summaryrefslogtreecommitdiff
path: root/scss/expression.py
blob: ebec7e2a1b2aa809e4496b2f506b58c04a76f8a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
from __future__ import absolute_import
from __future__ import print_function

from functools import partial
import logging
import operator
import re

import six

import scss
import scss.config as config
from scss.cssdefs import COLOR_NAMES, is_builtin_css_function, _expr_glob_re, _interpolate_re, _variable_re
from scss.errors import SassError, SassEvaluationError, SassParseError
from scss.rule import Namespace
from scss.types import Boolean, Color, List, Map, Null, Number, ParserValue, String, Undefined, Value
from scss.util import dequote, normalize_var

################################################################################
# Load C acceleration modules
Scanner = None
try:
    from scss._speedups import NoMoreTokens, Scanner
except ImportError:
    from scss._native import NoMoreTokens, Scanner

log = logging.getLogger(__name__)

FATAL_UNDEFINED = True


from ometa.runtime import EOFError, OMetaBase, expected
import string
HEXDIGITS = frozenset(string.hexdigits)
WHITESPACE = frozenset(' \n\r\t\f')
LETTERISH = frozenset(string.letters + '-_')
class GrammarBase(OMetaBase):
    def rule_ws(self):
        s, e = self.rule_ows()
        if not s:
            raise e.withMessage(expected("whitespace"))

        return s, e

    def rule_ows(self):
        ret = []
        while True:
            try:
                c, e = self.input.head()
            except EOFError as exc:
                e = exc
                break

            if c in WHITESPACE:
                ret.append(c)
                self.input = self.input.tail()
            else:
                break

        return ''.join(ret), e

    def rule_hex(self):
        x, e = self.rule_anything()
        if x in HEXDIGITS:
            return x, e
        else:
            raise e.withMessage(expected("hex digit"))

    def rule_letterish(self):
        x, e = self.rule_anything()
        if x in LETTERISH:
            return x, e
        else:
            raise e.withMessage(expected("letter or underscore or hyphen"))

_grammar = None
def get_grammar():
    global _grammar
    if _grammar:
        return _grammar

    from parsley import wrapGrammar
    from ometa.grammar import loadGrammar
    grammar = loadGrammar(scss, 'expression', globals(), superclass=GrammarBase)
    def tracer(rule, rule_offset, pos):
        print("trace @", pos, ">", repr(rule))
    _grammar = wrapGrammar(grammar)
    return _grammar

    import parsley
    import os.path
    with open(os.path.dirname(__file__) + '/expression.parsley') as f:
        grammar = parsley.makeGrammar(f.read(), globals())

    _grammar = grammar
    return grammar


class Calculator(object):
    """Expression evaluator."""

    ast_cache = {}

    def __init__(self, namespace=None):
        if namespace is None:
            self.namespace = Namespace()
        else:
            self.namespace = namespace

    def _pound_substitute(self, result):
        expr = result.group(1)
        value = self.evaluate_expression(expr)

        if value is None:
            return self.apply_vars(expr)
        elif value.is_null:
            return ""
        else:
            return dequote(value.render())

    def do_glob_math(self, cont):
        """Performs #{}-interpolation.  The result is always treated as a fixed
        syntactic unit and will not be re-evaluated.
        """
        # TODO this should really accept and/or parse an *expression* and
        # return a type  :|
        cont = str(cont)
        if '#{' not in cont:
            return cont
        cont = _expr_glob_re.sub(self._pound_substitute, cont)
        return cont

    def apply_vars(self, cont):
        if isinstance(cont, six.string_types) and '$' in cont:
            try:
                # Optimization: the full cont is a variable in the context,
                cont = self.namespace.variable(cont)
            except KeyError:
                # Interpolate variables:
                def _av(m):
                    v = None
                    n = m.group(2)
                    try:
                        v = self.namespace.variable(n)
                    except KeyError:
                        if FATAL_UNDEFINED:
                            raise
                        else:
                            log.error("Undefined variable '%s'", n, extra={'stack': True})
                            return n
                    else:
                        if v:
                            if not isinstance(v, six.string_types):
                                v = v.render()
                            # TODO this used to test for _dequote
                            if m.group(1):
                                v = dequote(v)
                        else:
                            v = m.group(0)
                        return v

                cont = _interpolate_re.sub(_av, cont)
        # XXX what?: if options is not None:
        # ...apply math:
        cont = self.do_glob_math(cont)
        return cont

    def calculate(self, _base_str, divide=False):
        better_expr_str = _base_str

        #better_expr_str = self.do_glob_math(better_expr_str)

        better_expr_str = self.evaluate_expression(better_expr_str, divide=divide)

        if better_expr_str is None:
            better_expr_str = String.unquoted(self.apply_vars(_base_str))

        return better_expr_str

    # TODO only used by magic-import...?
    def interpolate(self, var):
        value = self.namespace.variable(var)
        if var != value and isinstance(value, six.string_types):
            _vi = self.evaluate_expression(value)
            if _vi is not None:
                value = _vi
        return value

    def evaluate_expression(self, expr, divide=False):
        try:
            ast = self.parse_expression(expr)
        except SassError:
            if config.DEBUG:
                raise
            else:
                return None

        try:
            return ast.evaluate(self, divide=divide)
        except Exception as e:
            raise SassEvaluationError(e, expression=expr)

    def parse_expression(self, expr, target='goal'):
        if not isinstance(expr, six.string_types):
            raise TypeError("Expected string, got %r" % (expr,))

        key = (target, expr)
        if key in self.ast_cache:
            return self.ast_cache[key]

        grammar = get_grammar()
        print("parsing", target, ":", repr(expr))
        try:
            if False:
                print("got from original grammar:", end='')
                parser = SassExpression(SassExpressionScanner(expr))
                ast = P.goal()

            else:
                print("got from new grammar:     ", end='')
                parser = grammar(expr)
                if target == 'goal':
                    target = 'expression'

            ast = getattr(parser, target)()
            print(repr(ast))
        except SyntaxError as e:
            raise SassParseError(e, expression=expr, expression_pos=parser._char_pos)

        self.ast_cache[key] = ast
        return ast


# ------------------------------------------------------------------------------
# Expression classes -- the AST resulting from a parse

class Expression(object):
    def __repr__(self):
        return '<%s()>' % (self.__class__.__name__)

    def evaluate(self, calculator, divide=False):
        """Evaluate this AST node, and return a Sass value.

        `divide` indicates whether a descendant node representing a division
        should be forcibly treated as a division.  See the commentary in
        `BinaryOp`.
        """
        raise NotImplementedError


class Parentheses(Expression):
    """An expression of the form `(foo)`.

    Only exists to force a slash to be interpreted as division when contained
    within parentheses.
    """
    def __repr__(self):
        return '<%s(%s)>' % (self.__class__.__name__, repr(self.contents))

    def __init__(self, contents):
        self.contents = contents

    def evaluate(self, calculator, divide=False):
        return self.contents.evaluate(calculator, divide=True)


class UnaryOp(Expression):
    def __repr__(self):
        return '<%s(%s, %s)>' % (self.__class__.__name__, repr(self.op), repr(self.operand))

    def __init__(self, op, operand):
        self.op = op
        self.operand = operand

    def evaluate(self, calculator, divide=False):
        return self.op(self.operand.evaluate(calculator, divide=True))


class BinaryOp(Expression):
    def __repr__(self):
        return '<%s(%s, %s, %s)>' % (self.__class__.__name__, repr(self.op), repr(self.left), repr(self.right))

    def __init__(self, op, left, right):
        self.op = op
        self.left = left
        self.right = right

    def evaluate(self, calculator, divide=False):
        left = self.left.evaluate(calculator, divide=True)
        right = self.right.evaluate(calculator, divide=True)

        # Special handling of division: treat it as a literal slash if both
        # operands are literals, there are parentheses, or this is part of a
        # bigger expression.
        # The first condition is covered by the type check.  The other two are
        # covered by the `divide` argument: other nodes that perform arithmetic
        # will pass in True, indicating that this should always be a division.
        if (
            self.op is operator.truediv
            and not divide
            and isinstance(self.left, Literal)
            and isinstance(self.right, Literal)
        ):
            return String(left.render() + ' / ' + right.render(), quotes=None)

        return self.op(left, right)


class AnyOp(Expression):
    def __repr__(self):
        return '<%s(*%s)>' % (self.__class__.__name__, repr(self.op), repr(self.operands))

    def __init__(self, *operands):
        self.operands = operands

    def evaluate(self, calculator, divide=False):
        operands = [operand.evaluate(calculator, divide=True) for operand in self.operands]
        return Boolean(any(operands))


class AllOp(Expression):
    def __repr__(self):
        return '<%s(*%s)>' % (self.__class__.__name__, repr(self.operands))

    def __init__(self, *operands):
        self.operands = operands

    def evaluate(self, calculator, divide=False):
        operands = [operand.evaluate(calculator, divide=True) for operand in self.operands]
        return Boolean(all(operands))


class NotOp(Expression):
    def __repr__(self):
        return '<%s(%s)>' % (self.__class__.__name__, repr(self.operand))

    def __init__(self, operand):
        self.operand = operand

    def evaluate(self, calculator, divide=False):
        operand = self.operand.evaluate(calculator, divide=True)
        return Boolean(not(operand))


class CallOp(Expression):
    def __repr__(self):
        return '<%s(%s, %s)>' % (self.__class__.__name__, repr(self.func_name), repr(self.argspec))

    def __init__(self, func_name, argspec):
        self.func_name = func_name
        self.argspec = argspec

    def evaluate(self, calculator, divide=False):
        # TODO bake this into the context and options "dicts", plus library
        func_name = normalize_var(self.func_name)

        argspec_node = self.argspec
        argspec = list(argspec_node.iter_call_argspec())
        argspec_len = len(argspec)

        # Turn the pairs of arg tuples into *args and **kwargs
        # TODO unclear whether this is correct -- how does arg, kwarg, arg
        # work?
        args = []
        kwargs = {}
        evald_argpairs = []
        for var, expr in argspec_node.iter_call_argspec():
            value = expr.evaluate(calculator, divide=True)
            evald_argpairs.append((var, value))
            if var is None:
                args.append(value)
            else:
                kwargs[var.lstrip('$').replace('-', '_')] = value

        # TODO merge this with the library
        funct = None
        try:
            funct = calculator.namespace.function(func_name, argspec_len)
            # @functions take a ns as first arg.  TODO: Python functions possibly
            # should too
            if getattr(funct, '__name__', None) == '__call':
                funct = partial(funct, calculator.namespace)
        except KeyError:
            try:
                if kwargs:
                    raise
                # DEVIATION: Fall back to single parameter
                funct = calculator.namespace.function(func_name, 1)
                args = [args]
            except KeyError:
                if not is_builtin_css_function(func_name):
                    log.error("Function not found: %s:%s", func_name, argspec_len, extra={'stack': True})
                    raise
        if funct:
            ret = funct(*args, **kwargs)
            if not isinstance(ret, Value):
                raise TypeError("Expected Sass type as return value, got %r" % (ret,))
            return ret

        rendered_args = []
        for var, value in evald_argpairs:
            rendered_value = value.render()
            if var is None:
                rendered_args.append(rendered_value)
            else:
                rendered_args.append("%s: %s" % (var, rendered_value))

        return String(
            u"%s(%s)" % (func_name, u", ".join(rendered_args)),
            quotes=None)


class Literal(Expression):
    def __repr__(self):
        return '<%s(%s)>' % (self.__class__.__name__, repr(self.value))

    def __init__(self, value):
        self.value = value

    def evaluate(self, calculator, divide=False):
        return self.value


class FunctionLiteral(Expression):
    def __init__(self, name, value_node):
        self.name = name
        self.value_node = value_node

    def evaluate(self, calculator, divide=False):
        value = self.value_node.evaluate(calculator)
        return String(u"%s(%s)" % (self.name, value.render()), quotes=None)


class Variable(Expression):
    def __repr__(self):
        return '<%s(%s)>' % (self.__class__.__name__, repr(self.name))

    def __init__(self, name):
        self.name = name

    def evaluate(self, calculator, divide=False):
        try:
            value = calculator.namespace.variable(self.name)
        except KeyError:
            if FATAL_UNDEFINED:
                raise
            else:
                log.error("Undefined variable '%s'", self.name, extra={'stack': True})
                return Undefined()
        else:
            if isinstance(value, six.string_types):
                evald = calculator.evaluate_expression(value)
                if evald is not None:
                    return evald
            return value


class ListLiteral(Expression):
    def __repr__(self):
        return '<%s(%s, comma=%s)>' % (self.__class__.__name__, repr(self.items), repr(self.comma))

    def __init__(self, items, comma=True):
        self.items = items
        self.comma = comma

    def evaluate(self, calculator, divide=False):
        items = [item.evaluate(calculator, divide=divide) for item in self.items]
        return List(items, separator="," if self.comma else "")


class MapLiteral(Expression):
    def __repr__(self):
        return '<%s(%s)>' % (self.__class__.__name__, repr(self.pairs))

    def __init__(self, pairs):
        self.pairs = tuple((var, value) for var, value in pairs if value is not None)

    def evaluate(self, calculator, divide=False):
        # TODO unclear here whether the keys should be bare tokens or Literals;
        # depends how the syntax works!
        scss_pairs = []
        for name, value in self.pairs:
            scss_pairs.append((
                name.name if isinstance(name, Variable) else name.value,
                value.evaluate(calculator),
            ))

        return Map(scss_pairs)


class ArgspecLiteral(Expression):
    """Contains pairs of argument names and values, as parsed from a function
    definition or function call.

    Note that the semantics are somewhat ambiguous.  Consider parsing:

        $foo, $bar: 3

    If this appeared in a function call, $foo would refer to a value; if it
    appeared in a function definition, $foo would refer to an existing
    variable.  This it's up to the caller to use the right iteration function.
    """
    def __repr__(self):
        return '<%s(%s)>' % (self.__class__.__name__, repr(self.argpairs))

    def __init__(self, argpairs):
        # argpairs is a list of 2-tuples, parsed as though this were a function
        # call, so (variable name as string or None, default value as AST
        # node).
        while argpairs and argpairs[-1] == (None, None):
            argpairs = argpairs[:-1]
        self.argpairs = tuple((var, Literal(Undefined()) if value is None else value) for var, value in argpairs)

    def iter_list_argspec(self):
        yield None, ListLiteral(zip(*self.argpairs)[1])

    def iter_def_argspec(self):
        """Interpreting this literal as a function definition, yields pairs of
        (variable name as a string, default value as an AST node or None).
        """
        for var, value in self.argpairs:
            if var is None:
                # value is actually the name
                var = value
                value = Literal(Undefined())

            if not isinstance(var, Variable):
                raise SyntaxError("Expected variable name, got %r" % (var,))

            yield var.name, value

    def iter_call_argspec(self):
        """Interpreting this literal as a function call, yields pairs of
        (variable name as a string, default value as an AST node or None).
        """
        for var, value in self.argpairs:
            if var is None:
                yield var, value
            else:
                if not isinstance(var, Variable):
                    raise SyntaxError("Expected variable name, got %r" % (var,))
                yield var.name, value


class Interpolation(Expression):
    def __init__(self, parts, quotes=None):
        self.parts = parts
        self.quotes = quotes

    def evaluate(self, calculator, divide=False):
        ret = []
        for part in self.parts:
            expr = part.evaluate(calculator)
            if isinstance(expr, String):
                ret.append(expr.value)
            else:
                ret.append(expr.render())

        return String(''.join(ret), quotes=self.quotes)


def parse_bareword(word):
    if word in COLOR_NAMES:
        return Color.from_name(word)
    elif word == 'null':
        return Null()
    elif word == 'undefined':
        return Undefined()
    elif word == 'true':
        return Boolean(True)
    elif word == 'false':
        return Boolean(False)
    else:
        return String(word, quotes=None)


class Parser(object):
    def __init__(self, scanner):
        self._scanner = scanner
        self._pos = 0
        self._char_pos = 0

    def reset(self, input):
        self._scanner.reset(input)
        self._pos = 0
        self._char_pos = 0

    def _peek(self, types):
        """
        Returns the token type for lookahead; if there are any args
        then the list of args is the set of token types to allow
        """
        try:
            tok = self._scanner.token(self._pos, types)
            return tok[2]
        except SyntaxError:
            return None

    def _scan(self, type):
        """
        Returns the matched text, and moves to the next token
        """
        tok = self._scanner.token(self._pos, set([type]))
        self._char_pos = tok[0]
        if tok[2] != type:
            raise SyntaxError("SyntaxError[@ char %s: %s]" % (repr(tok[0]), "Trying to find " + type))
        self._pos += 1
        return tok[3]


################################################################################
## Grammar compiled using Yapps:

class SassExpressionScanner(Scanner):
    patterns = None
    _patterns = [
        ('":"', ':'),
        ('","', ','),
        ('[ \r\t\n]+', '[ \r\t\n]+'),
        ('LPAR', '\\(|\\['),
        ('RPAR', '\\)|\\]'),
        ('END', '$'),
        ('MUL', '[*]'),
        ('DIV', '/'),
        ('ADD', '[+]'),
        ('SUB', '-\\s'),
        ('SIGN', '-(?![a-zA-Z_])'),
        ('AND', '(?<![-\\w])and(?![-\\w])'),
        ('OR', '(?<![-\\w])or(?![-\\w])'),
        ('NOT', '(?<![-\\w])not(?![-\\w])'),
        ('NE', '!='),
        ('INV', '!'),
        ('EQ', '=='),
        ('LE', '<='),
        ('GE', '>='),
        ('LT', '<'),
        ('GT', '>'),
        ('KWSTR', "'[^']*'(?=\\s*:)"),
        ('STR', "'[^']*'"),
        ('KWQSTR', '"[^"]*"(?=\\s*:)'),
        ('QSTR', '"[^"]*"'),
        ('UNITS', '(?<!\\s)(?:[a-zA-Z]+|%)(?![-\\w])'),
        ('KWNUM', '(?:\\d+(?:\\.\\d*)?|\\.\\d+)(?=\\s*:)'),
        ('NUM', '(?:\\d+(?:\\.\\d*)?|\\.\\d+)'),
        ('KWCOLOR', '#(?:[a-fA-F0-9]{6}|[a-fA-F0-9]{3})(?![a-fA-F0-9])(?=\\s*:)'),
        ('COLOR', '#(?:[a-fA-F0-9]{6}|[a-fA-F0-9]{3})(?![a-fA-F0-9])'),
        ('KWVAR', '\\$[-a-zA-Z0-9_]+(?=\\s*:)'),
        ('VAR', '\\$[-a-zA-Z0-9_]+'),
        ('FNCT', '[-a-zA-Z_][-a-zA-Z0-9_]*(?=\\()'),
        ('KWID', '[-a-zA-Z_][-a-zA-Z0-9_]*(?=\\s*:)'),
        ('ID', '[-a-zA-Z_][-a-zA-Z0-9_]*'),
        ('BANG_IMPORTANT', '!important'),
        ('LINTERP', '#[{]'),
        ('RINTERP', '[}]'),
        ('SQUOT', "'"),
        ('DQUOT', '"'),
        ('SQCHAR', "([^'#]|#(?![{]))*"),
        ('DQCHAR', '([^"#]|#(?![{]))*'),
    ]

    def __init__(self, input=None):
        if hasattr(self, 'setup_patterns'):
            self.setup_patterns(self._patterns)
        elif self.patterns is None:
            self.__class__.patterns = []
            for t, p in self._patterns:
                self.patterns.append((t, re.compile(p)))
        super(SassExpressionScanner, self).__init__(None, ['[ \r\t\n]+'], input)


class SassExpression(Parser):
    def goal(self):
        expr_lst = self.expr_lst()
        END = self._scan('END')
        return expr_lst

    def goal_argspec(self):
        argspec = self.argspec()
        END = self._scan('END')
        return argspec

    def argspec(self):
        argspec_item = self.argspec_item()
        argpairs = [argspec_item]
        while self._peek(self.argspec_rsts) == '","':
            self._scan('","')
            argspec_item = (None, None)
            if self._peek(self.argspec_rsts_) not in self.argspec_rsts:
                argspec_item = self.argspec_item()
            argpairs.append(argspec_item)
        return ArgspecLiteral(argpairs)

    def argspec_item(self):
        _token_ = self._peek(self.argspec_item_rsts)
        if _token_ == 'KWVAR':
            KWVAR = self._scan('KWVAR')
            self._scan('":"')
            expr_slst = self.expr_slst()
            return (Variable(KWVAR), expr_slst)
        else:  # in self.argspec_item_chks
            expr_slst = self.expr_slst()
            return (None, expr_slst)

    def expr_map(self):
        map_item = self.map_item()
        pairs = [map_item]
        while self._peek(self.expr_map_rsts) == '","':
            self._scan('","')
            map_item = (None, None)
            if self._peek(self.expr_map_rsts_) not in self.expr_map_rsts:
                map_item = self.map_item()
            pairs.append(map_item)
        return MapLiteral(pairs)

    def map_item(self):
        kwatom = self.kwatom()
        self._scan('":"')
        expr_slst = self.expr_slst()
        return (kwatom, expr_slst)

    def expr_lst(self):
        expr_slst = self.expr_slst()
        v = [expr_slst]
        while self._peek(self.expr_lst_rsts) == '","':
            self._scan('","')
            expr_slst = self.expr_slst()
            v.append(expr_slst)
        return ListLiteral(v) if len(v) > 1 else v[0]

    def expr_slst(self):
        or_expr = self.or_expr()
        v = [or_expr]
        while self._peek(self.expr_slst_rsts) not in self.expr_lst_rsts:
            or_expr = self.or_expr()
            v.append(or_expr)
        return ListLiteral(v, comma=False) if len(v) > 1 else v[0]

    def or_expr(self):
        and_expr = self.and_expr()
        v = and_expr
        while self._peek(self.or_expr_rsts) == 'OR':
            OR = self._scan('OR')
            and_expr = self.and_expr()
            v = AnyOp(v, and_expr)
        return v

    def and_expr(self):
        not_expr = self.not_expr()
        v = not_expr
        while self._peek(self.and_expr_rsts) == 'AND':
            AND = self._scan('AND')
            not_expr = self.not_expr()
            v = AllOp(v, not_expr)
        return v

    def not_expr(self):
        _token_ = self._peek(self.argspec_item_chks)
        if _token_ != 'NOT':
            comparison = self.comparison()
            return comparison
        else:  # == 'NOT'
            NOT = self._scan('NOT')
            not_expr = self.not_expr()
            return NotOp(not_expr)

    def comparison(self):
        a_expr = self.a_expr()
        v = a_expr
        while self._peek(self.comparison_rsts) in self.comparison_chks:
            _token_ = self._peek(self.comparison_chks)
            if _token_ == 'LT':
                LT = self._scan('LT')
                a_expr = self.a_expr()
                v = BinaryOp(operator.lt, v, a_expr)
            elif _token_ == 'GT':
                GT = self._scan('GT')
                a_expr = self.a_expr()
                v = BinaryOp(operator.gt, v, a_expr)
            elif _token_ == 'LE':
                LE = self._scan('LE')
                a_expr = self.a_expr()
                v = BinaryOp(operator.le, v, a_expr)
            elif _token_ == 'GE':
                GE = self._scan('GE')
                a_expr = self.a_expr()
                v = BinaryOp(operator.ge, v, a_expr)
            elif _token_ == 'EQ':
                EQ = self._scan('EQ')
                a_expr = self.a_expr()
                v = BinaryOp(operator.eq, v, a_expr)
            else:  # == 'NE'
                NE = self._scan('NE')
                a_expr = self.a_expr()
                v = BinaryOp(operator.ne, v, a_expr)
        return v

    def a_expr(self):
        m_expr = self.m_expr()
        v = m_expr
        while self._peek(self.a_expr_rsts) in self.a_expr_chks:
            _token_ = self._peek(self.a_expr_chks)
            if _token_ == 'ADD':
                ADD = self._scan('ADD')
                m_expr = self.m_expr()
                v = BinaryOp(operator.add, v, m_expr)
            else:  # == 'SUB'
                SUB = self._scan('SUB')
                m_expr = self.m_expr()
                v = BinaryOp(operator.sub, v, m_expr)
        return v

    def m_expr(self):
        u_expr = self.u_expr()
        v = u_expr
        while self._peek(self.m_expr_rsts) in self.m_expr_chks:
            _token_ = self._peek(self.m_expr_chks)
            if _token_ == 'MUL':
                MUL = self._scan('MUL')
                u_expr = self.u_expr()
                v = BinaryOp(operator.mul, v, u_expr)
            else:  # == 'DIV'
                DIV = self._scan('DIV')
                u_expr = self.u_expr()
                v = BinaryOp(operator.truediv, v, u_expr)
        return v

    def u_expr(self):
        _token_ = self._peek(self.u_expr_rsts)
        if _token_ == 'SIGN':
            SIGN = self._scan('SIGN')
            u_expr = self.u_expr()
            return UnaryOp(operator.neg, u_expr)
        elif _token_ == 'ADD':
            ADD = self._scan('ADD')
            u_expr = self.u_expr()
            return UnaryOp(operator.pos, u_expr)
        else:  # in self.u_expr_chks
            atom = self.atom()
            return atom

    def atom(self):
        _token_ = self._peek(self.u_expr_chks)
        if _token_ == 'LPAR':
            LPAR = self._scan('LPAR')
            _token_ = self._peek(self.atom_rsts)
            if _token_ not in self.argspec_item_chks:
                expr_map = self.expr_map()
                v = expr_map
            else:  # in self.argspec_item_chks
                expr_lst = self.expr_lst()
                v = expr_lst
            RPAR = self._scan('RPAR')
            return Parentheses(v)
        elif _token_ == 'FNCT':
            FNCT = self._scan('FNCT')
            argspec = ArgspecLiteral([])
            LPAR = self._scan('LPAR')
            if self._peek(self.atom_rsts_) not in self.atom_chks:
                argspec = self.argspec()
            RPAR = self._scan('RPAR')
            return CallOp(FNCT, argspec)
        elif _token_ == 'BANG_IMPORTANT':
            BANG_IMPORTANT = self._scan('BANG_IMPORTANT')
            return Literal(String(BANG_IMPORTANT, quotes=None))
        elif _token_ == 'ID':
            ID = self._scan('ID')
            return Literal(parse_bareword(ID))
        elif _token_ == 'NUM':
            NUM = self._scan('NUM')
            UNITS = None
            if self._peek(self.atom_rsts__) == 'UNITS':
                UNITS = self._scan('UNITS')
            return Literal(Number(float(NUM), unit=UNITS))
        elif _token_ == 'COLOR':
            COLOR = self._scan('COLOR')
            return Literal(Color(ParserValue(COLOR)))
        elif _token_ == 'SQUOT':
            SQUOT = self._scan('SQUOT')
            SQCHAR = self._scan('SQCHAR')
            v = Literal(String(SQCHAR, quotes="'"))
            while self._peek(self.atom_rsts___) == 'LINTERP':
                LINTERP = self._scan('LINTERP')
                expr_lst = self.expr_lst()
                RINTERP = self._scan('RINTERP')
                SQCHAR = self._scan('SQCHAR')
                v = Interpolation(v, expr_lst, Literal(String(SQCHAR, quotes="'")), quotes="'")
            SQUOT = self._scan('SQUOT')
            return v
        elif _token_ == 'DQUOT':
            DQUOT = self._scan('DQUOT')
            DQCHAR = self._scan('DQCHAR')
            v = Literal(String(DQCHAR, quotes='"'))
            while self._peek(self.atom_rsts____) == 'LINTERP':
                LINTERP = self._scan('LINTERP')
                expr_lst = self.expr_lst()
                RINTERP = self._scan('RINTERP')
                DQCHAR = self._scan('DQCHAR')
                v = Interpolation(v, expr_lst, Literal(String(DQCHAR, quotes='"')), quotes='"')
            DQUOT = self._scan('DQUOT')
            return v
        else:  # == 'VAR'
            VAR = self._scan('VAR')
            return Variable(VAR)

    def kwatom(self):
        _token_ = self._peek(self.kwatom_rsts)
        if _token_ == '":"':
            pass
        elif _token_ == 'KWID':
            KWID = self._scan('KWID')
            return Literal(parse_bareword(KWID))
        elif _token_ == 'KWNUM':
            KWNUM = self._scan('KWNUM')
            UNITS = None
            if self._peek(self.kwatom_rsts_) == 'UNITS':
                UNITS = self._scan('UNITS')
            return Literal(Number(float(KWNUM), unit=UNITS))
        elif _token_ == 'KWSTR':
            KWSTR = self._scan('KWSTR')
            return Literal(String(KWSTR[1:-1], quotes="'"))
        elif _token_ == 'KWQSTR':
            KWQSTR = self._scan('KWQSTR')
            return Literal(String(KWQSTR[1:-1], quotes='"'))
        elif _token_ == 'KWCOLOR':
            KWCOLOR = self._scan('KWCOLOR')
            return Literal(Color(ParserValue(KWCOLOR)))
        else:  # == 'KWVAR'
            KWVAR = self._scan('KWVAR')
            return Variable(KWVAR)

    atom_rsts____ = set(['LINTERP', 'DQUOT'])
    u_expr_chks = set(['LPAR', 'COLOR', 'SQUOT', 'DQUOT', 'NUM', 'FNCT', 'VAR', 'BANG_IMPORTANT', 'ID'])
    m_expr_rsts = set(['LPAR', 'SUB', 'SQUOT', 'DQUOT', 'RPAR', 'MUL', 'DIV', 'BANG_IMPORTANT', 'LE', 'COLOR', 'NE', 'LT', 'NUM', 'GT', 'END', 'RINTERP', 'SIGN', 'GE', 'FNCT', 'VAR', 'EQ', 'ID', 'AND', 'ADD', 'NOT', 'OR', '","'])
    expr_map_rsts = set(['RPAR', '","'])
    expr_lst_rsts = set(['RPAR', 'RINTERP', 'END', '","'])
    kwatom_rsts = set(['KWVAR', 'KWID', 'KWSTR', 'KWQSTR', 'KWCOLOR', '":"', 'KWNUM'])
    argspec_item_chks = set(['LPAR', 'COLOR', 'SQUOT', 'DQUOT', 'SIGN', 'VAR', 'ADD', 'NUM', 'FNCT', 'NOT', 'BANG_IMPORTANT', 'ID'])
    a_expr_chks = set(['ADD', 'SUB'])
    expr_slst_rsts = set(['LPAR', 'END', 'COLOR', 'SQUOT', 'DQUOT', 'RINTERP', 'SIGN', 'VAR', 'ADD', 'NUM', 'RPAR', 'FNCT', 'NOT', 'BANG_IMPORTANT', 'ID', '","'])
    a_expr_rsts = set(['LPAR', 'SUB', 'SQUOT', 'DQUOT', 'RPAR', 'BANG_IMPORTANT', 'LE', 'COLOR', 'NE', 'LT', 'NUM', 'GT', 'END', 'RINTERP', 'SIGN', 'GE', 'FNCT', 'VAR', 'EQ', 'ID', 'AND', 'ADD', 'NOT', 'OR', '","'])
    or_expr_rsts = set(['LPAR', 'END', 'COLOR', 'SQUOT', 'DQUOT', 'RINTERP', 'SIGN', 'VAR', 'ADD', 'NUM', 'RPAR', 'FNCT', 'NOT', 'ID', 'BANG_IMPORTANT', 'OR', '","'])
    argspec_item_rsts = set(['KWVAR', 'LPAR', 'COLOR', 'SQUOT', 'DQUOT', 'SIGN', 'VAR', 'ADD', 'NUM', 'FNCT', 'NOT', 'BANG_IMPORTANT', 'ID'])
    atom_rsts = set(['KWVAR', 'KWID', 'KWSTR', 'BANG_IMPORTANT', 'LPAR', 'COLOR', 'SQUOT', 'KWQSTR', 'DQUOT', 'SIGN', 'KWCOLOR', 'VAR', 'ADD', 'NUM', '":"', 'NOT', 'KWNUM', 'ID', 'FNCT'])
    comparison_rsts = set(['LPAR', 'SQUOT', 'DQUOT', 'RPAR', 'BANG_IMPORTANT', 'LE', 'COLOR', 'NE', 'LT', 'NUM', 'GT', 'END', 'RINTERP', 'SIGN', 'ADD', 'FNCT', 'VAR', 'EQ', 'ID', 'AND', 'GE', 'NOT', 'OR', '","'])
    atom_rsts_ = set(['KWVAR', 'LPAR', 'BANG_IMPORTANT', 'END', 'COLOR', 'SQUOT', 'DQUOT', 'SIGN', 'VAR', 'ADD', 'NUM', 'FNCT', 'NOT', 'RPAR', 'ID'])
    expr_map_rsts_ = set(['KWVAR', 'KWID', 'KWSTR', 'KWQSTR', 'RPAR', 'KWCOLOR', '":"', 'KWNUM', '","'])
    u_expr_rsts = set(['LPAR', 'COLOR', 'SQUOT', 'DQUOT', 'SIGN', 'ADD', 'NUM', 'FNCT', 'VAR', 'BANG_IMPORTANT', 'ID'])
    atom_chks = set(['END', 'RPAR'])
    comparison_chks = set(['GT', 'GE', 'NE', 'LT', 'LE', 'EQ'])
    atom_rsts__ = set(['LPAR', 'SUB', 'SQUOT', 'DQUOT', 'RPAR', 'VAR', 'MUL', 'DIV', 'BANG_IMPORTANT', 'LE', 'COLOR', 'NE', 'LT', 'NUM', 'GT', 'END', 'RINTERP', 'SIGN', 'GE', 'FNCT', 'UNITS', 'EQ', 'ID', 'AND', 'ADD', 'NOT', 'OR', '","'])
    m_expr_chks = set(['MUL', 'DIV'])
    kwatom_rsts_ = set(['UNITS', '":"'])
    atom_rsts___ = set(['LINTERP', 'SQUOT'])
    argspec_rsts = set(['RPAR', 'END', '","'])
    and_expr_rsts = set(['AND', 'LPAR', 'END', 'COLOR', 'SQUOT', 'DQUOT', 'RINTERP', 'SIGN', 'VAR', 'ADD', 'NUM', 'RPAR', 'FNCT', 'NOT', 'ID', 'BANG_IMPORTANT', 'OR', '","'])
    argspec_rsts_ = set(['KWVAR', 'LPAR', 'BANG_IMPORTANT', 'END', 'COLOR', 'SQUOT', 'DQUOT', 'SIGN', 'VAR', 'ADD', 'NUM', 'FNCT', 'NOT', 'RPAR', 'ID', '","'])


### Grammar ends.
################################################################################

__all__ = ('Calculator',)