summaryrefslogtreecommitdiff
path: root/lib/sqlalchemy/topological.py
blob: a13923885fffcc5c057e0e60ad4b965c0a661e0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# topological.py
# Copyright (C) 2005, 2006, 2007 Michael Bayer mike_mp@zzzcomputing.com
#
# This module is part of SQLAlchemy and is released under
# the MIT License: http://www.opensource.org/licenses/mit-license.php

"""Topological sorting algorithms.

The key to the unit of work is to assemble a list of dependencies
amongst all the different mappers that have been defined for classes.

Related tables with foreign key constraints have a definite insert
order, deletion order, objects need dependent properties from parent
objects set up before saved, etc.

These are all encoded as dependencies, in the form *mapper X is
dependent on mapper Y*, meaning mapper Y's objects must be saved
before those of mapper X, and mapper X's objects must be deleted
before those of mapper Y.

The topological sort is an algorithm that receives this list of
dependencies as a *partial ordering*, that is a list of pairs which
might say, *X is dependent on Y*, *Q is dependent on Z*, but does not
necessarily tell you anything about Q being dependent on X. Therefore,
its not a straight sort where every element can be compared to
another... only some of the elements have any sorting preference, and
then only towards just some of the other elements.  For a particular
partial ordering, there can be many possible sorts that satisfy the
conditions.

An intrinsic *gotcha* to this algorithm is that since there are many
possible outcomes to sorting a partial ordering, the algorithm can
return any number of different results for the same input; just
running it on a different machine architecture, or just random
differences in the ordering of dictionaries, can change the result
that is returned.  While this result is guaranteed to be true to the
incoming partial ordering, if the partial ordering itself does not
properly represent the dependencies, code that works fine will
suddenly break, then work again, then break, etc.  Most of the bugs
I've chased down while developing the *unit of work* have been of this
nature - very tricky to reproduce and track down, particularly before
I realized this characteristic of the algorithm.
"""

from sqlalchemy import util
from sqlalchemy.exceptions import CircularDependencyError

class _Node(object):
    """Represent each item in the sort.

    While the topological sort produces a straight ordered list of
    items, ``_Node`` ultimately stores a tree-structure of those items
    which are organized so that non-dependent nodes are siblings.
    """

    def __init__(self, item):
        self.item = item
        self.dependencies = util.Set()
        self.children = []
        self.cycles = None

    def __str__(self):
        return self.safestr()

    def safestr(self, indent=0):
        return (' ' * indent * 2) + \
            str(self.item) + \
            (self.cycles is not None and (" (cycles: " + repr([x for x in self.cycles]) + ")") or "") + \
            "\n" + \
            ''.join([n.safestr(indent + 1) for n in self.children])

    def __repr__(self):
        return "%s" % (str(self.item))

    def all_deps(self):
        """Return a set of dependencies for this node and all its cycles."""

        deps = util.Set(self.dependencies)
        if self.cycles is not None:
            for c in self.cycles:
                deps.update(c.dependencies)
        return deps

class _EdgeCollection(object):
    """A collection of directed edges."""

    def __init__(self):
        self.parent_to_children = {}
        self.child_to_parents = {}

    def add(self, edge):
        """Add an edge to this collection."""

        (parentnode, childnode) = edge
        if parentnode not in self.parent_to_children:
            self.parent_to_children[parentnode] = util.Set()
        self.parent_to_children[parentnode].add(childnode)
        if childnode not in self.child_to_parents:
            self.child_to_parents[childnode] = util.Set()
        self.child_to_parents[childnode].add(parentnode)
        parentnode.dependencies.add(childnode)

    def remove(self, edge):
        """Remove an edge from this collection.

        Return the childnode if it has no other parents.
        """

        (parentnode, childnode) = edge
        self.parent_to_children[parentnode].remove(childnode)
        self.child_to_parents[childnode].remove(parentnode)
        if len(self.child_to_parents[childnode]) == 0:
            return childnode
        else:
            return None

    def has_parents(self, node):
        return node in self.child_to_parents and len(self.child_to_parents[node]) > 0

    def edges_by_parent(self, node):
        if node in self.parent_to_children:
            return [(node, child) for child in self.parent_to_children[node]]
        else:
            return []

    def get_parents(self):
        return self.parent_to_children.keys()

    def pop_node(self, node):
        """Remove all edges where the given node is a parent.

        Return the collection of all nodes which were children of the
        given node, and have no further parents.
        """

        children = self.parent_to_children.pop(node, None)
        if children is not None:
            for child in children:
                self.child_to_parents[child].remove(node)
                if not self.child_to_parents[child]:
                    yield child

    def __len__(self):
        return sum([len(x) for x in self.parent_to_children.values()])

    def __iter__(self):
        for parent, children in self.parent_to_children.iteritems():
            for child in children:
                yield (parent, child)

    def __str__(self):
        return repr(list(self))

    def __repr__(self):
        return repr(list(self))

class QueueDependencySorter(object):
    """Topological sort adapted from wikipedia's article on the subject.

    It creates a straight-line list of elements, then a second pass
    groups non-dependent actions together to build more of a tree
    structure with siblings.
    """

    def __init__(self, tuples, allitems):
        self.tuples = tuples
        self.allitems = allitems

    def sort(self, allow_self_cycles=True, allow_all_cycles=False):
        (tuples, allitems) = (self.tuples, self.allitems)
        #print "\n---------------------------------\n"
        #print repr([t for t in tuples])
        #print repr([a for a in allitems])
        #print "\n---------------------------------\n"

        nodes = {}
        edges = _EdgeCollection()
        for item in allitems + [t[0] for t in tuples] + [t[1] for t in tuples]:
            if item not in nodes:
                node = _Node(item)
                nodes[item] = node

        for t in tuples:
            if t[0] is t[1]:
                if allow_self_cycles:
                    n = nodes[t[0]]
                    n.cycles = util.Set([n])
                    continue
                else:
                    raise CircularDependencyError("Self-referential dependency detected " + repr(t))
            childnode = nodes[t[1]]
            parentnode = nodes[t[0]]
            edges.add((parentnode, childnode))

        queue = []
        for n in nodes.values():
            if not edges.has_parents(n):
                queue.append(n)

        output = []
        while nodes:
            if not queue:
                # edges remain but no edgeless nodes to remove; this indicates
                # a cycle
                if allow_all_cycles:
                    for cycle in self._find_cycles(edges):
                        lead = cycle[0][0]
                        lead.cycles = util.Set()
                        for edge in cycle:
                            n = edges.remove(edge)
                            lead.cycles.add(edge[0])
                            lead.cycles.add(edge[1])
                            if n is not None:
                                queue.append(n)
                        for n in lead.cycles:
                            if n is not lead:
                                n._cyclical = True
                                for (n,k) in list(edges.edges_by_parent(n)):
                                    edges.add((lead, k))
                                    edges.remove((n,k))
                    continue
                else:
                    # long cycles not allowed
                    raise CircularDependencyError("Circular dependency detected " + repr(edges) + repr(queue))
            node = queue.pop()
            if not hasattr(node, '_cyclical'):
                output.append(node)
            del nodes[node.item]
            for childnode in edges.pop_node(node):
                queue.append(childnode)
        return self._create_batched_tree(output)


    def _create_batched_tree(self, nodes):
        """Given a list of nodes from a topological sort, organize the
        nodes into a tree structure, with as many non-dependent nodes
        set as siblings to each other as possible.
        """

        if not nodes:
            return None
        # a list of all currently independent subtrees as a tuple of
        # (root_node, set_of_all_tree_nodes, set_of_all_cycle_nodes_in_tree)
        # order of the list has no semantics for the algorithmic
        independents = []
        # in reverse topological order
        for node in util.reversed(nodes):
            # nodes subtree and cycles contain the node itself
            subtree = util.Set([node])
            if node.cycles is not None:
                cycles = util.Set(node.cycles)
            else:
                cycles = util.Set()
            # get a set of dependent nodes of node and its cycles
            nodealldeps = node.all_deps()
            if nodealldeps:
                # iterate over independent node indexes in reverse order so we can efficiently remove them
                for index in xrange(len(independents)-1,-1,-1):
                    child, childsubtree, childcycles = independents[index]
                    # if there is a dependency between this node and an independent node
                    if (childsubtree.intersection(nodealldeps) or childcycles.intersection(node.dependencies)):
                        # prepend child to nodes children
                        # (append should be fine, but previous implemetation used prepend)
                        node.children[0:0] = (child,)
                        # merge childs subtree and cycles
                        subtree.update(childsubtree)
                        cycles.update(childcycles)
                        # remove the child from list of independent subtrees
                        independents[index:index+1] = []
            # add node as a new independent subtree
            independents.append((node,subtree,cycles))
        # choose an arbitrary node from list of all independent subtrees
        head = independents.pop()[0]
        # add all other independent subtrees as a child of the chosen root
        # used prepend [0:0] instead of extend to maintain exact behaviour of previous implementation
        head.children[0:0] = [i[0] for i in independents]
        return head

    def _find_cycles(self, edges):
        involved_in_cycles = util.Set()
        cycles = {}
        def traverse(node, goal=None, cycle=None):
            if goal is None:
                goal = node
                cycle = []
            elif node is goal:
                return True

            for (n, key) in edges.edges_by_parent(node):
                if key in cycle:
                    continue
                cycle.append(key)
                if traverse(key, goal, cycle):
                    cycset = util.Set(cycle)
                    for x in cycle:
                        involved_in_cycles.add(x)
                        if x in cycles:
                            existing_set = cycles[x]
                            [existing_set.add(y) for y in cycset]
                            for y in existing_set:
                                cycles[y] = existing_set
                            cycset = existing_set
                        else:
                            cycles[x] = cycset
                cycle.pop()

        for parent in edges.get_parents():
            traverse(parent)

        # sets are not hashable, so uniquify with id
        unique_cycles = dict([(id(s), s) for s in cycles.values()]).values()
        for cycle in unique_cycles:
            edgecollection = [edge for edge in edges
                              if edge[0] in cycle and edge[1] in cycle]
            yield edgecollection