1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
|
from sqlalchemy import exceptions, schema, topological, util, sql
from sqlalchemy.sql import expression, operators, visitors
from itertools import chain
"""Utility functions that build upon SQL and Schema constructs."""
def sort_tables(tables, reverse=False):
"""sort a collection of Table objects in order of their foreign-key dependency."""
tuples = []
class TVisitor(schema.SchemaVisitor):
def visit_foreign_key(_self, fkey):
if fkey.use_alter:
return
parent_table = fkey.column.table
if parent_table in tables:
child_table = fkey.parent.table
tuples.append( ( parent_table, child_table ) )
vis = TVisitor()
for table in tables:
vis.traverse(table)
sequence = topological.sort(tuples, tables)
if reverse:
return util.reversed(sequence)
else:
return sequence
def find_tables(clause, check_columns=False, include_aliases=False):
"""locate Table objects within the given expression."""
tables = []
kwargs = {}
if include_aliases:
def visit_alias(alias):
tables.append(alias)
kwargs['visit_alias'] = visit_alias
if check_columns:
def visit_column(column):
tables.append(column.table)
kwargs['visit_column'] = visit_column
def visit_table(table):
tables.append(table)
kwargs['visit_table'] = visit_table
visitors.traverse(clause, traverse_options= {'column_collections':False}, **kwargs)
return tables
def find_columns(clause):
"""locate Column objects within the given expression."""
cols = util.Set()
def visit_column(col):
cols.add(col)
visitors.traverse(clause, visit_column=visit_column)
return cols
def join_condition(a, b, ignore_nonexistent_tables=False):
"""create a join condition between two tables.
ignore_nonexistent_tables=True allows a join condition to be
determined between two tables which may contain references to
other not-yet-defined tables. In general the NoSuchTableError
raised is only required if the user is trying to join selectables
across multiple MetaData objects (which is an extremely rare use
case).
"""
crit = []
constraints = util.Set()
for fk in b.foreign_keys:
try:
col = fk.get_referent(a)
except exceptions.NoReferencedTableError:
if ignore_nonexistent_tables:
continue
else:
raise
if col:
crit.append(col == fk.parent)
constraints.add(fk.constraint)
if a is not b:
for fk in a.foreign_keys:
try:
col = fk.get_referent(b)
except exceptions.NoReferencedTableError:
if ignore_nonexistent_tables:
continue
else:
raise
if col:
crit.append(col == fk.parent)
constraints.add(fk.constraint)
if len(crit) == 0:
raise exceptions.ArgumentError(
"Can't find any foreign key relationships "
"between '%s' and '%s'" % (a.description, b.description))
elif len(constraints) > 1:
raise exceptions.ArgumentError(
"Can't determine join between '%s' and '%s'; "
"tables have more than one foreign key "
"constraint relationship between them. "
"Please specify the 'onclause' of this "
"join explicitly." % (a.description, b.description))
elif len(crit) == 1:
return (crit[0])
else:
return sql.and_(*crit)
def reduce_columns(columns, *clauses):
"""given a list of columns, return a 'reduced' set based on natural equivalents.
the set is reduced to the smallest list of columns which have no natural
equivalent present in the list. A "natural equivalent" means that two columns
will ultimately represent the same value because they are related by a foreign key.
\*clauses is an optional list of join clauses which will be traversed
to further identify columns that are "equivalent".
This function is primarily used to determine the most minimal "primary key"
from a selectable, by reducing the set of primary key columns present
in the the selectable to just those that are not repeated.
"""
columns = util.OrderedSet(columns)
omit = util.Set()
for col in columns:
for fk in col.foreign_keys:
for c in columns:
if c is col:
continue
if fk.column.shares_lineage(c):
omit.add(col)
break
if clauses:
def visit_binary(binary):
if binary.operator == operators.eq:
cols = util.Set(chain(*[c.proxy_set for c in columns.difference(omit)]))
if binary.left in cols and binary.right in cols:
for c in columns:
if c.shares_lineage(binary.right):
omit.add(c)
break
for clause in clauses:
visitors.traverse(clause, visit_binary=visit_binary)
return expression.ColumnSet(columns.difference(omit))
def criterion_as_pairs(expression, consider_as_foreign_keys=None, consider_as_referenced_keys=None, any_operator=False):
"""traverse an expression and locate binary criterion pairs."""
if consider_as_foreign_keys and consider_as_referenced_keys:
raise exceptions.ArgumentError("Can only specify one of 'consider_as_foreign_keys' or 'consider_as_referenced_keys'")
def visit_binary(binary):
if not any_operator and binary.operator != operators.eq:
return
if not isinstance(binary.left, sql.ColumnElement) or not isinstance(binary.right, sql.ColumnElement):
return
if consider_as_foreign_keys:
if binary.left in consider_as_foreign_keys:
pairs.append((binary.right, binary.left))
elif binary.right in consider_as_foreign_keys:
pairs.append((binary.left, binary.right))
elif consider_as_referenced_keys:
if binary.left in consider_as_referenced_keys:
pairs.append((binary.left, binary.right))
elif binary.right in consider_as_referenced_keys:
pairs.append((binary.right, binary.left))
else:
if isinstance(binary.left, schema.Column) and isinstance(binary.right, schema.Column):
if binary.left.references(binary.right):
pairs.append((binary.right, binary.left))
elif binary.right.references(binary.left):
pairs.append((binary.left, binary.right))
pairs = []
visitors.traverse(expression, visit_binary=visit_binary)
return pairs
def folded_equivalents(join, equivs=None):
"""Returns the column list of the given Join with all equivalently-named,
equated columns folded into one column, where 'equated' means they are
equated to each other in the ON clause of this join.
This function is used by Join.select(fold_equivalents=True).
TODO: deprecate ?
"""
if equivs is None:
equivs = util.Set()
def visit_binary(binary):
if binary.operator == operators.eq and binary.left.name == binary.right.name:
equivs.add(binary.right)
equivs.add(binary.left)
visitors.traverse(join.onclause, visit_binary=visit_binary)
collist = []
if isinstance(join.left, expression.Join):
left = folded_equivalents(join.left, equivs)
else:
left = list(join.left.columns)
if isinstance(join.right, expression.Join):
right = folded_equivalents(join.right, equivs)
else:
right = list(join.right.columns)
used = util.Set()
for c in left + right:
if c in equivs:
if c.name not in used:
collist.append(c)
used.add(c.name)
else:
collist.append(c)
return collist
class AliasedRow(object):
def __init__(self, row, map):
# AliasedRow objects don't nest, so un-nest
# if another AliasedRow was passed
if isinstance(row, AliasedRow):
self.row = row.row
else:
self.row = row
self.map = map
def __contains__(self, key):
return self.map[key] in self.row
def has_key(self, key):
return key in self
def __getitem__(self, key):
return self.row[self.map[key]]
def keys(self):
return self.row.keys()
def row_adapter(from_, equivalent_columns=None):
"""create a row adapter callable against a selectable."""
if equivalent_columns is None:
equivalent_columns = {}
def locate_col(col):
c = from_.corresponding_column(col)
if c:
return c
elif col in equivalent_columns:
for c2 in equivalent_columns[col]:
corr = from_.corresponding_column(c2)
if corr:
return corr
return col
map = util.PopulateDict(locate_col)
def adapt(row):
return AliasedRow(row, map)
return adapt
class ColumnsInClause(visitors.ClauseVisitor):
"""Given a selectable, visit clauses and determine if any columns
from the clause are in the selectable.
"""
def __init__(self, selectable):
self.selectable = selectable
self.result = False
def visit_column(self, column):
if self.selectable.c.get(column.key) is column:
self.result = True
class ClauseAdapter(visitors.ClauseVisitor):
"""Given a clause (like as in a WHERE criterion), locate columns
which are embedded within a given selectable, and changes those
columns to be that of the selectable.
E.g.::
table1 = Table('sometable', metadata,
Column('col1', Integer),
Column('col2', Integer)
)
table2 = Table('someothertable', metadata,
Column('col1', Integer),
Column('col2', Integer)
)
condition = table1.c.col1 == table2.c.col1
and make an alias of table1::
s = table1.alias('foo')
calling ``ClauseAdapter(s).traverse(condition)`` converts
condition to read::
s.c.col1 == table2.c.col1
"""
__traverse_options__ = {'column_collections':False}
def __init__(self, selectable, include=None, exclude=None, equivalents=None):
self.__traverse_options__ = self.__traverse_options__.copy()
self.__traverse_options__['stop_on'] = [selectable]
self.selectable = selectable
self.include = include
self.exclude = exclude
self.equivalents = equivalents
def traverse(self, obj, clone=True):
if not clone:
raise exceptions.ArgumentError("ClauseAdapter 'clone' argument must be True")
return visitors.ClauseVisitor.traverse(self, obj, clone=True)
def copy_and_chain(self, adapter):
"""create a copy of this adapter and chain to the given adapter.
currently this adapter must be unchained to start, raises
an exception if it's already chained.
Does not modify the given adapter.
"""
if adapter is None:
return self
if hasattr(self, '_next'):
raise NotImplementedError("Can't chain_to on an already chained ClauseAdapter (yet)")
ca = ClauseAdapter(self.selectable, self.include, self.exclude, self.equivalents)
ca._next = adapter
return ca
def before_clone(self, col):
if isinstance(col, expression.FromClause):
if self.selectable.is_derived_from(col):
return self.selectable
if not isinstance(col, expression.ColumnElement):
return None
if self.include is not None:
if col not in self.include:
return None
if self.exclude is not None:
if col in self.exclude:
return None
newcol = self.selectable.corresponding_column(col, require_embedded=True)
if newcol is None and self.equivalents is not None and col in self.equivalents:
for equiv in self.equivalents[col]:
newcol = self.selectable.corresponding_column(equiv, require_embedded=True)
if newcol:
return newcol
return newcol
|