# Copyright 2011 Sybren A. Stüvel # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests string operations.""" import struct import sys import unittest import rsa from rsa import pkcs1 class BinaryTest(unittest.TestCase): def setUp(self): (self.pub, self.priv) = rsa.newkeys(256) def test_enc_dec(self): message = struct.pack(">IIII", 0, 0, 0, 1) print("\n\tMessage: %r" % message) encrypted = pkcs1.encrypt(message, self.pub) print("\tEncrypted: %r" % encrypted) decrypted = pkcs1.decrypt(encrypted, self.priv) print("\tDecrypted: %r" % decrypted) self.assertEqual(message, decrypted) def test_decoding_failure(self): message = struct.pack(">IIII", 0, 0, 0, 1) encrypted = pkcs1.encrypt(message, self.pub) # Alter the encrypted stream a = encrypted[5] self.assertIsInstance(a, int) altered_a = (a + 1) % 256 encrypted = encrypted[:5] + bytes([altered_a]) + encrypted[6:] self.assertRaises(pkcs1.DecryptionError, pkcs1.decrypt, encrypted, self.priv) def test_randomness(self): """Encrypting the same message twice should result in different cryptos. """ message = struct.pack(">IIII", 0, 0, 0, 1) encrypted1 = pkcs1.encrypt(message, self.pub) encrypted2 = pkcs1.encrypt(message, self.pub) self.assertNotEqual(encrypted1, encrypted2) class ExtraZeroesTest(unittest.TestCase): def setUp(self): # Key, cyphertext, and plaintext taken from https://github.com/sybrenstuvel/python-rsa/issues/146 self.private_key = rsa.PrivateKey.load_pkcs1( "-----BEGIN RSA PRIVATE KEY-----\nMIIEowIBAAKCAQEAs1EKK81M5kTFtZSuUFnhKy8FS2WNXaWVmi/fGHG4CLw98+Yo\n0nkuUarVwSS0O9pFPcpc3kvPKOe9Tv+6DLS3Qru21aATy2PRqjqJ4CYn71OYtSwM\n/ZfSCKvrjXybzgu+sBmobdtYm+sppbdL+GEHXGd8gdQw8DDCZSR6+dPJFAzLZTCd\nB+Ctwe/RXPF+ewVdfaOGjkZIzDoYDw7n+OHnsYCYozkbTOcWHpjVevipR+IBpGPi\n1rvKgFnlcG6d/tj0hWRl/6cS7RqhjoiNEtxqoJzpXs/Kg8xbCxXbCchkf11STA8u\ndiCjQWuWI8rcDwl69XMmHJjIQAqhKvOOQ8rYTQIDAQABAoIBABpQLQ7qbHtp4h1Y\nORAfcFRW7Q74UvtH/iEHH1TF8zyM6wZsYtcn4y0mxYE3Mp+J0xlTJbeVJkwZXYVH\nL3UH29CWHSlR+TWiazTwrCTRVJDhEoqbcTiRW8fb+o/jljVxMcVDrpyYUHNo2c6w\njBxhmKPtp66hhaDpds1Cwi0A8APZ8Z2W6kya/L/hRBzMgCz7Bon1nYBMak5PQEwV\nF0dF7Wy4vIjvCzO6DSqA415DvJDzUAUucgFudbANNXo4HJwNRnBpymYIh8mHdmNJ\n/MQ0YLSqUWvOB57dh7oWQwe3UsJ37ZUorTugvxh3NJ7Tt5ZqbCQBEECb9ND63gxo\n/a3YR/0CgYEA7BJc834xCi/0YmO5suBinWOQAF7IiRPU+3G9TdhWEkSYquupg9e6\nK9lC5k0iP+t6I69NYF7+6mvXDTmv6Z01o6oV50oXaHeAk74O3UqNCbLe9tybZ/+F\ndkYlwuGSNttMQBzjCiVy0+y0+Wm3rRnFIsAtd0RlZ24aN3bFTWJINIsCgYEAwnQq\nvNmJe9SwtnH5c/yCqPhKv1cF/4jdQZSGI6/p3KYNxlQzkHZ/6uvrU5V27ov6YbX8\nvKlKfO91oJFQxUD6lpTdgAStI3GMiJBJIZNpyZ9EWNSvwUj28H34cySpbZz3s4Xd\nhiJBShgy+fKURvBQwtWmQHZJ3EGrcOI7PcwiyYcCgYEAlql5jSUCY0ALtidzQogW\nJ+B87N+RGHsBuJ/0cxQYinwg+ySAAVbSyF1WZujfbO/5+YBN362A/1dn3lbswCnH\nK/bHF9+fZNqvwprPnceQj5oK1n4g6JSZNsy6GNAhosT+uwQ0misgR8SQE4W25dDG\nkdEYsz+BgCsyrCcu8J5C+tUCgYAFVPQbC4f2ikVyKzvgz0qx4WUDTBqRACq48p6e\n+eLatv7nskVbr7QgN+nS9+Uz80ihR0Ev1yCAvnwmM/XYAskcOea87OPmdeWZlQM8\nVXNwINrZ6LMNBLgorfuTBK1UoRo1pPUHCYdqxbEYI2unak18mikd2WB7Fp3h0YI4\nVpGZnwKBgBxkAYnZv+jGI4MyEKdsQgxvROXXYOJZkWzsKuKxVkVpYP2V4nR2YMOJ\nViJQ8FUEnPq35cMDlUk4SnoqrrHIJNOvcJSCqM+bWHAioAsfByLbUPM8sm3CDdIk\nXVJl32HuKYPJOMIWfc7hIfxLRHnCN+coz2M6tgqMDs0E/OfjuqVZ\n-----END RSA PRIVATE KEY-----", format="PEM", ) self.cyphertext = bytes.fromhex( "4501b4d669e01b9ef2dc800aa1b06d49196f5a09fe8fbcd037323c60eaf027bfb98432be4e4a26c567ffec718bcbea977dd26812fa071c33808b4d5ebb742d9879806094b6fbeea63d25ea3141733b60e31c6912106e1b758a7fe0014f075193faa8b4622bfd5d3013f0a32190a95de61a3604711bc62945f95a6522bd4dfed0a994ef185b28c281f7b5e4c8ed41176d12d9fc1b837e6a0111d0132d08a6d6f0580de0c9eed8ed105531799482d1e466c68c23b0c222af7fc12ac279bc4ff57e7b4586d209371b38c4c1035edd418dc5f960441cb21ea2bedbfea86de0d7861e81021b650a1de51002c315f1e7c12debe4dcebf790caaa54a2f26b149cf9e77d" ) self.plaintext = bytes.fromhex("54657374") def test_unmodified(self): message = rsa.decrypt(self.cyphertext, self.private_key) self.assertEqual(message, self.plaintext) def test_prepend_zeroes(self): cyphertext = bytes.fromhex("0000") + self.cyphertext with self.assertRaises(rsa.DecryptionError): rsa.decrypt(cyphertext, self.private_key) def test_append_zeroes(self): cyphertext = self.cyphertext + bytes.fromhex("0000") with self.assertRaises(rsa.DecryptionError): rsa.decrypt(cyphertext, self.private_key) class SignatureTest(unittest.TestCase): def setUp(self): (self.pub, self.priv) = rsa.newkeys(512) def test_sign_verify(self): """Test happy flow of sign and verify""" message = b"je moeder" signature = pkcs1.sign(message, self.priv, "SHA-256") self.assertEqual("SHA-256", pkcs1.verify(message, signature, self.pub)) def test_sign_verify_sha3(self): """Test happy flow of sign and verify with SHA3-256""" message = b"je moeder" signature = pkcs1.sign(message, self.priv, "SHA3-256") self.assertEqual("SHA3-256", pkcs1.verify(message, signature, self.pub)) def test_find_signature_hash(self): """Test happy flow of sign and find_signature_hash""" message = b"je moeder" signature = pkcs1.sign(message, self.priv, "SHA-256") self.assertEqual("SHA-256", pkcs1.find_signature_hash(signature, self.pub)) def test_alter_message(self): """Altering the message should let the verification fail.""" signature = pkcs1.sign(b"je moeder", self.priv, "SHA-256") self.assertRaises( pkcs1.VerificationError, pkcs1.verify, b"mijn moeder", signature, self.pub ) def test_sign_different_key(self): """Signing with another key should let the verification fail.""" (otherpub, _) = rsa.newkeys(512) message = b"je moeder" signature = pkcs1.sign(message, self.priv, "SHA-256") self.assertRaises(pkcs1.VerificationError, pkcs1.verify, message, signature, otherpub) def test_multiple_signings(self): """Signing the same message twice should return the same signatures.""" message = struct.pack(">IIII", 0, 0, 0, 1) signature1 = pkcs1.sign(message, self.priv, "SHA-1") signature2 = pkcs1.sign(message, self.priv, "SHA-1") self.assertEqual(signature1, signature2) def test_split_hash_sign(self): """Hashing and then signing should match with directly signing the message.""" message = b"je moeder" msg_hash = pkcs1.compute_hash(message, "SHA-256") signature1 = pkcs1.sign_hash(msg_hash, self.priv, "SHA-256") # Calculate the signature using the unified method signature2 = pkcs1.sign(message, self.priv, "SHA-256") self.assertEqual(signature1, signature2) def test_hash_sign_verify(self): """Test happy flow of hash, sign, and verify""" message = b"je moeder" msg_hash = pkcs1.compute_hash(message, "SHA-224") signature = pkcs1.sign_hash(msg_hash, self.priv, "SHA-224") self.assertTrue(pkcs1.verify(message, signature, self.pub)) def test_prepend_zeroes(self): """Prepending the signature with zeroes should be detected.""" message = b"je moeder" signature = pkcs1.sign(message, self.priv, "SHA-256") signature = bytes.fromhex("0000") + signature with self.assertRaises(rsa.VerificationError): pkcs1.verify(message, signature, self.pub) def test_apppend_zeroes(self): """Apppending the signature with zeroes should be detected.""" message = b"je moeder" signature = pkcs1.sign(message, self.priv, "SHA-256") signature = signature + bytes.fromhex("0000") with self.assertRaises(rsa.VerificationError): pkcs1.verify(message, signature, self.pub) class PaddingSizeTest(unittest.TestCase): def test_too_little_padding(self): """Padding less than 8 bytes should be rejected.""" # Construct key that will be small enough to need only 7 bytes of padding. # This key is 168 bit long, and was generated with rsa.newkeys(nbits=168). self.private_key = rsa.PrivateKey.load_pkcs1( b""" -----BEGIN RSA PRIVATE KEY----- MHkCAQACFgCIGbbNSkIRLtprxka9NgOf5UxgxCMCAwEAAQIVQqymO0gHubdEVS68 CdCiWmOJxVfRAgwBQM+e1JJwMKmxSF0CCmya6CFxO8Evdn8CDACMM3AlVC4FhlN8 3QIKC9cjoam/swMirwIMAR7Br9tdouoH7jAE -----END RSA PRIVATE KEY----- """ ) self.public_key = rsa.PublicKey(n=self.private_key.n, e=self.private_key.e) cyphertext = self.encrypt_with_short_padding(b"op je hoofd") with self.assertRaises(rsa.DecryptionError): rsa.decrypt(cyphertext, self.private_key) def encrypt_with_short_padding(self, message: bytes) -> bytes: # This is a copy of rsa.pkcs1.encrypt() adjusted to use the wrong padding length. keylength = rsa.common.byte_size(self.public_key.n) # The word 'padding' has 7 letters, so is one byte short of a valid padding length. padded = b"\x00\x02padding\x00" + message payload = rsa.transform.bytes2int(padded) encrypted_value = rsa.core.encrypt_int(payload, self.public_key.e, self.public_key.n) cyphertext = rsa.transform.int2bytes(encrypted_value, keylength) return cyphertext