
Page 1

Don't distribute without prior permission from AMQP Working
Group

Contents

Transactional Messaging

X/Open DTP Model

Solutions for AMQP XA Support

Dtx Class

Observations

Considerations

Need for easy and effective XA support

Page 2

Don't distribute without prior permission from AMQP Working
Group

Transactional Messaging Semantic

Message Production

A message is produced within the scope of a transaction
if transaction commits then the message is enqueued

if transaction rolls-back then the message is discarded

Message Consumption

A message is consumed within the scope of a transaction

if transaction commits then the message is discarded
if transaction rolls-back then the message is re-enqueued

Page 3

Don't distribute without prior permission from AMQP Working
Group

Messaging Most Common Use Case

1. start distributed transaction T1

2. consume a message from Queue X

3. write to relational database

4. produce a new message on Queue Y (which may or may
 not be on the same broker process)

5. commit or rollback T1

T1

Page 4

Don't distribute without prior permission from AMQP Working
Group

X/Open Distributed Transaction Processing
(DTP) Model

Application Program (AP)

Resource Managers (RM)

Transaction Manger (TM)

AP

TM
RMsRMsRMs

Defines tx boundariesUses resources

Exchange tx information

Page 5

Don't distribute without prior permission from AMQP Working
Group

X/Open DTP Model Messaging Most Common
Use Case

AP TM RM AMQP RM DBMS
start T1

start T1
start T1

consume a message M1 from Queue 1

produce a message M2 on Queue 2

commit T1

prepare T1

unlock Tb

discard M1
enqueue M2

prepare T1

commit T1

end T1

end T1

commit T1

write to relational database update table Tb

Page 6

Don't distribute without prior permission from AMQP Working
Group

Solutions for AMQP XA Support

Use some object communication facilities (RMI, CORBA, ..)

Additional transport layer that may not be as flexible and
light way than AMQP

Additional configuration would be required

Interoperability may be broken as AMQP XA communication
protocol would be left as an implementation choice

Full control of distributed transactions over AMQP

Improve interoperability

Aid implementations that wish to provide XA support

Page 7

Don't distribute without prior permission from AMQP Working
Group

Proposed Solution

Extend AMQP dtx class to provide support for the X-
Open XA architecture

 AMQP broker that wants to participate in global
transaction has to be XA compliance Resource

Page 8

Don't distribute without prior permission from AMQP Working
Group

C++ Use Case (1/4) RM registration with TM

At TM startup, the globally
defined RM Client xa_switches
are registered against the TM

Process

Page 9

Don't distribute without prior permission from AMQP Working
Group

C++ Use Case (2/4) RM registration with TM

Only TM executes XA calls against an
RM client.
XA calls result in dtx protocol flow
between the AMQP RM client and
broker

Thread
of

control

Page 10

Don't distribute without prior permission from AMQP Working
Group

C++ Use Case (3/4) RM registration with TM

The RM client is required to manage a mapping between
channel and thread-context

AP, TM and RM client execute under the same thread of
control

TM always calls xa_open If supported by RM client

TM always passes rmid with xa operations. rmid uniquely
identifies the called RM instance with the Thread of control

With this mapping RM client is able to determine which
AMQP channel to employ based on the thread context

It is likely that a RM client would maintain a pool of channel

Page 11

Don't distribute without prior permission from AMQP Working
Group

C++ Use Case (4/4)

The AP uses the native
AMQP interface of the RM
AMQP client for
producing/consuming
messages

The RM AMQP client native
interface is not defined by
the AMQP Specifications

Based on the thread
context the RM AMQP
client Map calls to the
corresponding channel

Process

Page 12

Don't distribute without prior permission from AMQP Working
Group

Java Use Case 1/2

TM
AP

XAResource

X
A

S
e
s
s
io

n

Process1 begin

2 Get transaction Tx

Tx
4 Enlist XaResource with Tx

1 begin

Get XAResource3

Use to produce
and consume
messages

6

7 commit or rollback

5 xa_start()

xa_end()
xa_commit()
xa_roolback()

8

9 Delist XaResource

Thread of control

Page 13

Don't distribute without prior permission from AMQP Working
Group

Java use case 2/2

XAResource and XASession objects share the same AMQP
channel

There is a one to one association of a channel and a thread
context (A JMS session is single threaded)

Remark: several XAResources can be registered with the
same transaction

Page 14

Don't distribute without prior permission from AMQP Working
Group

dtx Class New Methods

select: sets the channel to use distributed transactions

start: messages are produced and consumed on behalf a transaction branch

Suspend: suspend the currently running transaction branch

prepare: prepares for commitment any message produced or consumed on behalf a
transaction branch (default currently running)

commit: commits the work associated with a transaction branch (default currently
running)

rollback: rolls back the work associated with a transaction branch (default currently
running)

setTimeout: sets the transaction timeout in seconds

getTimeout: get the current transaction timeout in seconds

recover: obtains a list of transaction branches that are in a prepared or heuristically
completed state.

forget: forgets about a heuristically completed transaction branch

Page 15

Don't distribute without prior permission from AMQP Working
Group

dtx-Defined Domain

XID contains a format identifier, two length fields and a data field:

long formatID

octet gtrid_length

octet bqual_length

table data[128] : a table of 128 bytes

Note that XIDs can be null

Page 16

Don't distribute without prior permission from AMQP Working
Group

Messaging Most Common Use Case
Application AMQP RM ClientTM

begin

DBMS RM Client

xa_start(T1)

consume a message from Q1

dtx.select

AMQP Broker

xa_start(T1)

dtx.start(T1)

Basic.consume queue = Q1
update a table tb

produce a message on Q2

Basic.publish routing_key = Q2
commit

xa_end(T1)

xa_end(T1)

xa_prepare(T1)

xa_prepare(T1)

xa_commit(T1)

xa_commit(T1)

dtx.prepare

dtx.commit

Thread of control

AMQP
Channel

Page 17

Don't distribute without prior permission from AMQP Working
Group

Thread of control

Messaging Extended Use Case
Application AMQP RM ClientTM

begin

DBMS RM Client

consume a message from Q1

dtx.select

AMQP Broker

dtx.start(T1)

Basic.consume queue = Q1

update a table tb

produce a message on Q2
Basic.publish routing_key = Q2

resume(T2)

xa_end(T2)

xa_end(T2)

xa_prepare(T2)
xa_prepare(T2)

xa_commit(T2)

xa_commit(T2)

dtx.suspend

dtx.commit

xa_start(T1)

xa_end(T1)

xa_start(T2)
xa_start(T2)

dtx.start(T2)

commit

dtx.prepare

resume(T1)
xa_start(T1)

produce a message on Q3
Basic.publish routing_key = Q3 commit

xa_end(T1)
xa_commit(T1)

dtx.commit

AMQP
Channel

Page 18

Don't distribute without prior permission from AMQP Working
Group

Using a Command Channel
Application AMQP RM ClientTM

begin

DBMS RM Client

xa_start(T1)

consume a message from Q1

dtx.select

AMQP Broker

xa_start(T1)

dtx.start(T1)

Basic.consume queue = Q1
update a table tb

produce a message on Q2

Basic.publish routing_key = Q2
commit

xa_end(T1)

xa_end(T1)

xa_prepare(T1)

xa_prepare(T1)

xa_commit(T1)

xa_commit(T1)

dtx.prepare(T1)

dtx.commit(T1)

Thread of control

Transactional
Channel

Command
Channel

Page 19

Don't distribute without prior permission from AMQP Working
Group

dtx Class Grammar
dtx = C:select S:select-ok *xaWork

| *xaMonitor

xaMonitor = xaOutcome
| xaRecovery
| C:setTimeout S:resp
| C:getTimeout S:resp

xaWork = C:start S:resp *xaMoreOps xaOutcome
| xaMonitor

xaMoreOps = C:suspend S:resp xaWork

xaOutcome = xaRollback
 | xa1PhaseCom
 | xa2PhaseCom

xaRollback = C:rollback S:resp

xa1PhaseCom = C:commit(TMONEPHASE) S:resp

xa2PhaseCom = C:prepare S:resp C:commit S:resp
 | C:prepare S:resp C:rollback S:resp

xaRecovery = C:recover S:recover-resp
| xaOutcome
| C:forget S:resp

Page 20

Don't distribute without prior permission from AMQP Working
Group

Observations 1/2

There is a one-to-one association between thread-context
and channel

More than one channel CAN be used
Transactional channel

— Any works performed between dtx.start/dtx.suspend or dtx.start/dtx.commit is done on behalf a
transaction branch identified by XID.

Command Channel
— can be used for any XA operations other than start and suspend under the condition that the

transaction XID is specified

If the transaction context is not specified then the currently
running transaction branch is selected

Page 21

Don't distribute without prior permission from AMQP Working
Group

Observations 2/2

All the dtx operations have an access-ticket to prevent
unauthorized use

The purpose of the dtx.select operation is for the server to
optimize handling of distributed transaction. Once a channel
is selected it cannot be disassociated with XA support

As we expect that the sever will setup some mechanisms for
handling distributed transactions that will result in some
kind of overhead we do not recommend using an XA channel
for non-transacted traffic

The dtx class is optional

