/**************************************************************************** ** ** Copyright (C) 2014 Digia Plc and/or its subsidiary(-ies). ** Contact: http://www.qt-project.org/legal ** ** This file is part of the QtNetwork module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and Digia. For licensing terms and ** conditions see http://qt.digia.com/licensing. For further information ** use the contact form at http://qt.digia.com/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 2.1 requirements ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Digia gives you certain additional ** rights. These rights are described in the Digia Qt LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 3.0 as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU General Public License version 3.0 requirements will be ** met: http://www.gnu.org/copyleft/gpl.html. ** ** ** $QT_END_LICENSE$ ** ****************************************************************************/ //#define QSSLSOCKET_DEBUG /*! \class QSslSocket \brief The QSslSocket class provides an SSL encrypted socket for both clients and servers. \since 4.3 \reentrant \ingroup network \ingroup ssl \inmodule QtNetwork QSslSocket establishes a secure, encrypted TCP connection you can use for transmitting encrypted data. It can operate in both client and server mode, and it supports modern SSL protocols, including SSLv3 and TLSv1. By default, QSslSocket uses TLSv1, but you can change the SSL protocol by calling setProtocol() as long as you do it before the handshake has started. SSL encryption operates on top of the existing TCP stream after the socket enters the ConnectedState. There are two simple ways to establish a secure connection using QSslSocket: With an immediate SSL handshake, or with a delayed SSL handshake occurring after the connection has been established in unencrypted mode. The most common way to use QSslSocket is to construct an object and start a secure connection by calling connectToHostEncrypted(). This method starts an immediate SSL handshake once the connection has been established. \snippet doc/src/snippets/code/src_network_ssl_qsslsocket.cpp 0 As with a plain QTcpSocket, QSslSocket enters the HostLookupState, ConnectingState, and finally the ConnectedState, if the connection is successful. The handshake then starts automatically, and if it succeeds, the encrypted() signal is emitted to indicate the socket has entered the encrypted state and is ready for use. Note that data can be written to the socket immediately after the return from connectToHostEncrypted() (i.e., before the encrypted() signal is emitted). The data is queued in QSslSocket until after the encrypted() signal is emitted. An example of using the delayed SSL handshake to secure an existing connection is the case where an SSL server secures an incoming connection. Suppose you create an SSL server class as a subclass of QTcpServer. You would override QTcpServer::incomingConnection() with something like the example below, which first constructs an instance of QSslSocket and then calls setSocketDescriptor() to set the new socket's descriptor to the existing one passed in. It then initiates the SSL handshake by calling startServerEncryption(). \snippet doc/src/snippets/code/src_network_ssl_qsslsocket.cpp 1 If an error occurs, QSslSocket emits the sslErrors() signal. In this case, if no action is taken to ignore the error(s), the connection is dropped. To continue, despite the occurrence of an error, you can call ignoreSslErrors(), either from within this slot after the error occurs, or any time after construction of the QSslSocket and before the connection is attempted. This will allow QSslSocket to ignore the errors it encounters when establishing the identity of the peer. Ignoring errors during an SSL handshake should be used with caution, since a fundamental characteristic of secure connections is that they should be established with a successful handshake. Once encrypted, you use QSslSocket as a regular QTcpSocket. When readyRead() is emitted, you can call read(), canReadLine() and readLine(), or getChar() to read decrypted data from QSslSocket's internal buffer, and you can call write() or putChar() to write data back to the peer. QSslSocket will automatically encrypt the written data for you, and emit encryptedBytesWritten() once the data has been written to the peer. As a convenience, QSslSocket supports QTcpSocket's blocking functions waitForConnected(), waitForReadyRead(), waitForBytesWritten(), and waitForDisconnected(). It also provides waitForEncrypted(), which will block the calling thread until an encrypted connection has been established. \snippet doc/src/snippets/code/src_network_ssl_qsslsocket.cpp 2 QSslSocket provides an extensive, easy-to-use API for handling cryptographic ciphers, private keys, and local, peer, and Certification Authority (CA) certificates. It also provides an API for handling errors that occur during the handshake phase. The following features can also be customized: \list \o The socket's cryptographic cipher suite can be customized before the handshake phase with setCiphers() and setDefaultCiphers(). \o The socket's local certificate and private key can be customized before the handshake phase with setLocalCertificate() and setPrivateKey(). \o The CA certificate database can be extended and customized with addCaCertificate(), addCaCertificates(), setCaCertificates(), addDefaultCaCertificate(), addDefaultCaCertificates(), and setDefaultCaCertificates(). \endlist \note If available, root certificates on Unix (excluding Mac OS X) will be loaded on demand from the standard certificate directories. If you do not want to load root certificates on demand, you need to call either the static function setDefaultCaCertificates() before the first SSL handshake is made in your application, (e.g. via "QSslSocket::setDefaultCaCertificates(QSslSocket::systemCaCertificates());"), or call setCaCertificates() on your QSslSocket instance prior to the SSL handshake. For more information about ciphers and certificates, refer to QSslCipher and QSslCertificate. This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (\l{http://www.openssl.org/}). \note Be aware of the difference between the bytesWritten() signal and the encryptedBytesWritten() signal. For a QTcpSocket, bytesWritten() will get emitted as soon as data has been written to the TCP socket. For a QSslSocket, bytesWritten() will get emitted when the data is being encrypted and encryptedBytesWritten() will get emitted as soon as data has been written to the TCP socket. \section1 Symbian Platform Security Requirements On Symbian, processes which use this class must have the \c NetworkServices platform security capability. If the client process lacks this capability, operations will fail. Platform security capabilities are added via the \l{qmake-variable-reference.html#target-capability}{TARGET.CAPABILITY} qmake variable. \sa QSslCertificate, QSslCipher, QSslError */ /*! \enum QSslSocket::SslMode Describes the connection modes available for QSslSocket. \value UnencryptedMode The socket is unencrypted. Its behavior is identical to QTcpSocket. \value SslClientMode The socket is a client-side SSL socket. It is either alreayd encrypted, or it is in the SSL handshake phase (see QSslSocket::isEncrypted()). \value SslServerMode The socket is a server-side SSL socket. It is either already encrypted, or it is in the SSL handshake phase (see QSslSocket::isEncrypted()). */ /*! \enum QSslSocket::PeerVerifyMode \since 4.4 Describes the peer verification modes for QSslSocket. The default mode is AutoVerifyPeer, which selects an appropriate mode depending on the socket's QSocket::SslMode. \value VerifyNone QSslSocket will not request a certificate from the peer. You can set this mode if you are not interested in the identity of the other side of the connection. The connection will still be encrypted, and your socket will still send its local certificate to the peer if it's requested. \value QueryPeer QSslSocket will request a certificate from the peer, but does not require this certificate to be valid. This is useful when you want to display peer certificate details to the user without affecting the actual SSL handshake. This mode is the default for servers. \value VerifyPeer QSslSocket will request a certificate from the peer during the SSL handshake phase, and requires that this certificate is valid. On failure, QSslSocket will emit the QSslSocket::sslErrors() signal. This mode is the default for clients. \value AutoVerifyPeer QSslSocket will automatically use QueryPeer for server sockets and VerifyPeer for client sockets. \sa QSslSocket::peerVerifyMode() */ /*! \fn QSslSocket::encrypted() This signal is emitted when QSslSocket enters encrypted mode. After this signal has been emitted, QSslSocket::isEncrypted() will return true, and all further transmissions on the socket will be encrypted. \sa QSslSocket::connectToHostEncrypted(), QSslSocket::isEncrypted() */ /*! \fn QSslSocket::modeChanged(QSslSocket::SslMode mode) This signal is emitted when QSslSocket changes from \l QSslSocket::UnencryptedMode to either \l QSslSocket::SslClientMode or \l QSslSocket::SslServerMode. \a mode is the new mode. \sa QSslSocket::mode() */ /*! \fn QSslSocket::encryptedBytesWritten(qint64 written) \since 4.4 This signal is emitted when QSslSocket writes its encrypted data to the network. The \a written parameter contains the number of bytes that were successfully written. \sa QIODevice::bytesWritten() */ /*! \fn void QSslSocket::peerVerifyError(const QSslError &error) \since 4.4 QSslSocket can emit this signal several times during the SSL handshake, before encryption has been established, to indicate that an error has occurred while establishing the identity of the peer. The \a error is usually an indication that QSslSocket is unable to securely identify the peer. This signal provides you with an early indication when something's wrong. By connecting to this signal, you can manually choose to tear down the connection from inside the connected slot before the handshake has completed. If no action is taken, QSslSocket will proceed to emitting QSslSocket::sslErrors(). \sa sslErrors() */ /*! \fn void QSslSocket::sslErrors(const QList &errors); QSslSocket emits this signal after the SSL handshake to indicate that one or more errors have occurred while establishing the identity of the peer. The errors are usually an indication that QSslSocket is unable to securely identify the peer. Unless any action is taken, the connection will be dropped after this signal has been emitted. If you want to continue connecting despite the errors that have occurred, you must call QSslSocket::ignoreSslErrors() from inside a slot connected to this signal. If you need to access the error list at a later point, you can call sslErrors() (without arguments). \a errors contains one or more errors that prevent QSslSocket from verifying the identity of the peer. Note: You cannot use Qt::QueuedConnection when connecting to this signal, or calling QSslSocket::ignoreSslErrors() will have no effect. \sa peerVerifyError() */ #include #ifndef QT_NO_OPENSSL #include "qsslcipher.h" #include "qsslsocket.h" #include "qsslsocket_openssl_p.h" #include "qsslconfiguration_p.h" #include #include #include #include #include #include QT_BEGIN_NAMESPACE /* Returns the difference between msecs and elapsed. If msecs is -1, however, -1 is returned. */ static int qt_timeout_value(int msecs, int elapsed) { if (msecs == -1) return -1; int timeout = msecs - elapsed; return timeout < 0 ? 0 : timeout; } class QSslSocketGlobalData { public: QSslSocketGlobalData() : config(new QSslConfigurationPrivate) {} QMutex mutex; QList supportedCiphers; QExplicitlySharedDataPointer config; }; Q_GLOBAL_STATIC(QSslSocketGlobalData, globalData) /*! Constructs a QSslSocket object. \a parent is passed to QObject's constructor. The new socket's \l {QSslCipher} {cipher} suite is set to the one returned by the static method defaultCiphers(). */ QSslSocket::QSslSocket(QObject *parent) : QTcpSocket(*new QSslSocketBackendPrivate, parent) { Q_D(QSslSocket); #ifdef QSSLSOCKET_DEBUG qDebug() << "QSslSocket::QSslSocket(" << parent << "), this =" << (void *)this; #endif d->q_ptr = this; d->init(); } /*! Destroys the QSslSocket. */ QSslSocket::~QSslSocket() { Q_D(QSslSocket); #ifdef QSSLSOCKET_DEBUG qDebug() << "QSslSocket::~QSslSocket(), this =" << (void *)this; #endif delete d->plainSocket; d->plainSocket = 0; } /*! Starts an encrypted connection to the device \a hostName on \a port, using \a mode as the \l OpenMode. This is equivalent to calling connectToHost() to establish the connection, followed by a call to startClientEncryption(). QSslSocket first enters the HostLookupState. Then, after entering either the event loop or one of the waitFor...() functions, it enters the ConnectingState, emits connected(), and then initiates the SSL client handshake. At each state change, QSslSocket emits signal stateChanged(). After initiating the SSL client handshake, if the identity of the peer can't be established, signal sslErrors() is emitted. If you want to ignore the errors and continue connecting, you must call ignoreSslErrors(), either from inside a slot function connected to the sslErrors() signal, or prior to entering encrypted mode. If ignoreSslErrors() is not called, the connection is dropped, signal disconnected() is emitted, and QSslSocket returns to the UnconnectedState. If the SSL handshake is successful, QSslSocket emits encrypted(). \snippet doc/src/snippets/code/src_network_ssl_qsslsocket.cpp 3 \bold{Note:} The example above shows that text can be written to the socket immediately after requesting the encrypted connection, before the encrypted() signal has been emitted. In such cases, the text is queued in the object and written to the socket \e after the connection is established and the encrypted() signal has been emitted. The default for \a mode is \l ReadWrite. If you want to create a QSslSocket on the server side of a connection, you should instead call startServerEncryption() upon receiving the incoming connection through QTcpServer. \sa connectToHost(), startClientEncryption(), waitForConnected(), waitForEncrypted() */ void QSslSocket::connectToHostEncrypted(const QString &hostName, quint16 port, OpenMode mode) { Q_D(QSslSocket); if (d->state == ConnectedState || d->state == ConnectingState) { qWarning("QSslSocket::connectToHostEncrypted() called when already connecting/connected"); return; } d->init(); d->autoStartHandshake = true; d->initialized = true; // Note: When connecting to localhost, some platforms (e.g., HP-UX and some BSDs) // establish the connection immediately (i.e., first attempt). connectToHost(hostName, port, mode); } /*! \since 4.6 \overload In addition to the original behaviour of connectToHostEncrypted, this overloaded method enables the usage of a different hostname (\a sslPeerName) for the certificate validation instead of the one used for the TCP connection (\a hostName). \sa connectToHostEncrypted() */ void QSslSocket::connectToHostEncrypted(const QString &hostName, quint16 port, const QString &sslPeerName, OpenMode mode) { Q_D(QSslSocket); if (d->state == ConnectedState || d->state == ConnectingState) { qWarning("QSslSocket::connectToHostEncrypted() called when already connecting/connected"); return; } d->init(); d->autoStartHandshake = true; d->initialized = true; d->verificationPeerName = sslPeerName; // Note: When connecting to localhost, some platforms (e.g., HP-UX and some BSDs) // establish the connection immediately (i.e., first attempt). connectToHost(hostName, port, mode); } /*! Initializes QSslSocket with the native socket descriptor \a socketDescriptor. Returns true if \a socketDescriptor is accepted as a valid socket descriptor; otherwise returns false. The socket is opened in the mode specified by \a openMode, and enters the socket state specified by \a state. \bold{Note:} It is not possible to initialize two sockets with the same native socket descriptor. \sa socketDescriptor() */ bool QSslSocket::setSocketDescriptor(int socketDescriptor, SocketState state, OpenMode openMode) { Q_D(QSslSocket); #ifdef QSSLSOCKET_DEBUG qDebug() << "QSslSocket::setSocketDescriptor(" << socketDescriptor << ',' << state << ',' << openMode << ')'; #endif if (!d->plainSocket) d->createPlainSocket(openMode); bool retVal = d->plainSocket->setSocketDescriptor(socketDescriptor, state, openMode); d->cachedSocketDescriptor = d->plainSocket->socketDescriptor(); setSocketError(d->plainSocket->error()); setSocketState(state); setOpenMode(openMode); setLocalPort(d->plainSocket->localPort()); setLocalAddress(d->plainSocket->localAddress()); setPeerPort(d->plainSocket->peerPort()); setPeerAddress(d->plainSocket->peerAddress()); setPeerName(d->plainSocket->peerName()); return retVal; } /*! \since 4.6 Sets the given \a option to the value described by \a value. \sa socketOption() */ void QSslSocket::setSocketOption(QAbstractSocket::SocketOption option, const QVariant &value) { Q_D(QSslSocket); if (d->plainSocket) d->plainSocket->setSocketOption(option, value); } /*! \since 4.6 Returns the value of the \a option option. \sa setSocketOption() */ QVariant QSslSocket::socketOption(QAbstractSocket::SocketOption option) { Q_D(QSslSocket); if (d->plainSocket) return d->plainSocket->socketOption(option); else return QVariant(); } /*! Returns the current mode for the socket; either UnencryptedMode, where QSslSocket behaves identially to QTcpSocket, or one of SslClientMode or SslServerMode, where the client is either negotiating or in encrypted mode. When the mode changes, QSslSocket emits modeChanged() \sa SslMode */ QSslSocket::SslMode QSslSocket::mode() const { Q_D(const QSslSocket); return d->mode; } /*! Returns true if the socket is encrypted; otherwise, false is returned. An encrypted socket encrypts all data that is written by calling write() or putChar() before the data is written to the network, and decrypts all incoming data as the data is received from the network, before you call read(), readLine() or getChar(). QSslSocket emits encrypted() when it enters encrypted mode. You can call sessionCipher() to find which cryptographic cipher is used to encrypt and decrypt your data. \sa mode() */ bool QSslSocket::isEncrypted() const { Q_D(const QSslSocket); return d->connectionEncrypted; } /*! Returns the socket's SSL protocol. By default, \l QSsl::SecureProtocols is used. \sa setProtocol() */ QSsl::SslProtocol QSslSocket::protocol() const { Q_D(const QSslSocket); return d->configuration.protocol; } /*! Sets the socket's SSL protocol to \a protocol. This will affect the next initiated handshake; calling this function on an already-encrypted socket will not affect the socket's protocol. */ void QSslSocket::setProtocol(QSsl::SslProtocol protocol) { Q_D(QSslSocket); d->configuration.protocol = protocol; } /*! \since 4.4 Returns the socket's verify mode. This mode mode decides whether QSslSocket should request a certificate from the peer (i.e., the client requests a certificate from the server, or a server requesting a certificate from the client), and whether it should require that this certificate is valid. The default mode is AutoVerifyPeer, which tells QSslSocket to use VerifyPeer for clients and QueryPeer for servers. \sa setPeerVerifyMode(), peerVerifyDepth(), mode() */ QSslSocket::PeerVerifyMode QSslSocket::peerVerifyMode() const { Q_D(const QSslSocket); return d->configuration.peerVerifyMode; } /*! \since 4.4 Sets the socket's verify mode to \a mode. This mode decides whether QSslSocket should request a certificate from the peer (i.e., the client requests a certificate from the server, or a server requesting a certificate from the client), and whether it should require that this certificate is valid. The default mode is AutoVerifyPeer, which tells QSslSocket to use VerifyPeer for clients and QueryPeer for servers. Setting this mode after encryption has started has no effect on the current connection. \sa peerVerifyMode(), setPeerVerifyDepth(), mode() */ void QSslSocket::setPeerVerifyMode(QSslSocket::PeerVerifyMode mode) { Q_D(QSslSocket); d->configuration.peerVerifyMode = mode; } /*! \since 4.4 Returns the maximum number of certificates in the peer's certificate chain to be checked during the SSL handshake phase, or 0 (the default) if no maximum depth has been set, indicating that the whole certificate chain should be checked. The certificates are checked in issuing order, starting with the peer's own certificate, then its issuer's certificate, and so on. \sa setPeerVerifyDepth(), peerVerifyMode() */ int QSslSocket::peerVerifyDepth() const { Q_D(const QSslSocket); return d->configuration.peerVerifyDepth; } /*! \since 4.4 Sets the maximum number of certificates in the peer's certificate chain to be checked during the SSL handshake phase, to \a depth. Setting a depth of 0 means that no maximum depth is set, indicating that the whole certificate chain should be checked. The certificates are checked in issuing order, starting with the peer's own certificate, then its issuer's certificate, and so on. \sa peerVerifyDepth(), setPeerVerifyMode() */ void QSslSocket::setPeerVerifyDepth(int depth) { Q_D(QSslSocket); if (depth < 0) { qWarning("QSslSocket::setPeerVerifyDepth: cannot set negative depth of %d", depth); return; } d->configuration.peerVerifyDepth = depth; } /*! \since 4.8 Returns the different hostname for the certificate validation, as set by setPeerVerifyName or by connectToHostEncrypted. \sa setPeerVerifyName(), connectToHostEncrypted() */ QString QSslSocket::peerVerifyName() const { Q_D(const QSslSocket); return d->verificationPeerName; } /*! \since 4.8 Sets a different host name, given by \a hostName, for the certificate validation instead of the one used for the TCP connection. \sa connectToHostEncrypted() */ void QSslSocket::setPeerVerifyName(const QString &hostName) { Q_D(QSslSocket); d->verificationPeerName = hostName; } /*! \reimp Returns the number of decrypted bytes that are immediately available for reading. */ qint64 QSslSocket::bytesAvailable() const { Q_D(const QSslSocket); if (d->mode == UnencryptedMode) return QIODevice::bytesAvailable() + (d->plainSocket ? d->plainSocket->bytesAvailable() : 0); return QIODevice::bytesAvailable() + d->readBuffer.size(); } /*! \reimp Returns the number of unencrypted bytes that are waiting to be encrypted and written to the network. */ qint64 QSslSocket::bytesToWrite() const { Q_D(const QSslSocket); if (d->mode == UnencryptedMode) return d->plainSocket ? d->plainSocket->bytesToWrite() : 0; return d->writeBuffer.size(); } /*! \since 4.4 Returns the number of encrypted bytes that are awaiting decryption. Normally, this function will return 0 because QSslSocket decrypts its incoming data as soon as it can. */ qint64 QSslSocket::encryptedBytesAvailable() const { Q_D(const QSslSocket); if (d->mode == UnencryptedMode) return 0; return d->plainSocket->bytesAvailable(); } /*! \since 4.4 Returns the number of encrypted bytes that are waiting to be written to the network. */ qint64 QSslSocket::encryptedBytesToWrite() const { Q_D(const QSslSocket); if (d->mode == UnencryptedMode) return 0; return d->plainSocket->bytesToWrite(); } /*! \reimp Returns true if you can read one while line (terminated by a single ASCII '\n' character) of decrypted characters; otherwise, false is returned. */ bool QSslSocket::canReadLine() const { Q_D(const QSslSocket); if (d->mode == UnencryptedMode) return QIODevice::canReadLine() || (d->plainSocket && d->plainSocket->canReadLine()); return QIODevice::canReadLine() || (!d->readBuffer.isEmpty() && d->readBuffer.canReadLine()); } /*! \reimp */ void QSslSocket::close() { #ifdef QSSLSOCKET_DEBUG qDebug() << "QSslSocket::close()"; #endif Q_D(QSslSocket); if (d->plainSocket) d->plainSocket->close(); QTcpSocket::close(); // must be cleared, reading/writing not possible on closed socket: d->readBuffer.clear(); d->writeBuffer.clear(); // for QTcpSocket this is already done because it uses the readBuffer/writeBuffer // if the QIODevice it is based on // ### FIXME QSslSocket should probably do similar instead of having // its own readBuffer/writeBuffer } /*! \reimp */ bool QSslSocket::atEnd() const { Q_D(const QSslSocket); if (d->mode == UnencryptedMode) return QIODevice::atEnd() && (!d->plainSocket || d->plainSocket->atEnd()); return QIODevice::atEnd() && d->readBuffer.isEmpty(); } /*! This function writes as much as possible from the internal write buffer to the underlying network socket, without blocking. If any data was written, this function returns true; otherwise false is returned. Call this function if you need QSslSocket to start sending buffered data immediately. The number of bytes successfully written depends on the operating system. In most cases, you do not need to call this function, because QAbstractSocket will start sending data automatically once control goes back to the event loop. In the absence of an event loop, call waitForBytesWritten() instead. \sa write(), waitForBytesWritten() */ // Note! docs copied from QAbstractSocket::flush() bool QSslSocket::flush() { Q_D(QSslSocket); #ifdef QSSLSOCKET_DEBUG qDebug() << "QSslSocket::flush()"; #endif if (d->mode != UnencryptedMode) // encrypt any unencrypted bytes in our buffer d->transmit(); return d->plainSocket ? d->plainSocket->flush() : false; } /*! \since 4.4 Sets the size of QSslSocket's internal read buffer to be \a size bytes. */ void QSslSocket::setReadBufferSize(qint64 size) { Q_D(QSslSocket); d->readBufferMaxSize = size; if (d->plainSocket) d->plainSocket->setReadBufferSize(size); } /*! Aborts the current connection and resets the socket. Unlike disconnectFromHost(), this function immediately closes the socket, clearing any pending data in the write buffer. \sa disconnectFromHost(), close() */ void QSslSocket::abort() { Q_D(QSslSocket); #ifdef QSSLSOCKET_DEBUG qDebug() << "QSslSocket::abort()"; #endif if (d->plainSocket) d->plainSocket->abort(); close(); } /*! \since 4.4 Returns the socket's SSL configuration state. The default SSL configuration of a socket is to use the default ciphers, default CA certificates, no local private key or certificate. The SSL configuration also contains fields that can change with time without notice. \sa localCertificate(), peerCertificate(), peerCertificateChain(), sessionCipher(), privateKey(), ciphers(), caCertificates() */ QSslConfiguration QSslSocket::sslConfiguration() const { Q_D(const QSslSocket); // create a deep copy of our configuration QSslConfigurationPrivate *copy = new QSslConfigurationPrivate(d->configuration); copy->ref = 0; // the QSslConfiguration constructor refs up copy->sessionCipher = d->sessionCipher(); return QSslConfiguration(copy); } /*! \since 4.4 Sets the socket's SSL configuration to be the contents of \a configuration. This function sets the local certificate, the ciphers, the private key and the CA certificates to those stored in \a configuration. It is not possible to set the SSL-state related fields. \sa setLocalCertificate(), setPrivateKey(), setCaCertificates(), setCiphers() */ void QSslSocket::setSslConfiguration(const QSslConfiguration &configuration) { Q_D(QSslSocket); d->configuration.localCertificate = configuration.localCertificate(); d->configuration.privateKey = configuration.privateKey(); d->configuration.ciphers = configuration.ciphers(); d->configuration.caCertificates = configuration.caCertificates(); d->configuration.peerVerifyDepth = configuration.peerVerifyDepth(); d->configuration.peerVerifyMode = configuration.peerVerifyMode(); d->configuration.protocol = configuration.protocol(); d->configuration.sslOptions = configuration.d->sslOptions; // if the CA certificates were set explicitly (either via // QSslConfiguration::setCaCertificates() or QSslSocket::setCaCertificates(), // we cannot load the certificates on demand if (!configuration.d->allowRootCertOnDemandLoading) d->allowRootCertOnDemandLoading = false; } /*! Sets the socket's local certificate to \a certificate. The local certificate is necessary if you need to confirm your identity to the peer. It is used together with the private key; if you set the local certificate, you must also set the private key. The local certificate and private key are always necessary for server sockets, but are also rarely used by client sockets if the server requires the client to authenticate. \sa localCertificate(), setPrivateKey() */ void QSslSocket::setLocalCertificate(const QSslCertificate &certificate) { Q_D(QSslSocket); d->configuration.localCertificate = certificate; } /*! \overload Sets the socket's local \l {QSslCertificate} {certificate} to the first one found in file \a path, which is parsed according to the specified \a format. */ void QSslSocket::setLocalCertificate(const QString &path, QSsl::EncodingFormat format) { Q_D(QSslSocket); QFile file(path); if (file.open(QIODevice::ReadOnly | QIODevice::Text)) d->configuration.localCertificate = QSslCertificate(file.readAll(), format); } /*! Returns the socket's local \l {QSslCertificate} {certificate}, or an empty certificate if no local certificate has been assigned. \sa setLocalCertificate(), privateKey() */ QSslCertificate QSslSocket::localCertificate() const { Q_D(const QSslSocket); return d->configuration.localCertificate; } /*! Returns the peer's digital certificate (i.e., the immediate certificate of the host you are connected to), or a null certificate, if the peer has not assigned a certificate. The peer certificate is checked automatically during the handshake phase, so this function is normally used to fetch the certificate for display or for connection diagnostic purposes. It contains information about the peer, including its host name, the certificate issuer, and the peer's public key. Because the peer certificate is set during the handshake phase, it is safe to access the peer certificate from a slot connected to the sslErrors() signal or the encrypted() signal. If a null certificate is returned, it can mean the SSL handshake failed, or it can mean the host you are connected to doesn't have a certificate, or it can mean there is no connection. If you want to check the peer's complete chain of certificates, use peerCertificateChain() to get them all at once. \sa peerCertificateChain() */ QSslCertificate QSslSocket::peerCertificate() const { Q_D(const QSslSocket); return d->configuration.peerCertificate; } /*! Returns the peer's chain of digital certificates, or an empty list of certificates. Peer certificates are checked automatically during the handshake phase. This function is normally used to fetch certificates for display, or for performing connection diagnostics. Certificates contain information about the peer and the certificate issuers, including host name, issuer names, and issuer public keys. The peer certificates are set in QSslSocket during the handshake phase, so it is safe to call this function from a slot connected to the sslErrors() signal or the encrypted() signal. If an empty list is returned, it can mean the SSL handshake failed, or it can mean the host you are connected to doesn't have a certificate, or it can mean there is no connection. If you want to get only the peer's immediate certificate, use peerCertificate(). \sa peerCertificate() */ QList QSslSocket::peerCertificateChain() const { Q_D(const QSslSocket); return d->configuration.peerCertificateChain; } /*! Returns the socket's cryptographic \l {QSslCipher} {cipher}, or a null cipher if the connection isn't encrypted. The socket's cipher for the session is set during the handshake phase. The cipher is used to encrypt and decrypt data transmitted through the socket. QSslSocket also provides functions for setting the ordered list of ciphers from which the handshake phase will eventually select the session cipher. This ordered list must be in place before the handshake phase begins. \sa ciphers(), setCiphers(), setDefaultCiphers(), defaultCiphers(), supportedCiphers() */ QSslCipher QSslSocket::sessionCipher() const { Q_D(const QSslSocket); return d->sessionCipher(); } /*! Sets the socket's private \l {QSslKey} {key} to \a key. The private key and the local \l {QSslCertificate} {certificate} are used by clients and servers that must prove their identity to SSL peers. Both the key and the local certificate are required if you are creating an SSL server socket. If you are creating an SSL client socket, the key and local certificate are required if your client must identify itself to an SSL server. \sa privateKey(), setLocalCertificate() */ void QSslSocket::setPrivateKey(const QSslKey &key) { Q_D(QSslSocket); d->configuration.privateKey = key; } /*! \overload Reads the string in file \a fileName and decodes it using a specified \a algorithm and encoding \a format to construct an \l {QSslKey} {SSL key}. If the encoded key is encrypted, \a passPhrase is used to decrypt it. The socket's private key is set to the constructed key. The private key and the local \l {QSslCertificate} {certificate} are used by clients and servers that must prove their identity to SSL peers. Both the key and the local certificate are required if you are creating an SSL server socket. If you are creating an SSL client socket, the key and local certificate are required if your client must identify itself to an SSL server. \sa privateKey(), setLocalCertificate() */ void QSslSocket::setPrivateKey(const QString &fileName, QSsl::KeyAlgorithm algorithm, QSsl::EncodingFormat format, const QByteArray &passPhrase) { Q_D(QSslSocket); QFile file(fileName); if (file.open(QIODevice::ReadOnly)) { d->configuration.privateKey = QSslKey(file.readAll(), algorithm, format, QSsl::PrivateKey, passPhrase); } } /*! Returns this socket's private key. \sa setPrivateKey(), localCertificate() */ QSslKey QSslSocket::privateKey() const { Q_D(const QSslSocket); return d->configuration.privateKey; } /*! Returns this socket's current cryptographic cipher suite. This list is used during the socket's handshake phase for choosing a session cipher. The returned list of ciphers is ordered by descending preference. (i.e., the first cipher in the list is the most preferred cipher). The session cipher will be the first one in the list that is also supported by the peer. By default, the handshake phase can choose any of the ciphers supported by this system's SSL libraries, which may vary from system to system. The list of ciphers supported by this system's SSL libraries is returned by supportedCiphers(). You can restrict the list of ciphers used for choosing the session cipher for this socket by calling setCiphers() with a subset of the supported ciphers. You can revert to using the entire set by calling setCiphers() with the list returned by supportedCiphers(). You can restrict the list of ciphers used for choosing the session cipher for \e all sockets by calling setDefaultCiphers() with a subset of the supported ciphers. You can revert to using the entire set by calling setCiphers() with the list returned by supportedCiphers(). \sa setCiphers(), defaultCiphers(), setDefaultCiphers(), supportedCiphers() */ QList QSslSocket::ciphers() const { Q_D(const QSslSocket); return d->configuration.ciphers; } /*! Sets the cryptographic cipher suite for this socket to \a ciphers, which must contain a subset of the ciphers in the list returned by supportedCiphers(). Restricting the cipher suite must be done before the handshake phase, where the session cipher is chosen. \sa ciphers(), setDefaultCiphers(), supportedCiphers() */ void QSslSocket::setCiphers(const QList &ciphers) { Q_D(QSslSocket); d->configuration.ciphers = ciphers; } /*! Sets the cryptographic cipher suite for this socket to \a ciphers, which is a colon-separated list of cipher suite names. The ciphers are listed in order of preference, starting with the most preferred cipher. For example: \snippet doc/src/snippets/code/src_network_ssl_qsslsocket.cpp 4 Each cipher name in \a ciphers must be the name of a cipher in the list returned by supportedCiphers(). Restricting the cipher suite must be done before the handshake phase, where the session cipher is chosen. \sa ciphers(), setDefaultCiphers(), supportedCiphers() */ void QSslSocket::setCiphers(const QString &ciphers) { Q_D(QSslSocket); d->configuration.ciphers.clear(); foreach (const QString &cipherName, ciphers.split(QLatin1String(":"),QString::SkipEmptyParts)) { for (int i = 0; i < 3; ++i) { // ### Crude QSslCipher cipher(cipherName, QSsl::SslProtocol(i)); if (!cipher.isNull()) d->configuration.ciphers << cipher; } } } /*! Sets the default cryptographic cipher suite for all sockets in this application to \a ciphers, which must contain a subset of the ciphers in the list returned by supportedCiphers(). Restricting the default cipher suite only affects SSL sockets that perform their handshake phase after the default cipher suite has been changed. \sa setCiphers(), defaultCiphers(), supportedCiphers() */ void QSslSocket::setDefaultCiphers(const QList &ciphers) { QSslSocketPrivate::setDefaultCiphers(ciphers); } /*! Returns the default cryptographic cipher suite for all sockets in this application. This list is used during the socket's handshake phase when negotiating with the peer to choose a session cipher. The list is ordered by preference (i.e., the first cipher in the list is the most preferred cipher). By default, the handshake phase can choose any of the ciphers supported by this system's SSL libraries, which may vary from system to system. The list of ciphers supported by this system's SSL libraries is returned by supportedCiphers(). \sa supportedCiphers() */ QList QSslSocket::defaultCiphers() { return QSslSocketPrivate::defaultCiphers(); } /*! Returns the list of cryptographic ciphers supported by this system. This list is set by the system's SSL libraries and may vary from system to system. \sa defaultCiphers(), ciphers(), setCiphers() */ QList QSslSocket::supportedCiphers() { return QSslSocketPrivate::supportedCiphers(); } /*! Searches all files in the \a path for certificates encoded in the specified \a format and adds them to this socket's CA certificate database. \a path can be explicit, or it can contain wildcards in the format specified by \a syntax. Returns true if one or more certificates are added to the socket's CA certificate database; otherwise returns false. The CA certificate database is used by the socket during the handshake phase to validate the peer's certificate. For more precise control, use addCaCertificate(). \sa addCaCertificate(), QSslCertificate::fromPath() */ bool QSslSocket::addCaCertificates(const QString &path, QSsl::EncodingFormat format, QRegExp::PatternSyntax syntax) { Q_D(QSslSocket); QList certs = QSslCertificate::fromPath(path, format, syntax); if (certs.isEmpty()) return false; d->configuration.caCertificates += certs; return true; } /*! Adds the \a certificate to this socket's CA certificate database. The CA certificate database is used by the socket during the handshake phase to validate the peer's certificate. To add multiple certificates, use addCaCertificates(). \sa caCertificates(), setCaCertificates() */ void QSslSocket::addCaCertificate(const QSslCertificate &certificate) { Q_D(QSslSocket); d->configuration.caCertificates += certificate; } /*! Adds the \a certificates to this socket's CA certificate database. The CA certificate database is used by the socket during the handshake phase to validate the peer's certificate. For more precise control, use addCaCertificate(). \sa caCertificates(), addDefaultCaCertificate() */ void QSslSocket::addCaCertificates(const QList &certificates) { Q_D(QSslSocket); d->configuration.caCertificates += certificates; } /*! Sets this socket's CA certificate database to be \a certificates. The certificate database must be set prior to the SSL handshake. The CA certificate database is used by the socket during the handshake phase to validate the peer's certificate. The CA certificate database can be reset to the current default CA certificate database by calling this function with the list of CA certificates returned by defaultCaCertificates(). \sa defaultCaCertificates() */ void QSslSocket::setCaCertificates(const QList &certificates) { Q_D(QSslSocket); d->configuration.caCertificates = certificates; d->allowRootCertOnDemandLoading = false; } /*! Returns this socket's CA certificate database. The CA certificate database is used by the socket during the handshake phase to validate the peer's certificate. It can be moodified prior to the handshake with addCaCertificate(), addCaCertificates(), and setCaCertificates(). \note On Unix, this method may return an empty list if the root certificates are loaded on demand. \sa addCaCertificate(), addCaCertificates(), setCaCertificates() */ QList QSslSocket::caCertificates() const { Q_D(const QSslSocket); return d->configuration.caCertificates; } /*! Searches all files in the \a path for certificates with the specified \a encoding and adds them to the default CA certificate database. \a path can be an explicit file, or it can contain wildcards in the format specified by \a syntax. Returns true if any CA certificates are added to the default database. Each SSL socket's CA certificate database is initialized to the default CA certificate database. \sa defaultCaCertificates(), addCaCertificates(), addDefaultCaCertificate() */ bool QSslSocket::addDefaultCaCertificates(const QString &path, QSsl::EncodingFormat encoding, QRegExp::PatternSyntax syntax) { return QSslSocketPrivate::addDefaultCaCertificates(path, encoding, syntax); } /*! Adds \a certificate to the default CA certificate database. Each SSL socket's CA certificate database is initialized to the default CA certificate database. \sa defaultCaCertificates(), addCaCertificates() */ void QSslSocket::addDefaultCaCertificate(const QSslCertificate &certificate) { QSslSocketPrivate::addDefaultCaCertificate(certificate); } /*! Adds \a certificates to the default CA certificate database. Each SSL socket's CA certificate database is initialized to the default CA certificate database. \sa defaultCaCertificates(), addCaCertificates() */ void QSslSocket::addDefaultCaCertificates(const QList &certificates) { QSslSocketPrivate::addDefaultCaCertificates(certificates); } /*! Sets the default CA certificate database to \a certificates. The default CA certificate database is originally set to your system's default CA certificate database. You can override the default CA certificate database with your own CA certificate database using this function. Each SSL socket's CA certificate database is initialized to the default CA certificate database. \sa addDefaultCaCertificate() */ void QSslSocket::setDefaultCaCertificates(const QList &certificates) { QSslSocketPrivate::setDefaultCaCertificates(certificates); } /*! Returns the current default CA certificate database. This database is originally set to your system's default CA certificate database. If no system default database is found, an empty database will be returned. You can override the default CA certificate database with your own CA certificate database using setDefaultCaCertificates(). Each SSL socket's CA certificate database is initialized to the default CA certificate database. \note On Unix, this method may return an empty list if the root certificates are loaded on demand. \sa caCertificates() */ QList QSslSocket::defaultCaCertificates() { return QSslSocketPrivate::defaultCaCertificates(); } /*! This function provides the CA certificate database provided by the operating system. The CA certificate database returned by this function is used to initialize the database returned by defaultCaCertificates(). You can replace that database with your own with setDefaultCaCertificates(). \sa caCertificates(), defaultCaCertificates(), setDefaultCaCertificates() */ QList QSslSocket::systemCaCertificates() { // we are calling ensureInitialized() in the method below return QSslSocketPrivate::systemCaCertificates(); } /*! Waits until the socket is connected, or \a msecs milliseconds, whichever happens first. If the connection has been established, this function returns true; otherwise it returns false. \sa QAbstractSocket::waitForConnected() */ bool QSslSocket::waitForConnected(int msecs) { Q_D(QSslSocket); if (!d->plainSocket) return false; bool retVal = d->plainSocket->waitForConnected(msecs); if (!retVal) { setSocketState(d->plainSocket->state()); setSocketError(d->plainSocket->error()); setErrorString(d->plainSocket->errorString()); } return retVal; } /*! Waits until the socket has completed the SSL handshake and has emitted encrypted(), or \a msecs milliseconds, whichever comes first. If encrypted() has been emitted, this function returns true; otherwise (e.g., the socket is disconnected, or the SSL handshake fails), false is returned. The following example waits up to one second for the socket to be encrypted: \snippet doc/src/snippets/code/src_network_ssl_qsslsocket.cpp 5 If msecs is -1, this function will not time out. \sa startClientEncryption(), startServerEncryption(), encrypted(), isEncrypted() */ bool QSslSocket::waitForEncrypted(int msecs) { Q_D(QSslSocket); if (!d->plainSocket || d->connectionEncrypted) return false; if (d->mode == UnencryptedMode && !d->autoStartHandshake) return false; QElapsedTimer stopWatch; stopWatch.start(); if (d->plainSocket->state() != QAbstractSocket::ConnectedState) { // Wait until we've entered connected state. if (!d->plainSocket->waitForConnected(msecs)) return false; } while (!d->connectionEncrypted) { // Start the handshake, if this hasn't been started yet. if (d->mode == UnencryptedMode) startClientEncryption(); // Loop, waiting until the connection has been encrypted or an error // occurs. if (!d->plainSocket->waitForReadyRead(qt_timeout_value(msecs, stopWatch.elapsed()))) return false; } return d->connectionEncrypted; } /*! \reimp */ bool QSslSocket::waitForReadyRead(int msecs) { Q_D(QSslSocket); if (!d->plainSocket) return false; if (d->mode == UnencryptedMode && !d->autoStartHandshake) return d->plainSocket->waitForReadyRead(msecs); // This function must return true if and only if readyRead() *was* emitted. // So we initialize "readyReadEmitted" to false and check if it was set to true. // waitForReadyRead() could be called recursively, so we can't use the same variable // (the inner waitForReadyRead() may fail, but the outer one still succeeded) bool readyReadEmitted = false; bool *previousReadyReadEmittedPointer = d->readyReadEmittedPointer; d->readyReadEmittedPointer = &readyReadEmitted; QElapsedTimer stopWatch; stopWatch.start(); if (!d->connectionEncrypted) { // Wait until we've entered encrypted mode, or until a failure occurs. if (!waitForEncrypted(msecs)) { d->readyReadEmittedPointer = previousReadyReadEmittedPointer; return false; } } if (!d->writeBuffer.isEmpty()) { // empty our cleartext write buffer first d->transmit(); } // test readyReadEmitted first because either operation above // (waitForEncrypted or transmit) may have set it while (!readyReadEmitted && d->plainSocket->waitForReadyRead(qt_timeout_value(msecs, stopWatch.elapsed()))) { } d->readyReadEmittedPointer = previousReadyReadEmittedPointer; return readyReadEmitted; } /*! \reimp */ bool QSslSocket::waitForBytesWritten(int msecs) { Q_D(QSslSocket); if (!d->plainSocket) return false; if (d->mode == UnencryptedMode) return d->plainSocket->waitForBytesWritten(msecs); QElapsedTimer stopWatch; stopWatch.start(); if (!d->connectionEncrypted) { // Wait until we've entered encrypted mode, or until a failure occurs. if (!waitForEncrypted(msecs)) return false; } if (!d->writeBuffer.isEmpty()) { // empty our cleartext write buffer first d->transmit(); } return d->plainSocket->waitForBytesWritten(qt_timeout_value(msecs, stopWatch.elapsed())); } /*! Waits until the socket has disconnected or \a msecs milliseconds, whichever comes first. If the connection has been disconnected, this function returns true; otherwise it returns false. \sa QAbstractSocket::waitForDisconnected() */ bool QSslSocket::waitForDisconnected(int msecs) { Q_D(QSslSocket); // require calling connectToHost() before waitForDisconnected() if (state() == UnconnectedState) { qWarning("QSslSocket::waitForDisconnected() is not allowed in UnconnectedState"); return false; } if (!d->plainSocket) return false; if (d->mode == UnencryptedMode) return d->plainSocket->waitForDisconnected(msecs); QElapsedTimer stopWatch; stopWatch.start(); if (!d->connectionEncrypted) { // Wait until we've entered encrypted mode, or until a failure occurs. if (!waitForEncrypted(msecs)) return false; } bool retVal = d->plainSocket->waitForDisconnected(qt_timeout_value(msecs, stopWatch.elapsed())); if (!retVal) { setSocketState(d->plainSocket->state()); setSocketError(d->plainSocket->error()); setErrorString(d->plainSocket->errorString()); } return retVal; } /*! Returns a list of the last SSL errors that occurred. This is the same list as QSslSocket passes via the sslErrors() signal. If the connection has been encrypted with no errors, this function will return an empty list. \sa connectToHostEncrypted() */ QList QSslSocket::sslErrors() const { Q_D(const QSslSocket); return d->sslErrors; } /*! Returns true if this platform supports SSL; otherwise, returns false. If the platform doesn't support SSL, the socket will fail in the connection phase. */ bool QSslSocket::supportsSsl() { return QSslSocketPrivate::supportsSsl(); } /*! Starts a delayed SSL handshake for a client connection. This function can be called when the socket is in the \l ConnectedState but still in the \l UnencryptedMode. If it is not yet connected, or if it is already encrypted, this function has no effect. Clients that implement STARTTLS functionality often make use of delayed SSL handshakes. Most other clients can avoid calling this function directly by using connectToHostEncrypted() instead, which automatically performs the handshake. \sa connectToHostEncrypted(), startServerEncryption() */ void QSslSocket::startClientEncryption() { Q_D(QSslSocket); if (d->mode != UnencryptedMode) { qWarning("QSslSocket::startClientEncryption: cannot start handshake on non-plain connection"); return; } #ifdef QSSLSOCKET_DEBUG qDebug() << "QSslSocket::startClientEncryption()"; #endif d->mode = SslClientMode; emit modeChanged(d->mode); d->startClientEncryption(); } /*! Starts a delayed SSL handshake for a server connection. This function can be called when the socket is in the \l ConnectedState but still in \l UnencryptedMode. If it is not connected or it is already encrypted, the function has no effect. For server sockets, calling this function is the only way to initiate the SSL handshake. Most servers will call this function immediately upon receiving a connection, or as a result of having received a protocol-specific command to enter SSL mode (e.g, the server may respond to receiving the string "STARTTLS\r\n" by calling this function). The most common way to implement an SSL server is to create a subclass of QTcpServer and reimplement QTcpServer::incomingConnection(). The returned socket descriptor is then passed to QSslSocket::setSocketDescriptor(). \sa connectToHostEncrypted(), startClientEncryption() */ void QSslSocket::startServerEncryption() { Q_D(QSslSocket); if (d->mode != UnencryptedMode) { qWarning("QSslSocket::startServerEncryption: cannot start handshake on non-plain connection"); return; } #ifdef QSSLSOCKET_DEBUG qDebug() << "QSslSocket::startServerEncryption()"; #endif d->mode = SslServerMode; emit modeChanged(d->mode); d->startServerEncryption(); } /*! This slot tells QSslSocket to ignore errors during QSslSocket's handshake phase and continue connecting. If you want to continue with the connection even if errors occur during the handshake phase, then you must call this slot, either from a slot connected to sslErrors(), or before the handshake phase. If you don't call this slot, either in response to errors or before the handshake, the connection will be dropped after the sslErrors() signal has been emitted. If there are no errors during the SSL handshake phase (i.e., the identity of the peer is established with no problems), QSslSocket will not emit the sslErrors() signal, and it is unnecessary to call this function. \warning Be sure to always let the user inspect the errors reported by the sslErrors() signal, and only call this method upon confirmation from the user that proceeding is ok. If there are unexpected errors, the connection should be aborted. Calling this method without inspecting the actual errors will most likely pose a security risk for your application. Use it with great care! \sa sslErrors() */ void QSslSocket::ignoreSslErrors() { Q_D(QSslSocket); d->ignoreAllSslErrors = true; } /*! \overload \since 4.6 This method tells QSslSocket to ignore only the errors given in \a errors. \note Because most SSL errors are associated with a certificate, for most of them you must set the expected certificate this SSL error is related to. If, for instance, you want to connect to a server that uses a self-signed certificate, consider the following snippet: \snippet doc/src/snippets/code/src_network_ssl_qsslsocket.cpp 6 Multiple calls to this function will replace the list of errors that were passed in previous calls. You can clear the list of errors you want to ignore by calling this function with an empty list. \sa sslErrors() */ void QSslSocket::ignoreSslErrors(const QList &errors) { Q_D(QSslSocket); d->ignoreErrorsList = errors; } /*! \internal */ void QSslSocket::connectToHostImplementation(const QString &hostName, quint16 port, OpenMode openMode) { Q_D(QSslSocket); if (!d->initialized) d->init(); d->initialized = false; #ifdef QSSLSOCKET_DEBUG qDebug() << "QSslSocket::connectToHostImplementation(" << hostName << ',' << port << ',' << openMode << ')'; #endif if (!d->plainSocket) { #ifdef QSSLSOCKET_DEBUG qDebug() << "\tcreating internal plain socket"; #endif d->createPlainSocket(openMode); } #ifndef QT_NO_NETWORKPROXY d->plainSocket->setProxy(proxy()); //copy user agent down to the plain socket (if it has been set) d->plainSocket->setProperty("_q_user-agent", property("_q_user-agent")); #endif QIODevice::open(openMode); d->plainSocket->connectToHost(hostName, port, openMode); d->cachedSocketDescriptor = d->plainSocket->socketDescriptor(); } /*! \internal */ void QSslSocket::disconnectFromHostImplementation() { Q_D(QSslSocket); #ifdef QSSLSOCKET_DEBUG qDebug() << "QSslSocket::disconnectFromHostImplementation()"; #endif if (!d->plainSocket) return; if (d->state == UnconnectedState) return; if (d->mode == UnencryptedMode && !d->autoStartHandshake) { d->plainSocket->disconnectFromHost(); return; } if (d->state <= ConnectingState) { d->pendingClose = true; return; } // Perhaps emit closing() if (d->state != ClosingState) { d->state = ClosingState; emit stateChanged(d->state); } if (!d->writeBuffer.isEmpty()) return; if (d->mode == UnencryptedMode) { d->plainSocket->disconnectFromHost(); } else { d->disconnectFromHost(); } } /*! \reimp */ qint64 QSslSocket::readData(char *data, qint64 maxlen) { Q_D(QSslSocket); qint64 readBytes = 0; if (d->mode == UnencryptedMode && !d->autoStartHandshake) { readBytes = d->plainSocket->read(data, maxlen); } else { do { const char *readPtr = d->readBuffer.readPointer(); int bytesToRead = qMin(maxlen - readBytes, d->readBuffer.nextDataBlockSize()); ::memcpy(data + readBytes, readPtr, bytesToRead); readBytes += bytesToRead; d->readBuffer.free(bytesToRead); } while (!d->readBuffer.isEmpty() && readBytes < maxlen); } #ifdef QSSLSOCKET_DEBUG qDebug() << "QSslSocket::readData(" << (void *)data << ',' << maxlen << ") ==" << readBytes; #endif // possibly trigger another transmit() to decrypt more data from the socket if (d->readBuffer.isEmpty() && d->plainSocket->bytesAvailable()) QMetaObject::invokeMethod(this, "_q_flushReadBuffer", Qt::QueuedConnection); return readBytes; } /*! \reimp */ qint64 QSslSocket::writeData(const char *data, qint64 len) { Q_D(QSslSocket); #ifdef QSSLSOCKET_DEBUG qDebug() << "QSslSocket::writeData(" << (void *)data << ',' << len << ')'; #endif if (d->mode == UnencryptedMode && !d->autoStartHandshake) return d->plainSocket->write(data, len); char *writePtr = d->writeBuffer.reserve(len); ::memcpy(writePtr, data, len); // make sure we flush to the plain socket's buffer QMetaObject::invokeMethod(this, "_q_flushWriteBuffer", Qt::QueuedConnection); return len; } /*! \internal */ QSslSocketPrivate::QSslSocketPrivate() : initialized(false) , mode(QSslSocket::UnencryptedMode) , autoStartHandshake(false) , connectionEncrypted(false) , shutdown(false) , ignoreAllSslErrors(false) , readyReadEmittedPointer(0) , allowRootCertOnDemandLoading(true) , plainSocket(0) { QSslConfigurationPrivate::deepCopyDefaultConfiguration(&configuration); } /*! \internal */ QSslSocketPrivate::~QSslSocketPrivate() { } /*! \internal */ void QSslSocketPrivate::init() { mode = QSslSocket::UnencryptedMode; autoStartHandshake = false; connectionEncrypted = false; ignoreAllSslErrors = false; shutdown = false; // we don't want to clear the ignoreErrorsList, so // that it is possible setting it before connecting // ignoreErrorsList.clear(); readBuffer.clear(); writeBuffer.clear(); configuration.peerCertificate.clear(); configuration.peerCertificateChain.clear(); } /*! \internal */ QList QSslSocketPrivate::defaultCiphers() { QMutexLocker locker(&globalData()->mutex); return globalData()->config->ciphers; } /*! \internal */ QList QSslSocketPrivate::supportedCiphers() { QSslSocketPrivate::ensureInitialized(); QMutexLocker locker(&globalData()->mutex); return globalData()->supportedCiphers; } /*! \internal */ void QSslSocketPrivate::setDefaultCiphers(const QList &ciphers) { QMutexLocker locker(&globalData()->mutex); globalData()->config.detach(); globalData()->config->ciphers = ciphers; } /*! \internal */ void QSslSocketPrivate::setDefaultSupportedCiphers(const QList &ciphers) { QMutexLocker locker(&globalData()->mutex); globalData()->config.detach(); globalData()->supportedCiphers = ciphers; } /*! \internal */ QList QSslSocketPrivate::defaultCaCertificates() { // ### Qt5: rename everything containing "caCertificates" to "rootCertificates" or similar QSslSocketPrivate::ensureInitialized(); QMutexLocker locker(&globalData()->mutex); return globalData()->config->caCertificates; } /*! \internal */ void QSslSocketPrivate::setDefaultCaCertificates(const QList &certs) { QSslSocketPrivate::ensureInitialized(); QMutexLocker locker(&globalData()->mutex); globalData()->config.detach(); globalData()->config->caCertificates = certs; // when the certificates are set explicitly, we do not want to // load the system certificates on demand s_loadRootCertsOnDemand = false; } /*! \internal */ bool QSslSocketPrivate::addDefaultCaCertificates(const QString &path, QSsl::EncodingFormat format, QRegExp::PatternSyntax syntax) { QSslSocketPrivate::ensureInitialized(); QList certs = QSslCertificate::fromPath(path, format, syntax); if (certs.isEmpty()) return false; QMutexLocker locker(&globalData()->mutex); globalData()->config.detach(); globalData()->config->caCertificates += certs; return true; } /*! \internal */ void QSslSocketPrivate::addDefaultCaCertificate(const QSslCertificate &cert) { QSslSocketPrivate::ensureInitialized(); QMutexLocker locker(&globalData()->mutex); globalData()->config.detach(); globalData()->config->caCertificates += cert; } /*! \internal */ void QSslSocketPrivate::addDefaultCaCertificates(const QList &certs) { QSslSocketPrivate::ensureInitialized(); QMutexLocker locker(&globalData()->mutex); globalData()->config.detach(); globalData()->config->caCertificates += certs; } /*! \internal */ QSslConfiguration QSslConfigurationPrivate::defaultConfiguration() { QSslSocketPrivate::ensureInitialized(); QMutexLocker locker(&globalData()->mutex); return QSslConfiguration(globalData()->config.data()); } /*! \internal */ void QSslConfigurationPrivate::setDefaultConfiguration(const QSslConfiguration &configuration) { QSslSocketPrivate::ensureInitialized(); QMutexLocker locker(&globalData()->mutex); if (globalData()->config == configuration.d) return; // nothing to do globalData()->config = const_cast(configuration.d.constData()); } /*! \internal */ void QSslConfigurationPrivate::deepCopyDefaultConfiguration(QSslConfigurationPrivate *ptr) { QSslSocketPrivate::ensureInitialized(); QMutexLocker locker(&globalData()->mutex); const QSslConfigurationPrivate *global = globalData()->config.constData(); if (!global) { ptr = 0; return; } ptr->ref = 1; ptr->peerCertificate = global->peerCertificate; ptr->peerCertificateChain = global->peerCertificateChain; ptr->localCertificate = global->localCertificate; ptr->privateKey = global->privateKey; ptr->sessionCipher = global->sessionCipher; ptr->ciphers = global->ciphers; ptr->caCertificates = global->caCertificates; ptr->protocol = global->protocol; ptr->peerVerifyMode = global->peerVerifyMode; ptr->peerVerifyDepth = global->peerVerifyDepth; ptr->sslOptions = global->sslOptions; } /*! \internal */ void QSslSocketPrivate::createPlainSocket(QIODevice::OpenMode openMode) { Q_Q(QSslSocket); q->setOpenMode(openMode); // <- from QIODevice q->setSocketState(QAbstractSocket::UnconnectedState); q->setSocketError(QAbstractSocket::UnknownSocketError); q->setLocalPort(0); q->setLocalAddress(QHostAddress()); q->setPeerPort(0); q->setPeerAddress(QHostAddress()); q->setPeerName(QString()); plainSocket = new QTcpSocket(q); #ifndef QT_NO_BEARERMANAGEMENT //copy network session down to the plain socket (if it has been set) plainSocket->setProperty("_q_networksession", q->property("_q_networksession")); #endif q->connect(plainSocket, SIGNAL(connected()), q, SLOT(_q_connectedSlot()), Qt::DirectConnection); q->connect(plainSocket, SIGNAL(hostFound()), q, SLOT(_q_hostFoundSlot()), Qt::DirectConnection); q->connect(plainSocket, SIGNAL(disconnected()), q, SLOT(_q_disconnectedSlot()), Qt::DirectConnection); q->connect(plainSocket, SIGNAL(stateChanged(QAbstractSocket::SocketState)), q, SLOT(_q_stateChangedSlot(QAbstractSocket::SocketState)), Qt::DirectConnection); q->connect(plainSocket, SIGNAL(error(QAbstractSocket::SocketError)), q, SLOT(_q_errorSlot(QAbstractSocket::SocketError)), Qt::DirectConnection); q->connect(plainSocket, SIGNAL(readyRead()), q, SLOT(_q_readyReadSlot()), Qt::DirectConnection); q->connect(plainSocket, SIGNAL(bytesWritten(qint64)), q, SLOT(_q_bytesWrittenSlot(qint64)), Qt::DirectConnection); #ifndef QT_NO_NETWORKPROXY q->connect(plainSocket, SIGNAL(proxyAuthenticationRequired(QNetworkProxy,QAuthenticator*)), q, SIGNAL(proxyAuthenticationRequired(QNetworkProxy,QAuthenticator*))); #endif readBuffer.clear(); writeBuffer.clear(); connectionEncrypted = false; configuration.peerCertificate.clear(); configuration.peerCertificateChain.clear(); mode = QSslSocket::UnencryptedMode; q->setReadBufferSize(readBufferMaxSize); } void QSslSocketPrivate::pauseSocketNotifiers(QSslSocket *socket) { if (!socket->d_func()->plainSocket) return; QAbstractSocketPrivate::pauseSocketNotifiers(socket->d_func()->plainSocket); } void QSslSocketPrivate::resumeSocketNotifiers(QSslSocket *socket) { if (!socket->d_func()->plainSocket) return; QAbstractSocketPrivate::resumeSocketNotifiers(socket->d_func()->plainSocket); } /*! \internal */ void QSslSocketPrivate::_q_connectedSlot() { Q_Q(QSslSocket); q->setLocalPort(plainSocket->localPort()); q->setLocalAddress(plainSocket->localAddress()); q->setPeerPort(plainSocket->peerPort()); q->setPeerAddress(plainSocket->peerAddress()); q->setPeerName(plainSocket->peerName()); cachedSocketDescriptor = plainSocket->socketDescriptor(); #ifdef QSSLSOCKET_DEBUG qDebug() << "QSslSocket::_q_connectedSlot()"; qDebug() << "\tstate =" << q->state(); qDebug() << "\tpeer =" << q->peerName() << q->peerAddress() << q->peerPort(); qDebug() << "\tlocal =" << QHostInfo::fromName(q->localAddress().toString()).hostName() << q->localAddress() << q->localPort(); #endif emit q->connected(); if (autoStartHandshake) { q->startClientEncryption(); } else if (pendingClose) { pendingClose = false; q->disconnectFromHost(); } } /*! \internal */ void QSslSocketPrivate::_q_hostFoundSlot() { Q_Q(QSslSocket); #ifdef QSSLSOCKET_DEBUG qDebug() << "QSslSocket::_q_hostFoundSlot()"; qDebug() << "\tstate =" << q->state(); #endif emit q->hostFound(); } /*! \internal */ void QSslSocketPrivate::_q_disconnectedSlot() { Q_Q(QSslSocket); #ifdef QSSLSOCKET_DEBUG qDebug() << "QSslSocket::_q_disconnectedSlot()"; qDebug() << "\tstate =" << q->state(); #endif disconnected(); emit q->disconnected(); } /*! \internal */ void QSslSocketPrivate::_q_stateChangedSlot(QAbstractSocket::SocketState state) { Q_Q(QSslSocket); #ifdef QSSLSOCKET_DEBUG qDebug() << "QSslSocket::_q_stateChangedSlot(" << state << ')'; #endif q->setSocketState(state); emit q->stateChanged(state); } /*! \internal */ void QSslSocketPrivate::_q_errorSlot(QAbstractSocket::SocketError error) { Q_Q(QSslSocket); #ifdef QSSLSOCKET_DEBUG qDebug() << "QSslSocket::_q_errorSlot(" << error << ')'; qDebug() << "\tstate =" << q->state(); qDebug() << "\terrorString =" << q->errorString(); #endif q->setSocketError(plainSocket->error()); q->setErrorString(plainSocket->errorString()); emit q->error(error); } /*! \internal */ void QSslSocketPrivate::_q_readyReadSlot() { Q_Q(QSslSocket); #ifdef QSSLSOCKET_DEBUG qDebug() << "QSslSocket::_q_readyReadSlot() -" << plainSocket->bytesAvailable() << "bytes available"; #endif if (mode == QSslSocket::UnencryptedMode) { if (readyReadEmittedPointer) *readyReadEmittedPointer = true; emit q->readyRead(); return; } transmit(); } /*! \internal */ void QSslSocketPrivate::_q_bytesWrittenSlot(qint64 written) { Q_Q(QSslSocket); #ifdef QSSLSOCKET_DEBUG qDebug() << "QSslSocket::_q_bytesWrittenSlot(" << written << ')'; #endif if (mode == QSslSocket::UnencryptedMode) emit q->bytesWritten(written); else emit q->encryptedBytesWritten(written); if (state == QAbstractSocket::ClosingState && writeBuffer.isEmpty()) q->disconnectFromHost(); } /*! \internal */ void QSslSocketPrivate::_q_flushWriteBuffer() { Q_Q(QSslSocket); if (!writeBuffer.isEmpty()) q->flush(); } /*! \internal */ void QSslSocketPrivate::_q_flushReadBuffer() { // trigger a read from the plainSocket into SSL if (mode != QSslSocket::UnencryptedMode) transmit(); } /*! \internal */ qint64 QSslSocketPrivate::peek(char *data, qint64 maxSize) { if (mode == QSslSocket::UnencryptedMode && !autoStartHandshake) { //unencrypted mode - do not use QIODevice::peek, as it reads ahead data from the plain socket //peek at data already in the QIODevice buffer (from a previous read) qint64 r = buffer.peek(data, maxSize); if (r == maxSize) return r; data += r; //peek at data in the plain socket if (plainSocket) { qint64 r2 = plainSocket->peek(data, maxSize - r); if (r2 < 0) return (r > 0 ? r : r2); return r + r2; } else { return -1; } } else { //encrypted mode - the socket engine will read and decrypt data into the QIODevice buffer return QTcpSocketPrivate::peek(data, maxSize); } } /*! \internal */ QByteArray QSslSocketPrivate::peek(qint64 maxSize) { if (mode == QSslSocket::UnencryptedMode && !autoStartHandshake) { //unencrypted mode - do not use QIODevice::peek, as it reads ahead data from the plain socket //peek at data already in the QIODevice buffer (from a previous read) QByteArray ret; ret.reserve(maxSize); ret.resize(buffer.peek(ret.data(), maxSize)); if (ret.length() == maxSize) return ret; //peek at data in the plain socket if (plainSocket) return ret + plainSocket->peek(maxSize - ret.length()); else return QByteArray(); } else { //encrypted mode - the socket engine will read and decrypt data into the QIODevice buffer return QTcpSocketPrivate::peek(maxSize); } } /*! \internal */ bool QSslSocketPrivate::rootCertOnDemandLoadingSupported() { return s_loadRootCertsOnDemand; } /*! \internal */ QList QSslSocketPrivate::unixRootCertDirectories() { return QList() << "/etc/ssl/certs/" // (K)ubuntu, OpenSUSE, Mandriva, MeeGo ... << "/usr/lib/ssl/certs/" // Gentoo, Mandrake << "/usr/share/ssl/" // Centos, Redhat, SuSE << "/usr/local/ssl/" // Normal OpenSSL Tarball << "/var/ssl/certs/" // AIX << "/usr/local/ssl/certs/" // Solaris << "/etc/openssl/certs/" // BlackBerry << "/opt/openssl/certs/"; // HP-UX } QT_END_NAMESPACE // For private slots #define d d_ptr #include "moc_qsslsocket.cpp" #endif // QT_NO_OPENSSL