mu, 0 to mu, normal(mu, mu, sigma) nohead
set arrow from mu, normal(mu + sigma, mu, sigma) \
to mu + sigma, normal(mu + sigma, mu, sigma) nohead
set label "mu" at mu + 0.5, ymax / 10
set label "sigma" at mu + 0.5 + sigma, normal(mu + sigma, mu, sigma)
plot poisson(rnd(x), mu) with histeps, normal(x, mu, sigma)
pause -1 "Hit return to continue"
reset
|