1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
|
"""A simple declarative layer for SQLAlchemy ORM.
SQLAlchemy object-relational configuration involves the usage of Table,
mapper(), and class objects to define the three areas of configuration.
declarative moves these three types of configuration underneath the individual
mapped class. Regular SQLAlchemy schema and ORM constructs are used in most
cases::
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
class SomeClass(Base):
__tablename__ = 'some_table'
id = Column('id', Integer, primary_key=True)
name = Column('name', String(50))
Above, the ``declarative_base`` callable produces a new base class from which
all mapped classes inherit from. When the class definition is completed, a
new ``Table`` and ``mapper()`` have been generated, accessible via the
``__table__`` and ``__mapper__`` attributes on the ``SomeClass`` class.
You may omit the names from the Column definitions. Declarative will fill
them in for you::
class SomeClass(Base):
__tablename__ = 'some_table'
id = Column(Integer, primary_key=True)
name = Column(String(50))
Attributes may be added to the class after its construction, and they will be
added to the underlying ``Table`` and ``mapper()`` definitions as
appropriate::
SomeClass.data = Column('data', Unicode)
SomeClass.related = relation(RelatedInfo)
Classes which are mapped explicitly using ``mapper()`` can interact freely
with declarative classes.
The ``declarative_base`` base class contains a ``MetaData`` object where newly
defined ``Table`` objects are collected. This is accessed via the
``metadata`` class level accessor, so to create tables we can say::
engine = create_engine('sqlite://')
Base.metadata.create_all(engine)
The ``Engine`` created above may also be directly associated with the
declarative base class using the ``engine`` keyword argument, where it will be
associated with the underlying ``MetaData`` object and allow SQL operations
involving that metadata and its tables to make use of that engine
automatically::
Base = declarative_base(engine=create_engine('sqlite://'))
Or, as ``MetaData`` allows, at any time using the ``bind`` attribute::
Base.metadata.bind = create_engine('sqlite://')
The ``declarative_base`` can also receive a pre-created ``MetaData`` object,
which allows a declarative setup to be associated with an already existing
traditional collection of ``Table`` objects::
mymetadata = MetaData()
Base = declarative_base(metadata=mymetadata)
Relations to other classes are done in the usual way, with the added feature
that the class specified to ``relation()`` may be a string name. The "class
registry" associated with ``Base`` is used at mapper compilation time to
resolve the name into the actual class object, which is expected to have been
defined once the mapper configuration is used::
class User(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String(50))
addresses = relation("Address", backref="user")
class Address(Base):
__tablename__ = 'addresses'
id = Column(Integer, primary_key=True)
email = Column(String(50))
user_id = Column(Integer, ForeignKey('users.id'))
Column constructs, since they are just that, are immediately usable, as below
where we define a primary join condition on the ``Address`` class using them::
class Address(Base)
__tablename__ = 'addresses'
id = Column(Integer, primary_key=True)
email = Column(String(50))
user_id = Column(Integer, ForeignKey('users.id'))
user = relation(User, primaryjoin=user_id == User.id)
In addition to the main argument for ``relation``, other arguments
which depend upon the columns present on an as-yet undefined class
may also be specified as strings. These strings are evaluated as
Python expressions. The full namespace available within this
evaluation includes all classes mapped for this declarative base,
as well as the contents of the ``sqlalchemy`` package, including
expression functions like ``desc`` and ``func``::
class User(Base):
# ....
addresses = relation("Address", order_by="desc(Address.email)",
primaryjoin="Address.user_id==User.id")
As an alternative to string-based attributes, attributes may also be
defined after all classes have been created. Just add them to the target
class after the fact::
User.addresses = relation(Address, primaryjoin=Address.user_id == User.id)
Synonyms are one area where ``declarative`` needs to slightly change the usual
SQLAlchemy configurational syntax. To define a getter/setter which proxies to
an underlying attribute, use ``synonym`` with the ``descriptor`` argument::
class MyClass(Base):
__tablename__ = 'sometable'
_attr = Column('attr', String)
def _get_attr(self):
return self._some_attr
def _set_attr(self, attr)
self._some_attr = attr
attr = synonym('_attr', descriptor=property(_get_attr, _set_attr))
The above synonym is then usable as an instance attribute as well as a
class-level expression construct::
x = MyClass()
x.attr = "some value"
session.query(MyClass).filter(MyClass.attr == 'some other value').all()
As an alternative to ``__tablename__``, a direct ``Table`` construct may be
used. The ``Column`` objects, which in this case require their names, will be
added to the mapping just like a regular mapping to a table::
class MyClass(Base):
__table__ = Table('my_table', Base.metadata,
Column('id', Integer, primary_key=True),
Column('name', String(50))
)
This is the preferred approach when using reflected tables, as below::
class MyClass(Base):
__table__ = Table('my_table', Base.metadata, autoload=True)
Mapper arguments are specified using the ``__mapper_args__`` class variable.
Note that the column objects declared on the class are immediately usable, as
in this joined-table inheritance example::
class Person(Base):
__tablename__ = 'people'
id = Column(Integer, primary_key=True)
discriminator = Column(String(50))
__mapper_args__ = {'polymorphic_on': discriminator}
class Engineer(Person):
__tablename__ = 'engineers'
__mapper_args__ = {'polymorphic_identity': 'engineer'}
id = Column(Integer, ForeignKey('people.id'), primary_key=True)
primary_language = Column(String(50))
For single-table inheritance, the ``__tablename__`` and ``__table__`` class
variables are optional on a class when the class inherits from another mapped
class.
As a convenience feature, the ``declarative_base()`` sets a default
constructor on classes which takes keyword arguments, and assigns them to the
named attributes::
e = Engineer(primary_language='python')
Note that ``declarative`` has no integration built in with sessions, and is
only intended as an optional syntax for the regular usage of mappers and Table
objects. A typical application setup using ``scoped_session`` might look
like::
engine = create_engine('postgres://scott:tiger@localhost/test')
Session = scoped_session(sessionmaker(transactional=True,
autoflush=False,
bind=engine))
Base = declarative_base()
Mapped instances then make usage of ``Session`` in the usual way.
"""
from sqlalchemy.schema import Table, Column, MetaData
from sqlalchemy.orm import synonym as _orm_synonym, mapper, comparable_property, class_mapper
from sqlalchemy.orm.interfaces import MapperProperty
from sqlalchemy.orm.properties import PropertyLoader, ColumnProperty
from sqlalchemy import util, exceptions
from sqlalchemy.sql import util as sql_util
__all__ = 'declarative_base', 'synonym_for', 'comparable_using', 'instrument_declarative'
def instrument_declarative(cls, registry, metadata):
"""Given a class, configure the class declaratively,
using the given registry (any dictionary) and MetaData object.
This operation does not assume any kind of class hierarchy.
"""
if '_decl_class_registry' in cls.__dict__:
raise exceptions.InvalidRequestError("Class %r already has been instrumented declaratively" % cls)
cls._decl_class_registry = registry
cls.metadata = metadata
_as_declarative(cls, cls.__name__, cls.__dict__)
def _as_declarative(cls, classname, dict_):
cls._decl_class_registry[classname] = cls
our_stuff = util.OrderedDict()
for k in dict_:
value = dict_[k]
if (isinstance(value, tuple) and len(value) == 1 and
isinstance(value[0], (Column, MapperProperty))):
util.warn("Ignoring declarative-like tuple value of attribute "
"%s: possibly a copy-and-paste error with a comma "
"left at the end of the line?" % k)
continue
if not isinstance(value, (Column, MapperProperty)):
continue
prop = _deferred_relation(cls, value)
our_stuff[k] = prop
# set up attributes in the order they were created
our_stuff.sort(lambda x, y: cmp(our_stuff[x]._creation_order,
our_stuff[y]._creation_order))
table = None
if '__table__' not in cls.__dict__:
if '__tablename__' in cls.__dict__:
tablename = cls.__tablename__
autoload = cls.__dict__.get('__autoload__')
if autoload:
table_kw = {'autoload': True}
else:
table_kw = {}
cols = []
for key, c in our_stuff.iteritems():
if isinstance(c, ColumnProperty):
for col in c.columns:
if isinstance(col, Column) and col.table is None:
_undefer_column_name(key, col)
cols.append(col)
elif isinstance(c, Column):
_undefer_column_name(key, c)
cols.append(c)
cls.__table__ = table = Table(tablename, cls.metadata,
*cols, **table_kw)
else:
table = cls.__table__
mapper_args = getattr(cls, '__mapper_args__', {})
if 'inherits' not in mapper_args:
inherits = cls.__mro__[1]
inherits = cls._decl_class_registry.get(inherits.__name__, None)
if inherits:
mapper_args['inherits'] = inherits
if not mapper_args.get('concrete', False) and table:
# figure out the inherit condition with relaxed rules
# about nonexistent tables, to allow for ForeignKeys to
# not-yet-defined tables (since we know for sure that our
# parent table is defined within the same MetaData)
mapper_args['inherit_condition'] = sql_util.join_condition(
inherits.__table__, table,
ignore_nonexistent_tables=True)
if hasattr(cls, '__mapper_cls__'):
mapper_cls = util.unbound_method_to_callable(cls.__mapper_cls__)
else:
mapper_cls = mapper
cls.__mapper__ = mapper_cls(cls, table, properties=our_stuff,
**mapper_args)
class DeclarativeMeta(type):
def __init__(cls, classname, bases, dict_):
if '_decl_class_registry' in cls.__dict__:
return type.__init__(cls, classname, bases, dict_)
_as_declarative(cls, classname, dict_)
return type.__init__(cls, classname, bases, dict_)
def __setattr__(cls, key, value):
if '__mapper__' in cls.__dict__:
if isinstance(value, Column):
_undefer_column_name(key, value)
cls.__table__.append_column(value)
cls.__mapper__.add_property(key, value)
elif isinstance(value, MapperProperty):
cls.__mapper__.add_property(key, _deferred_relation(cls, value))
else:
type.__setattr__(cls, key, value)
else:
type.__setattr__(cls, key, value)
class _GetColumns(object):
def __init__(self, cls):
self.cls = cls
def __getattr__(self, key):
mapper = class_mapper(self.cls, compile=False)
if not mapper:
return getattr(self.cls, key)
else:
return mapper.get_property(key).columns[0]
def _deferred_relation(cls, prop):
def resolve_arg(arg):
import sqlalchemy
def access_cls(key):
try:
return _GetColumns(cls._decl_class_registry[key])
except KeyError:
return sqlalchemy.__dict__[key]
d = util.PopulateDict(access_cls)
def return_cls():
try:
x = eval(arg, globals(), d)
if isinstance(x, _GetColumns):
return x.cls
else:
return x
except NameError, n:
raise exceptions.InvalidRequestError(
"When compiling mapper %s, expression %r failed to locate a name (%r). "
"If this is a class name, consider adding this relation() to the %r "
"class after both dependent classes have been defined." % (
prop.parent, arg, n.args[0], cls))
return return_cls
if isinstance(prop, PropertyLoader):
for attr in ('argument', 'order_by', 'primaryjoin', 'secondaryjoin', 'secondary', '_foreign_keys', 'remote_side'):
v = getattr(prop, attr)
if isinstance(v, basestring):
setattr(prop, attr, resolve_arg(v))
return prop
def synonym_for(name, map_column=False):
"""Decorator, make a Python @property a query synonym for a column.
A decorator version of [sqlalchemy.orm#synonym()]. The function being
decorated is the 'descriptor', otherwise passes its arguments through
to synonym()::
@synonym_for('col')
@property
def prop(self):
return 'special sauce'
The regular ``synonym()`` is also usable directly in a declarative setting
and may be convenient for read/write properties::
prop = synonym('col', descriptor=property(_read_prop, _write_prop))
"""
def decorate(fn):
return _orm_synonym(name, map_column=map_column, descriptor=fn)
return decorate
def comparable_using(comparator_factory):
"""Decorator, allow a Python @property to be used in query criteria.
A decorator front end to [sqlalchemy.orm#comparable_property()], passes
throgh the comparator_factory and the function being decorated::
@comparable_using(MyComparatorType)
@property
def prop(self):
return 'special sauce'
The regular ``comparable_property()`` is also usable directly in a
declarative setting and may be convenient for read/write properties::
prop = comparable_property(MyComparatorType)
"""
def decorate(fn):
return comparable_property(comparator_factory, fn)
return decorate
def declarative_base(engine=None, metadata=None, mapper=None, cls=object):
lcl_metadata = metadata or MetaData()
if engine:
lcl_metadata.bind = engine
class Base(cls):
__metaclass__ = DeclarativeMeta
metadata = lcl_metadata
if mapper:
__mapper_cls__ = mapper
_decl_class_registry = {}
def __init__(self, **kwargs):
for k in kwargs:
if not hasattr(type(self), k):
raise TypeError(
"%r is an invalid keyword argument for %s" %
(k, type(self).__name__))
setattr(self, k, kwargs[k])
return Base
def _undefer_column_name(key, column):
if column.key is None:
column.key = key
if column.name is None:
column.name = key
|