summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorBarry Mead <barrymead@cox.net>2010-02-21 16:57:15 -0700
committerBarry Mead <barrymead@cox.net>2010-02-21 16:57:15 -0700
commit249324da95aa89f9a146837c02fd376e30f5c0b1 (patch)
treedad26295f538c9dea9fc334ee4d98c04b5650b4e
parent2005f503040beffee73957bdbbb4a767ea634284 (diff)
downloadrsa-git-249324da95aa89f9a146837c02fd376e30f5c0b1.tar.gz
Builtin pow function already performs efficient fast exponentiation modulo n
-rw-r--r--rsa/__init__.py24
-rw-r--r--rsa/fastrsa.py32
2 files changed, 10 insertions, 46 deletions
diff --git a/rsa/__init__.py b/rsa/__init__.py
index 6b66506..eef217f 100644
--- a/rsa/__init__.py
+++ b/rsa/__init__.py
@@ -166,24 +166,6 @@ def str642int(string):
return integer
-
-def fast_exponentiation(a, e, n):
- """Calculates r = a^e mod n
- """
- #Single loop version is faster and uses less memory
- #MSB is always 1 so skip testing it and, start with next exponent bit.
- msbe = bit_size(e) - 2 #Find MSB-1 of exponent
- test = long(1 << msbe) #Isolate each expoent bit with test value
- a %= n #Throw away any overflow modulo n
- result = a #Start with result = a (skip MSB test)
- while test != 0: #Repeat til all exponent bits have been tested
- if e & test != 0: #If exponent bit is 1, square and mult by a
- result = (result * result * a) % n #Then reduce modulo n
- else: #If exponent bit is 0, just square
- result = (result * result) % n #Then reduce modulo n
- test >>= 1 #Move to next exponent bit
- return result
-
def read_random_int(nbits):
"""Reads a random integer of approximately nbits bits rounded up
to whole bytes"""
@@ -238,7 +220,7 @@ def jacobi_witness(x, n):
"""
j = jacobi(x, n) % n
- f = fast_exponentiation(x, (n-1)/2, n)
+ f = pow(x, (n-1)/2, n)
if j == f: return False
return True
@@ -410,13 +392,13 @@ def encrypt_int(message, ekey, n):
safebit = bit_size(n) - 2 #compute safe bit (MSB - 1)
message += (1 << safebit) #add safebit to ensure folding
- return fast_exponentiation(message, ekey, n)
+ return pow(message, ekey, n)
def decrypt_int(cyphertext, dkey, n):
"""Decrypts a cypher text using the decryption key 'dkey', working
modulo n"""
- message = fast_exponentiation(cyphertext, dkey, n)
+ message = pow(cyphertext, dkey, n)
safebit = bit_size(n) - 2 #compute safe bit (MSB - 1)
message -= (1 << safebit) #remove safebit before decode
diff --git a/rsa/fastrsa.py b/rsa/fastrsa.py
index 3a26437..e9adab6 100644
--- a/rsa/fastrsa.py
+++ b/rsa/fastrsa.py
@@ -166,24 +166,6 @@ def str642int(string):
return integer
-
-def fast_exponentiation(a, e, n):
- """Calculates r = a^e mod n
- """
- #Single loop version is faster and uses less memory
- #MSB is always 1 so skip testing it and start with next exponent bit.
- msbe = bit_size(e) - 2 #Find MSB-1 of exponent
- test = long(1 << msbe) #Isolate each exponent bit with test value
- a %= n #Throw away any overflow modulo n
- result = a #Start with result = a (skip MSB test)
- while test != 0: #Repeat til all exponent bits have been tested
- if e & test != 0: #If exponent bit is 1, square and mult by a
- result = (result * result * a) % n #Then reduce modulo n
- else: #If exponent bit is 0, just square
- result = (result * result) % n #Then reduce modulo n
- test >>= 1 #Move to next exponent bit
- return result
-
def read_random_int(nbits):
"""Reads a random integer of approximately nbits bits rounded up
to whole bytes"""
@@ -238,7 +220,7 @@ def jacobi_witness(x, n):
"""
j = jacobi(x, n) % n
- f = fast_exponentiation(x, (n-1)/2, n)
+ f = pow(x, (n-1)/2, n)
if j == f: return False
return True
@@ -416,7 +398,7 @@ def encrypt_int(message, key):
safebit = bit_size(n) - 2 #safe bit is (MSB - 1)
message += (1 << safebit) #add safebit to ensure folding
- return fast_exponentiation(message, key['e'], key['n'])
+ return pow(message, key['e'], key['n'])
def verify_int(cyphertext, key):
"""Decrypts cyphertext using public key 'key', working modulo n"""
@@ -427,7 +409,7 @@ def verify_int(cyphertext, key):
if not type(cyphertext) is types.LongType:
raise TypeError("You must pass a long or int")
- message = fast_exponentiation(cyphertext, key['e'], key['n'])
+ message = pow(cyphertext, key['e'], key['n'])
#Note: Bit exponents start at zero (bit counts start at 1) this is correct
safebit = bit_size(n) - 2 #safe bit is (MSB - 1)
@@ -442,8 +424,8 @@ def decrypt_int(cyphertext, key):
q = key['q']
n = p * q
#Decrypt in 2 parts, using faster Chinese Remainder Theorem method
- m1 = fast_exponentiation(cyphertext, key['dp'], p)
- m2 = fast_exponentiation(cyphertext, key['dq'], q)
+ m1 = pow(cyphertext, key['dp'], p)
+ m2 = pow(cyphertext, key['dq'], q)
dif = m1 - m2
if dif < 0: dif += p
h = (key['qi'] * dif) % p
@@ -475,8 +457,8 @@ def sign_int(message, key):
message += (1 << safebit) #add safebit before encrypt
#Encrypt in 2 parts, using faster Chinese Remainder Theorem method
- c1 = fast_exponentiation(message, key['dp'], p)
- c2 = fast_exponentiation(message, key['dq'], q)
+ c1 = pow(message, key['dp'], p)
+ c2 = pow(message, key['dq'], q)
dif = c1 - c2
if dif < 0: dif += p
h = (key['qi'] * dif) % p