from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import Iterable import colorsys from fractions import Fraction import operator import re import string from warnings import warn import six from scss.cssdefs import COLOR_LOOKUP, COLOR_NAMES, ZEROABLE_UNITS, convert_units_to_base_units, cancel_base_units, count_base_units PRECISION = 5 ############################################################################### # pyScss data types: # TODO make Value work as a string in every way? i.e. have a .quotes... class Value(object): is_null = False sass_type_name = 'unknown' def __repr__(self): return "<{0}: {1!r}>".format(type(self).__name__, self.value) # Sass values are all true, except for booleans and nulls def __bool__(self): return True def __nonzero__(self): # Py 2's name for __bool__ return self.__bool__() # All Sass scalars also act like one-element spaced lists use_comma = False def __iter__(self): return iter((self,)) def __len__(self): return 1 def __getitem__(self, key): if key not in (-1, 0): raise IndexError(key) return self def __contains__(self, item): return self == item ### NOTE: From here on down, the operators are exposed to Sass code and ### thus should ONLY return Sass types # Reasonable default for equality def __eq__(self, other): return Boolean( type(self) == type(other) and self.value == other.value) def __ne__(self, other): return Boolean(not self.__eq__(other)) # Only numbers support ordering def __lt__(self, other): raise TypeError("Can't compare %r with %r" % (self, other)) def __le__(self, other): raise TypeError("Can't compare %r with %r" % (self, other)) def __gt__(self, other): raise TypeError("Can't compare %r with %r" % (self, other)) def __ge__(self, other): raise TypeError("Can't compare %r with %r" % (self, other)) # Math ops def __add__(self, other): # Default behavior is to treat both sides like strings if isinstance(other, String): return String(self.render() + other.value, quotes=other.quotes) return String(self.render() + other.render()) def __sub__(self, other): # Default behavior is to treat the whole expression like one string return String.unquoted(self.render() + "-" + other.render()) def __div__(self, other): return String.unquoted(self.render() + "/" + other.render()) # Sass types have no notion of floor vs true division def __truediv__(self, other): return self.__div__(other) def __floordiv__(self, other): return self.__div__(other) def __mul__(self, other): return NotImplemented def __pos__(self): return String("+" + self.render()) def __neg__(self): return String("-" + self.render()) def to_dict(self): """Return the Python dict equivalent of this map. If this type can't be expressed as a map, raise. """ return dict(self.to_pairs()) def to_pairs(self): """Return the Python list-of-tuples equivalent of this map. Note that this is different from ``self.to_dict().items()``, because Sass maps preserve order. If this type can't be expressed as a map, raise. """ raise ValueError("Not a map: {0!r}".format(self)) def render(self, compress=False): """Return this value's CSS representation as a string (text, i.e. unicode!). If `compress` is true, try hard to shorten the string at the cost of readability. """ raise NotImplementedError def render_interpolated(self, compress=False): """Return this value's string representation as appropriate for returning from an interpolation. """ return self.render(compress) class Null(Value): is_null = True sass_type_name = 'null' def __init__(self, value=None): pass def __str__(self): return self.sass_type_name def __repr__(self): return "<{0}>".format(type(self).__name__) def __hash__(self): return hash(None) def __bool__(self): return False def __eq__(self, other): return Boolean(isinstance(other, Null)) def __ne__(self, other): return Boolean(not self.__eq__(other)) def render(self, compress=False): return self.sass_type_name def render_interpolated(self, compress=False): # Interpolating a null gives you nothing. return '' class Undefined(Null): sass_type_name = 'undefined' def __init__(self, value=None): pass def __add__(self, other): return self def __radd__(self, other): return self def __sub__(self, other): return self def __rsub__(self, other): return self def __div__(self, other): return self def __rdiv__(self, other): return self def __truediv__(self, other): return self def __rtruediv__(self, other): return self def __floordiv__(self, other): return self def __rfloordiv__(self, other): return self def __mul__(self, other): return self def __rmul__(self, other): return self def __pos__(self): return self def __neg__(self): return self class Boolean(Value): sass_type_name = 'bool' def __init__(self, value): self.value = bool(value) def __str__(self): return 'true' if self.value else 'false' def __hash__(self): return hash(self.value) def __bool__(self): return self.value def render(self, compress=False): if self.value: return 'true' else: return 'false' class Number(Value): sass_type_name = 'number' def __init__(self, amount, unit=None, unit_numer=(), unit_denom=()): if isinstance(amount, Number): assert not unit and not unit_numer and not unit_denom self.value = amount.value self.unit_numer = amount.unit_numer self.unit_denom = amount.unit_denom return # Numbers with units are stored internally as a "base" unit, which can # involve float division, which can lead to precision errors in obscure # cases. Storing the original units would only partially solve this # problem, because there'd still be a possible loss of precision when # converting in Sass-land. Almost all of the conversion factors are # simple ratios of small whole numbers, so using Fraction across the # board preserves as much precision as possible. # TODO in fact, i wouldn't mind parsing Sass values as fractions of a # power of ten! # TODO this slowed the test suite down by about 10%, ha if isinstance(amount, (int, float)): amount = Fraction.from_float(amount) elif isinstance(amount, Fraction): pass else: raise TypeError("Expected number, got %r" % (amount,)) if unit is not None: unit_numer = unit_numer + (unit.lower(),) # Cancel out any convertable units on the top and bottom numerator_base_units = count_base_units(unit_numer) denominator_base_units = count_base_units(unit_denom) # Count which base units appear both on top and bottom cancelable_base_units = {} for unit, count in numerator_base_units.items(): cancelable_base_units[unit] = min( count, denominator_base_units.get(unit, 0)) # Actually remove the units numer_factor, unit_numer = cancel_base_units(unit_numer, cancelable_base_units) denom_factor, unit_denom = cancel_base_units(unit_denom, cancelable_base_units) # And we're done self.unit_numer = tuple(unit_numer) self.unit_denom = tuple(unit_denom) self.value = amount * (numer_factor / denom_factor) def __repr__(self): value = self.value int_value = int(value) if value == int_value: value = int_value full_unit = ' * '.join(self.unit_numer) if self.unit_denom: full_unit += ' / ' full_unit += ' * '.join(self.unit_denom) if full_unit: full_unit = ' ' + full_unit return "<{0} {1}{2}>".format(type(self).__name__, value, full_unit) def __hash__(self): return hash((self.value, self.unit_numer, self.unit_denom)) def __int__(self): return int(self.value) def __float__(self): return float(self.value) def __pos__(self): return self def __neg__(self): return self * Number(-1) def __str__(self): return self.render() def __eq__(self, other): if not isinstance(other, Number): return Boolean(False) return self._compare(other, operator.__eq__, soft_fail=True) def __lt__(self, other): return self._compare(other, operator.__lt__) def __le__(self, other): return self._compare(other, operator.__le__) def __gt__(self, other): return self._compare(other, operator.__gt__) def __ge__(self, other): return self._compare(other, operator.__ge__) def _compare(self, other, op, soft_fail=False): if not isinstance(other, Number): raise TypeError("Can't compare %r and %r" % (self, other)) # A unitless operand is treated as though it had the other operand's # units, and zero values can cast to anything, so in both cases the # units can be ignored if (self.is_unitless or other.is_unitless or self.value == 0 or other.value == 0): left = self right = other else: left = self.to_base_units() right = other.to_base_units() if left.unit_numer != right.unit_numer or left.unit_denom != right.unit_denom: if soft_fail: # Used for equality only, where == should never fail return Boolean(False) else: raise ValueError("Can't reconcile units: %r and %r" % (self, other)) return Boolean(op(round(left.value, PRECISION), round(right.value, PRECISION))) def __pow__(self, exp): if not isinstance(exp, Number): raise TypeError("Can't raise %r to power %r" % (self, exp)) if not exp.is_unitless: raise TypeError("Exponent %r cannot have units" % (exp,)) if self.is_unitless: return Number(self.value ** exp.value) # Units can only be exponentiated to integral powers -- what's the # square root of 'px'? (Well, it's sqrt(px), but supporting that is # a bit out of scope.) if exp.value != int(exp.value): raise ValueError("Can't raise units of %r to non-integral power %r" % (self, exp)) return Number( self.value ** int(exp.value), unit_numer=self.unit_numer * int(exp.value), unit_denom=self.unit_denom * int(exp.value), ) def __mul__(self, other): if not isinstance(other, Number): return NotImplemented amount = self.value * other.value numer = self.unit_numer + other.unit_numer denom = self.unit_denom + other.unit_denom return Number(amount, unit_numer=numer, unit_denom=denom) def __div__(self, other): if not isinstance(other, Number): return NotImplemented amount = self.value / other.value numer = self.unit_numer + other.unit_denom denom = self.unit_denom + other.unit_numer return Number(amount, unit_numer=numer, unit_denom=denom) def __mod__(self, other): if not isinstance(other, Number): return NotImplemented amount = self.value % other.value if self.is_unitless: return Number(amount) if not other.is_unitless: left = self.to_base_units() right = other.to_base_units() if left.unit_numer != right.unit_numer or left.unit_denom != right.unit_denom: raise ValueError("Can't reconcile units: %r and %r" % (self, other)) return Number(amount, unit_numer=self.unit_numer, unit_denom=self.unit_denom) def __add__(self, other): # Numbers auto-cast to strings when added to other strings if isinstance(other, String): return String(self.render(), quotes=None) + other return self._add_sub(other, operator.add) def __sub__(self, other): return self._add_sub(other, operator.sub) def _add_sub(self, other, op): """Implements both addition and subtraction.""" if not isinstance(other, Number): return NotImplemented # If either side is unitless, inherit the other side's units. Skip all # the rest of the conversion math, too. if self.is_unitless or other.is_unitless: return Number( op(self.value, other.value), unit_numer=self.unit_numer or other.unit_numer, unit_denom=self.unit_denom or other.unit_denom, ) # Likewise, if either side is zero, it can auto-cast to any units if self.value == 0: return Number( op(self.value, other.value), unit_numer=other.unit_numer, unit_denom=other.unit_denom, ) elif other.value == 0: return Number( op(self.value, other.value), unit_numer=self.unit_numer, unit_denom=self.unit_denom, ) # Reduce both operands to the same units left = self.to_base_units() right = other.to_base_units() if left.unit_numer != right.unit_numer or left.unit_denom != right.unit_denom: raise ValueError("Can't reconcile units: %r and %r" % (self, other)) new_amount = op(left.value, right.value) # Convert back to the left side's units if left.value != 0: new_amount = new_amount * self.value / left.value return Number(new_amount, unit_numer=self.unit_numer, unit_denom=self.unit_denom) ### Helper methods, mostly used internally def to_base_units(self): """Convert to a fixed set of "base" units. The particular units are arbitrary; what's important is that they're consistent. Used for addition and comparisons. """ # Convert to "standard" units, as defined by the conversions dict above amount = self.value numer_factor, numer_units = convert_units_to_base_units(self.unit_numer) denom_factor, denom_units = convert_units_to_base_units(self.unit_denom) return Number( amount * numer_factor / denom_factor, unit_numer=numer_units, unit_denom=denom_units, ) ### Utilities for public consumption @classmethod def wrap_python_function(cls, fn): """Wraps an unary Python math function, translating the argument from Sass to Python on the way in, and vice versa for the return value. Used to wrap simple Python functions like `ceil`, `floor`, etc. """ def wrapped(sass_arg): # TODO enforce no units for trig? python_arg = sass_arg.value python_ret = fn(python_arg) sass_ret = cls( python_ret, unit_numer=sass_arg.unit_numer, unit_denom=sass_arg.unit_denom) return sass_ret return wrapped def to_python_index(self, length, check_bounds=True, circular=False): """Return a plain Python integer appropriate for indexing a sequence of the given length. Raise if this is impossible for any reason whatsoever. """ if not self.is_unitless: raise ValueError("Index cannot have units: {0!r}".format(self)) ret = int(self.value) if ret != self.value: raise ValueError("Index must be an integer: {0!r}".format(ret)) if ret == 0: raise ValueError("Index cannot be zero") if check_bounds and not circular and abs(ret) > length: raise ValueError("Index {0!r} out of bounds for length {1}".format(ret, length)) if ret > 0: ret -= 1 if circular: ret = ret % length return ret @property def has_simple_unit(self): """Returns True iff the unit is expressible in CSS, i.e., has no denominator and at most one unit in the numerator. """ return len(self.unit_numer) <= 1 and not self.unit_denom def is_simple_unit(self, unit): """Return True iff the unit is simple (as above) and matches the given unit. """ if self.unit_denom or len(self.unit_numer) > 1: return False if not self.unit_numer: # Empty string historically means no unit return unit == '' return self.unit_numer[0] == unit @property def is_unitless(self): return not self.unit_numer and not self.unit_denom def render(self, compress=False): if not self.has_simple_unit: raise ValueError("Can't express compound units in CSS: %r" % (self,)) if self.unit_numer: unit = self.unit_numer[0] else: unit = '' value = self.value if compress and unit in ZEROABLE_UNITS and value == 0: return '0' if value == 0: # -0.0 is plain 0 value = 0 val = ('%%0.0%df' % PRECISION) % round(value, PRECISION) val = val.rstrip('0').rstrip('.') if compress and val.startswith('0.'): # Strip off leading zero when compressing val = val[1:] return val + unit class List(Value): """A list of other values. May be delimited by commas or spaces. Lists of one item don't make much sense in CSS, but can exist in Sass. Use ...... Lists may also contain zero items, but these are forbidden from appearing in CSS output. """ sass_type_name = 'list' def __init__(self, iterable, separator=None, use_comma=None, literal=False): if isinstance(iterable, List): iterable = iterable.value if (not isinstance(iterable, Iterable) or isinstance(iterable, six.string_types)): raise TypeError("Expected list, got %r" % (iterable,)) self.value = list(iterable) for item in self.value: if not isinstance(item, Value): raise TypeError("Expected a Sass type, got %r" % (item,)) # TODO remove separator argument entirely if use_comma is None: self.use_comma = separator == "," else: self.use_comma = use_comma self.literal = literal @classmethod def maybe_new(cls, values, use_comma=True): """If `values` contains only one item, return that item. Otherwise, return a List as normal. """ if len(values) == 1: return values[0] else: return cls(values, use_comma=use_comma) def maybe(self): """If this List contains only one item, return it. Otherwise, return the List. """ if len(self.value) == 1: return self.value[0] else: return self @classmethod def from_maybe(cls, values, use_comma=True): """If `values` appears to not be a list, return a list containing it. Otherwise, return a List as normal. """ if values is None: values = [] return values @classmethod def from_maybe_starargs(cls, args, use_comma=True): """If `args` has one element which appears to be a list, return it. Otherwise, return a list as normal. Mainly used by Sass function implementations that predate `...` support, so they can accept both a list of arguments and a single list stored in a variable. """ if len(args) == 1: if isinstance(args[0], cls): return args[0] elif isinstance(args[0], (list, tuple)): return cls(args[0], use_comma=use_comma) return cls(args, use_comma=use_comma) def __repr__(self): return "<{0} {1}>".format( type(self).__name__, self.delimiter().join(repr(item) for item in self), ) def __hash__(self): return hash((tuple(self.value), self.use_comma)) def delimiter(self, compress=False): if self.use_comma: if compress: return ',' else: return ', ' else: return ' ' def __len__(self): return len(self.value) def __str__(self): return self.render() def __iter__(self): return iter(self.value) def __contains__(self, item): return item in self.value def __getitem__(self, key): return self.value[key] def to_pairs(self): pairs = [] for item in self: if len(item) != 2: return super(List, self).to_pairs() pairs.append(tuple(item)) return pairs def render(self, compress=False): if not self.value: raise ValueError("Can't render empty list as CSS") delim = self.delimiter(compress) if self.literal: value = self.value else: # Non-literal lists have nulls stripped value = [item for item in self.value if not item.is_null] # Non-empty lists containing only nulls become nothing, just like # single nulls if not value: return '' return delim.join( item.render(compress=compress) for item in value ) def render_interpolated(self, compress=False): return self.delimiter(compress).join( item.render_interpolated(compress) for item in self) # DEVIATION: binary ops on lists and scalars act element-wise def __add__(self, other): if isinstance(other, List): max_list, min_list = (self, other) if len(self) > len(other) else (other, self) return List([item + max_list[i] for i, item in enumerate(min_list)], use_comma=self.use_comma) elif isinstance(other, String): # UN-DEVIATION: adding a string should fall back to canonical # behavior of string addition return super(List, self).__add__(other) else: return List([item + other for item in self], use_comma=self.use_comma) def __sub__(self, other): if isinstance(other, List): max_list, min_list = (self, other) if len(self) > len(other) else (other, self) return List([item - max_list[i] for i, item in enumerate(min_list)], use_comma=self.use_comma) return List([item - other for item in self], use_comma=self.use_comma) def __mul__(self, other): if isinstance(other, List): max_list, min_list = (self, other) if len(self) > len(other) else (other, self) max_list, min_list = (self, other) if len(self) > len(other) else (other, self) return List([item * max_list[i] for i, item in enumerate(min_list)], use_comma=self.use_comma) return List([item * other for item in self], use_comma=self.use_comma) def __div__(self, other): if isinstance(other, List): max_list, min_list = (self, other) if len(self) > len(other) else (other, self) return List([item / max_list[i] for i, item in enumerate(min_list)], use_comma=self.use_comma) return List([item / other for item in self], use_comma=self.use_comma) def __pos__(self): return self def __neg__(self): return List([-item for item in self], use_comma=self.use_comma) class Arglist(List): """An argument list. Acts mostly like a list, with keyword arguments sort of tacked on separately, and only accessible via Python (or the Sass `keywords` function). """ sass_type_name = 'arglist' keywords_retrieved = False def __init__(self, args, kwargs): self._kwargs = Map(kwargs) super(Arglist, self).__init__(args, use_comma=True) def extract_keywords(self): self.keywords_retrieved = True return self._kwargs def _constrain(value, lb=0, ub=1): """Helper for Color constructors. Constrains a value to a range.""" if value < lb: return lb elif value > ub: return ub else: return value class Color(Value): sass_type_name = 'color' original_literal = None def __init__(self, tokens): self.tokens = tokens self.value = (0, 0, 0, 1) if tokens is None: self.value = (0, 0, 0, 1) elif isinstance(tokens, Color): self.value = tokens.value else: raise TypeError("Can't make Color from %r" % (tokens,)) ### Alternate constructors @classmethod def from_rgb(cls, red, green, blue, alpha=1.0, original_literal=None): red = _constrain(red) green = _constrain(green) blue = _constrain(blue) alpha = _constrain(alpha) self = cls.__new__(cls) # TODO self.tokens = None # TODO really should store these things internally as 0-1, but can't # until stuff stops examining .value directly self.value = (red * 255.0, green * 255.0, blue * 255.0, alpha) if original_literal is not None: self.original_literal = original_literal return self @classmethod def from_hsl(cls, hue, saturation, lightness, alpha=1.0): hue = _constrain(hue) saturation = _constrain(saturation) lightness = _constrain(lightness) alpha = _constrain(alpha) r, g, b = colorsys.hls_to_rgb(hue, lightness, saturation) return cls.from_rgb(r, g, b, alpha) @classmethod def from_hex(cls, hex_string, literal=False): if not hex_string.startswith('#'): raise ValueError("Expected #abcdef, got %r" % (hex_string,)) if literal: original_literal = hex_string else: original_literal = None hex_string = hex_string[1:] # Always include the alpha channel if len(hex_string) == 3: hex_string += 'f' elif len(hex_string) == 6: hex_string += 'ff' # Now there should be only two possibilities. Normalize to a list of # two hex digits if len(hex_string) == 4: chunks = [ch * 2 for ch in hex_string] elif len(hex_string) == 8: chunks = [ hex_string[0:2], hex_string[2:4], hex_string[4:6], hex_string[6:8] ] rgba = [int(ch, 16) / 255 for ch in chunks] return cls.from_rgb(*rgba, original_literal=original_literal) @classmethod def from_name(cls, name): """Build a Color from a CSS color name.""" self = cls.__new__(cls) # TODO self.original_literal = name r, g, b, a = COLOR_NAMES[name] self.value = r, g, b, a return self ### Accessors @property def rgb(self): # TODO: deprecate, relies on internals return tuple(self.value[:3]) @property def rgba(self): return ( self.value[0] / 255, self.value[1] / 255, self.value[2] / 255, self.value[3], ) @property def hsl(self): rgba = self.rgba h, l, s = colorsys.rgb_to_hls(*rgba[:3]) return h, s, l @property def alpha(self): return self.value[3] @property def rgba255(self): return ( int(self.value[0] * 1 + 0.5), int(self.value[1] * 1 + 0.5), int(self.value[2] * 1 + 0.5), int(self.value[3] * 255 + 0.5), ) def __repr__(self): return "<{0} {1}>".format(type(self).__name__, self.render()) def __hash__(self): return hash(self.value) def __eq__(self, other): if not isinstance(other, Color): return Boolean(False) # Scale channels to 255 and round to integers; this allows only 8-bit # color, but Ruby sass makes the same assumption, and otherwise it's # easy to get lots of float errors for HSL colors. left = tuple(round(n) for n in self.rgba255) right = tuple(round(n) for n in other.rgba255) return Boolean(left == right) def __add__(self, other): if isinstance(other, (Color, Number)): return self._operate(other, operator.add) else: return super(Color, self).__add__(other) def __sub__(self, other): if isinstance(other, (Color, Number)): return self._operate(other, operator.sub) else: return super(Color, self).__sub__(other) def __mul__(self, other): if isinstance(other, (Color, Number)): return self._operate(other, operator.mul) else: return super(Color, self).__mul__(other) def __div__(self, other): if isinstance(other, (Color, Number)): return self._operate(other, operator.div) else: return super(Color, self).__div__(other) def _operate(self, other, op): if isinstance(other, Number): if not other.is_unitless: raise ValueError("Expected unitless Number, got %r" % (other,)) other_rgb = (other.value,) * 3 elif isinstance(other, Color): if self.alpha != other.alpha: raise ValueError("Alpha channels must match between %r and %r" % (self, other)) other_rgb = other.rgb else: raise TypeError("Expected Color or Number, got %r" % (other,)) new_rgb = [ min(255., max(0., op(left, right))) # for from_rgb / 255. for (left, right) in zip(self.rgb, other_rgb) ] return Color.from_rgb(*new_rgb, alpha=self.alpha) def render(self, compress=False): """Return a rendered representation of the color. If `compress` is true, the shortest possible representation is used; otherwise, named colors are rendered as names and all others are rendered as hex (or with the rgba function). """ if not compress and self.original_literal: return self.original_literal candidates = [] # TODO this assumes CSS resolution is 8-bit per channel, but so does # Ruby. r, g, b, a = self.value r, g, b = int(round(r)), int(round(g)), int(round(b)) # Build a candidate list in order of preference. If `compress` is # True, the shortest candidate is used; otherwise, the first candidate # is used. # Try color name key = r, g, b, a if key in COLOR_LOOKUP: candidates.append(COLOR_LOOKUP[key]) if a == 1: # Hex is always shorter than function notation if all(ch % 17 == 0 for ch in (r, g, b)): candidates.append("#%1x%1x%1x" % (r // 17, g // 17, b // 17)) else: candidates.append("#%02x%02x%02x" % (r, g, b)) else: # Can't use hex notation for RGBA if compress: sp = '' else: sp = ' ' candidates.append("rgba(%d,%s%d,%s%d,%s%.6g)" % (r, sp, g, sp, b, sp, a)) if compress: return min(candidates, key=len) else: return candidates[0] # TODO be unicode-clean and delete this nonsense DEFAULT_STRING_ENCODING = "utf8" class String(Value): """Represents both CSS quoted string values and CSS identifiers (such as `left`). Makes no distinction between single and double quotes, except that the same quotes are preserved on string literals that pass through unmodified. Otherwise, double quotes are used. """ sass_type_name = 'string' bad_identifier_rx = re.compile('[^-_a-zA-Z\x80-\U0010FFFF]') def __init__(self, value, quotes='"', literal=False): if isinstance(value, String): # TODO unclear if this should be here, but many functions rely on # it value = value.value elif isinstance(value, Number): # TODO this may only be necessary in the case of __radd__ and # number values value = six.text_type(value) if isinstance(value, six.binary_type): warn(FutureWarning( "String got a bytes type {0!r} " "-- this will no longer be supported in pyScss 2.0" .format(value) )) value = value.decode(DEFAULT_STRING_ENCODING) if not isinstance(value, six.text_type): raise TypeError("Expected string, got {0!r}".format(value)) self.value = value self.quotes = quotes # TODO this isn't quite used yet if literal: self.original_literal = value else: self.original_literal = None @classmethod def unquoted(cls, value, literal=False): """Helper to create a string with no quotes.""" return cls(value, quotes=None, literal=literal) def __hash__(self): return hash(self.value) def __repr__(self): if self.quotes: quotes = '(' + self.quotes + ')' else: quotes = '' return "<{0}{1} {2!r}>".format( type(self).__name__, quotes, self.value) def __eq__(self, other): return Boolean(isinstance(other, String) and self.value == other.value) def __add__(self, other): if isinstance(other, String): other_value = other.value else: other_value = other.render() return String( self.value + other_value, quotes='"' if self.quotes else None) def __mul__(self, other): # DEVIATION: Ruby Sass doesn't do this, because Ruby doesn't. But # Python does, and in Ruby Sass it's just fatal anyway. if not isinstance(other, Number): return super(String, self).__mul__(other) if not other.is_unitless: raise TypeError("Can only multiply strings by unitless numbers") n = other.value if n != int(n): raise ValueError("Can only multiply strings by integers") return String(self.value * int(other.value), quotes=self.quotes) def _escape_character(self, match): """Given a single character, return it appropriately CSS-escaped.""" # TODO is there any case where we'd want to use unicode escaping? # TODO unsure if this works with newlines return '\\' + match.group(0) def _is_name_start(self, ch): if ch == '_': return True if ord(ch) >= 128: return True if ch in string.ascii_letters: return True return False def render(self, compress=False): # TODO should preserve original literals here too -- even the quotes. # or at least that's what sass does. # Escape and add quotes as appropriate. if self.quotes is None: # If you deliberately construct a bareword with bogus CSS in it, # you're assumed to know what you're doing return self.value else: return self._render_quoted() def render_interpolated(self, compress=False): # Always render without quotes return self.value def _render_bareword(self): # TODO this is currently unused, and only implemented due to an # oversight, but would make for a much better implementation of # escape() # This is a bareword, so almost anything outside \w needs escaping ret = self.value ret = self.bad_identifier_rx.sub(self._escape_character, ret) # Also apply some minor quibbling rules about how barewords can # start: with a "name start", an escape, a hyphen followed by one # of those, or two hyphens. if not ret: # TODO is an unquoted empty string allowed to be rendered? pass elif ret[0] == '-': if ret[1] in '-\\' or self._is_name_start(ret[1]): pass else: # Escape the second character # TODO what if it's a digit, oops ret = ret[0] + '\\' + ret[1:] elif ret[0] == '\\' or self._is_name_start(ret[0]): pass else: # Escape the first character # TODO what if it's a digit, oops ret = '\\' + ret return ret def _render_quoted(self): # Strictly speaking, the only things we need to quote are the quotes # themselves, backslashes, and newlines. # TODO Ruby Sass takes backslashes in barewords literally, but treats # backslashes in quoted strings as escapes -- their mistake? # TODO In Ruby Sass, generated strings never have single quotes -- but # neither do variable interpolations, so I'm not sure what they're # doing quote = self.quotes ret = self.value ret = ret.replace('\\', '\\\\') ret = ret.replace(quote, '\\' + quote) # Note that a literal newline is ignored when escaped, so we have to # use the codepoint instead. But we'll leave the newline as well, to # aid readability. ret = ret.replace('\n', '\\a\\\n') return quote + ret + quote # TODO this needs to pretend the url(...) is part of the string for all string # operations -- even the quotes! alas. # TODO recasting a function to a String will lose the function part? whoops. # maybe .value should just be, uh, the literal value instead of the insides??? class Function(String): """Function call pseudo-type, which crops up frequently in CSS as a string marker. Acts mostly like a string, but has a function name and parentheses around it. """ def __init__(self, string, function_name, quotes='"', literal=False): super(Function, self).__init__(string, quotes=quotes, literal=literal) self.function_name = function_name def render(self, compress=False): return "{0}({1})".format( self.function_name, super(Function, self).render(compress), ) def render_interpolated(self, compress=False): return "{0}({1})".format( self.function_name, super(Function, self).render_interpolated(compress), ) class Url(Function): # Bare URLs may not contain quotes, parentheses, or unprintables. Quoted # URLs may, of course, contain whatever they like. # Ref: http://dev.w3.org/csswg/css-syntax-3/#consume-a-url-token0 bad_identifier_rx = re.compile("[$'\"()\\x00-\\x08\\x0b\\x0e-\\x1f\\x7f]") def __init__(self, string, **kwargs): super(Url, self).__init__(string, 'url', **kwargs) def render(self, compress=False): if self.quotes is None: return self.render_interpolated(compress) else: inside = self._render_quoted() return "url(" + inside + ")" def render_interpolated(self, compress=False): # Always render without quotes. # When doing that, we need to escape some stuff to make sure the result # is valid CSS. inside = self.bad_identifier_rx.sub( self._escape_character, self.value) return "url(" + inside + ")" class Map(Value): sass_type_name = 'map' def __init__(self, pairs, index=None): self.pairs = tuple(pairs) if index is None: self.index = {} for key, value in pairs: self.index[key] = value else: self.index = index def __repr__(self): return "" % (", ".join("%s: %s" % pair for pair in self.pairs),) def __hash__(self): return hash(self.pairs) def __len__(self): return len(self.pairs) def __iter__(self): return iter(self.pairs) def __getitem__(self, index): return List(self.pairs[index], use_comma=True) def __eq__(self, other): try: return self.pairs == other.to_pairs() except ValueError: return NotImplemented def to_dict(self): return self.index def to_pairs(self): return self.pairs def render(self, compress=False): raise TypeError("Cannot render map %r as CSS" % (self,)) def expect_type(value, types, unit=any): if not isinstance(value, types): if isinstance(types, type): types = (type,) sass_type_names = list(set(t.sass_type_name for t in types)) sass_type_names.sort() # Join with commas in English fashion if len(sass_type_names) == 1: sass_type = sass_type_names[0] elif len(sass_type_names) == 2: sass_type = ' or '.join(sass_type_names) else: sass_type = ', '.join(sass_type_names[:-1]) sass_type += ', or ' + sass_type_names[-1] raise TypeError("Expected %s, got %r" % (sass_type, value)) if unit is not any and isinstance(value, Number): if unit is None and not value.is_unitless: raise ValueError("Expected unitless number, got %r" % (value,)) elif unit == '%' and not ( value.is_unitless or value.is_simple_unit('%')): raise ValueError("Expected unitless number or percentage, got %r" % (value,))