summaryrefslogtreecommitdiff
path: root/qpid/cpp/src/qpid/sys/posix/Time.cpp
blob: 272c6c21a5a8780ebb6a498caa8ec1f135bd3bb2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/*
 *
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 * 
 *   http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 *
 */

#include "qpid/sys/posix/PrivatePosix.h"

#include "qpid/sys/Time.h"
#include <ostream>
#include <time.h>
#include <stdio.h>
#include <sys/time.h>
#include <unistd.h>
#include <iomanip>

namespace {
int64_t max_abstime() { return std::numeric_limits<int64_t>::max(); }
}

namespace qpid {
namespace sys {

AbsTime::AbsTime(const AbsTime& t, const Duration& d) :
    timepoint(d == Duration::max() ? max_abstime() : t.timepoint+d.nanosecs)
{}

AbsTime AbsTime::Epoch() {
    AbsTime epoch; epoch.timepoint = 0;
    return epoch;
}

AbsTime AbsTime::FarFuture() {
    AbsTime ff; ff.timepoint = max_abstime(); return ff;
}

AbsTime AbsTime::now() {
    struct timespec ts;
    ::clock_gettime(CLOCK_REALTIME, &ts);
    AbsTime time_now;
    time_now.timepoint = toTime(ts).nanosecs;
    return time_now;
}

Duration::Duration(const AbsTime& start, const AbsTime& finish) :
    nanosecs(finish.timepoint - start.timepoint)
{}

namespace {
/** type conversion helper: an infinite timeout for time_t sized types **/
const time_t TIME_T_MAX = std::numeric_limits<time_t>::max();
}

struct timespec& toTimespec(struct timespec& ts, const Duration& t) {
    Duration secs = t / TIME_SEC;
    ts.tv_sec = (secs > TIME_T_MAX) ? TIME_T_MAX : static_cast<time_t>(secs);
    ts.tv_nsec = static_cast<long>(t % TIME_SEC);
    return ts; 
}

struct timeval& toTimeval(struct timeval& tv, const Duration& t) {
    Duration secs = t / TIME_SEC;
    tv.tv_sec = (secs > TIME_T_MAX) ? TIME_T_MAX : static_cast<time_t>(secs);
    tv.tv_usec = static_cast<suseconds_t>((t%TIME_SEC)/TIME_USEC);
    return tv;
}

Duration toTime(const struct timespec& ts) {
    return ts.tv_sec*TIME_SEC + ts.tv_nsec;
}

std::ostream& operator<<(std::ostream& o, const Duration& d) {
    return o << int64_t(d) << "ns";   
}

namespace {
inline std::ostream& outputFormattedTime(std::ostream& o, const ::time_t* time) {
    ::tm timeinfo;
    char time_string[100];
    ::strftime(time_string, 100,
               "%Y-%m-%d %H:%M:%S",
               localtime_r(time, &timeinfo));
    return o << time_string;
}
}

std::ostream& operator<<(std::ostream& o, const AbsTime& t) {
    ::time_t rawtime(t.timepoint/TIME_SEC);
    return outputFormattedTime(o, &rawtime);
}

void outputFormattedNow(std::ostream& o) {
    ::time_t rawtime;
    ::time(&rawtime);
    outputFormattedTime(o, &rawtime);
    o << " ";
}

void outputHiresNow(std::ostream& o) {
    ::timespec time;
    ::clock_gettime(CLOCK_REALTIME, &time);
    ::time_t seconds = time.tv_sec;
    outputFormattedTime(o, &seconds);
    o << "." << std::setw(9) << std::setfill('0') << time.tv_nsec << " ";
}

void sleep(int secs) {
    ::sleep(secs);
}

void usleep(uint64_t usecs) {
    ::usleep(usecs);
}

}}