summaryrefslogtreecommitdiff
path: root/lib/sqlalchemy/dialects/postgresql/base.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/sqlalchemy/dialects/postgresql/base.py')
-rw-r--r--lib/sqlalchemy/dialects/postgresql/base.py188
1 files changed, 163 insertions, 25 deletions
diff --git a/lib/sqlalchemy/dialects/postgresql/base.py b/lib/sqlalchemy/dialects/postgresql/base.py
index 08d7cd9e5..f067e6537 100644
--- a/lib/sqlalchemy/dialects/postgresql/base.py
+++ b/lib/sqlalchemy/dialects/postgresql/base.py
@@ -1038,26 +1038,157 @@ dialect in conjunction with the :class:`_schema.Table` construct:
`PostgreSQL CREATE TABLE options
<http://www.postgresql.org/docs/current/static/sql-createtable.html>`_
-Table values, Row and Tuple objects
------------------------------------
+.. _postgresql_table_valued_overview:
-Row Types
-^^^^^^^^^
+Table values, Table and Column valued functions, Row and Tuple objects
+-----------------------------------------------------------------------
+
+PostgreSQL makes great use of modern SQL forms such as table-valued functions,
+tables and rows as values. These constructs are commonly used as part
+of PostgreSQL's support for complex datatypes such as JSON, ARRAY, and other
+datatypes. SQLAlchemy's SQL expression language has native support for
+most table-valued and row-valued forms.
+
+.. _postgresql_table_valued:
+
+Table-Valued Functions
+^^^^^^^^^^^^^^^^^^^^^^^
+
+Many PostgreSQL built-in functions are intended to be used in the FROM clause
+of a SELECT statement, and are capable of returning table rows or sets of table
+rows. A large portion of PostgreSQL's JSON functions for example such as
+``json_array_elements()``, ``json_object_keys()``, ``json_each_text()``,
+``json_each()``, ``json_to_record()``, ``json_populate_recordset()`` use such
+forms. These classes of SQL function calling forms in SQLAlchemy are available
+using the :meth:`_functions.FunctionElement.table_valued` method in conjunction
+with :class:`_function.Function` objects generated from the :data:`_sql.func`
+namespace.
-Built-in support for rendering a ``ROW`` is not available yet, however the
-:func:`_expression.tuple_` may be used in its place. Another alternative is
-to use the :attr:`_sa.func` generator with ``func.ROW`` ::
+Examples from PostgreSQL's reference documentation follow below:
- table.select().where(
- tuple_(table.c.id, table.c.fk) > (1,2)
- ).where(func.ROW(table.c.id, table.c.fk) < func.ROW(3, 7))
+* ``json_each()``::
-Will generate the row-wise comparison::
+ >>> from sqlalchemy import select, func
+ >>> stmt = select(func.json_each('{"a":"foo", "b":"bar"}').table_valued("key", "value"))
+ >>> print(stmt)
+ SELECT anon_1.key, anon_1.value
+ FROM json_each(:json_each_1) AS anon_1
- SELECT *
- FROM table
- WHERE (id, fk) > (1, 2)
- AND ROW(id, fk) < ROW(3, 7)
+* ``json_populate_record()``::
+
+ >>> from sqlalchemy import select, func, literal_column
+ >>> stmt = select(
+ ... func.json_populate_record(
+ ... literal_column("null::myrowtype"),
+ ... '{"a":1,"b":2}'
+ ... ).table_valued("a", "b", name="x")
+ ... )
+ >>> print(stmt)
+ SELECT x.a, x.b
+ FROM json_populate_record(null::myrowtype, :json_populate_record_1) AS x
+
+* ``json_to_record()`` - this form uses a PostgreSQL specific form of derived
+ columns in the alias, where we may make use of :func:`_sql.column` elements with
+ types to produce them. The :meth:`_functions.FunctionElement.table_valued`
+ method produces a :class:`_sql.TableValuedAlias` construct, and the method
+ :meth:`_sql.TableValuedAlias.render_derived` method sets up the derived
+ columns specification::
+
+ >>> from sqlalchemy import select, func, column, Integer, Text
+ >>> stmt = select(
+ ... func.json_to_record('{"a":1,"b":[1,2,3],"c":"bar"}').table_valued(
+ ... column("a", Integer), column("b", Text), column("d", Text),
+ ... ).render_derived(name="x", with_types=True)
+ ... )
+ >>> print(stmt)
+ SELECT x.a, x.b, x.d
+ FROM json_to_record(:json_to_record_1) AS x(a INTEGER, b TEXT, d TEXT)
+
+* ``WITH ORDINALITY`` - part of the SQL standard, ``WITH ORDINALITY`` adds an
+ ordinal counter to the output of a function and is accepted by a limited set
+ of PostgreSQL functions including ``unnest()`` and ``generate_series()``. The
+ :meth:`_functions.FunctionElement.table_valued` method accepts a keyword
+ parameter ``with_ordinality`` for this purpose, which accepts the string name
+ that will be applied to the "ordinality" column::
+
+ >>> from sqlalchemy import select, func
+ >>> stmt = select(
+ ... func.generate_series(4, 1, -1).table_valued("value", with_ordinality="ordinality")
+ ... )
+ >>> print(stmt)
+ SELECT anon_1.value, anon_1.ordinality
+ FROM generate_series(:generate_series_1, :generate_series_2, :generate_series_3) WITH ORDINALITY AS anon_1
+
+.. versionadded:: 1.4.0b2
+
+.. seealso::
+
+ :ref:`tutorial_functions_table_valued` - in the :ref:`unified_tutorial`
+
+.. _postgresql_column_valued:
+
+Column Valued Functions
+^^^^^^^^^^^^^^^^^^^^^^^
+
+Similar to the table valued function, a column valued function is present
+in the FROM clause, but delivers itself to the columns clause as a single
+scalar value. PostgreSQL functions such as ``json_array_elements()``,
+``unnest()`` and ``generate_series()`` may use this form. Column valued functions are available using the
+:meth:`_functions.FunctionElement.column_valued` method of :class:`_functions.FunctionElement`:
+
+* ``json_array_elements()``::
+
+ >>> from sqlalchemy import select, func
+ >>> stmt = select(func.json_array_elements('["one", "two"]').column_valued("x"))
+ >>> print(stmt)
+ SELECT x
+ FROM json_array_elements(:json_array_elements_1) AS x
+
+* ``unnest()`` - in order to generate a PostgreSQL ARRAY literal, the
+ :func:`_postgresql.array` construct may be used::
+
+
+ >>> from sqlalchemy.dialects.postgresql import array
+ >>> from sqlalchemy import select, func
+ >>> stmt = select(func.unnest(array([1, 2])).column_valued())
+ >>> print(stmt)
+ SELECT anon_1
+ FROM unnest(ARRAY[%(param_1)s, %(param_2)s]) AS anon_1
+
+ The function can of course be used against an existing table-bound column
+ that's of type :class:`_types.ARRAY`::
+
+ >>> from sqlalchemy import table, column, ARRAY, Integer
+ >>> from sqlalchemy import select, func
+ >>> t = table("t", column('value', ARRAY(Integer)))
+ >>> stmt = select(func.unnest(t.c.value).column_valued("unnested_value"))
+ >>> print(stmt)
+ SELECT unnested_value
+ FROM unnest(t.value) AS unnested_value
+
+.. seealso::
+
+ :ref:`tutorial_functions_column_valued` - in the :ref:`unified_tutorial`
+
+
+Row Types
+^^^^^^^^^
+
+Built-in support for rendering a ``ROW`` may be approximated using
+``func.ROW`` with the :attr:`_sa.func` namespace, or by using the
+:func:`_sql.tuple_` construct::
+
+ >>> from sqlalchemy import table, column, func, tuple_
+ >>> t = table("t", column("id"), column("fk"))
+ >>> stmt = t.select().where(
+ ... tuple_(t.c.id, t.c.fk) > (1,2)
+ ... ).where(
+ ... func.ROW(t.c.id, t.c.fk) < func.ROW(3, 7)
+ ... )
+ >>> print(stmt)
+ SELECT t.id, t.fk
+ FROM t
+ WHERE (t.id, t.fk) > (:param_1, :param_2) AND ROW(t.id, t.fk) < ROW(:ROW_1, :ROW_2)
.. seealso::
@@ -1067,20 +1198,27 @@ Will generate the row-wise comparison::
`PostgreSQL Row Constructor Comparison
<https://www.postgresql.org/docs/current/functions-comparisons.html#ROW-WISE-COMPARISON>`_
-Table Types
-^^^^^^^^^^^
+Table Types passed to Functions
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-PostgreSQL also supports passing a table as an argument to a function. This
-is not available yet in sqlalchemy, however the
-:func:`_expression.literal_column` function with the name of the table may be
-used in its place::
+PostgreSQL supports passing a table as an argument to a function, which it
+refers towards as a "record" type. SQLAlchemy :class:`_sql.FromClause` objects
+such as :class:`_schema.Table` support this special form using the
+:meth:`_sql.FromClause.table_valued` method, which is comparable to the
+:meth:`_functions.FunctionElement.table_valued` method except that the collection
+of columns is already established by that of the :class:`_sql.FromClause`
+itself::
- select('*').select_from(func.my_function(literal_column('my_table')))
-Will generate the SQL::
+ >>> from sqlalchemy import table, column, func, select
+ >>> a = table( "a", column("id"), column("x"), column("y"))
+ >>> stmt = select(func.row_to_json(a.table_valued()))
+ >>> print(stmt)
+ SELECT row_to_json(a) AS row_to_json_1
+ FROM a
+
+.. versionadded:: 1.4.0b2
- SELECT *
- FROM my_function(my_table)
ARRAY Types
-----------