/**************************************************************************** ** ** Copyright (C) 2015 The Qt Company Ltd. ** Contact: http://www.qt.io/licensing/ ** ** This file is part of the tools applications of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL21$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see http://www.qt.io/terms-conditions. For further ** information use the contact form at http://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 or version 3 as published by the Free ** Software Foundation and appearing in the file LICENSE.LGPLv21 and ** LICENSE.LGPLv3 included in the packaging of this file. Please review the ** following information to ensure the GNU Lesser General Public License ** requirements will be met: https://www.gnu.org/licenses/lgpl.html and ** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** As a special exception, The Qt Company gives you certain additional ** rights. These rights are described in The Qt Company LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "doc.h" #include "htmlgenerator.h" #include "location.h" #include "node.h" #include "text.h" #include "tree.h" #include "qdocdatabase.h" #include #include QT_BEGIN_NAMESPACE /*! \class Tree This class constructs and maintains a tree of instances of the subclasses of Node. This class is now private. Only class QDocDatabase has access. Please don't change this. If you must access class Tree, do it though the pointer to the singleton QDocDatabase. Tree is being converted to a forest. A static member provides a map of Tree* values with the module names as the keys. There is one Tree in the map for each index file read, and there is one tree that is not in the map for the module whose documentation is being generated. */ /*! Constructs a Tree. \a qdb is the pointer to the singleton qdoc database that is constructing the tree. This might not be necessary, and it might be removed later. \a camelCaseModuleName is the project name for this tree, which was obtained from the qdocconf file via the Config singleton. */ Tree::Tree(const QString& camelCaseModuleName, QDocDatabase* qdb) : treeHasBeenAnalyzed_(false), docsHaveBeenGenerated_(false), linkCount_(0), camelCaseModuleName_(camelCaseModuleName), physicalModuleName_(camelCaseModuleName.toLower()), qdb_(qdb), root_(0, QString()), targetListMap_(0) { root_.setPhysicalModuleName(physicalModuleName_); root_.setTree(this); if (Generator::writeQaPages()) { targetListMap_ = new TargetListMap; } } /*! Destroys the Tree. The root node is a data member of this object, so its destructor is called. The destructor of each child node is called, and these destructors are recursive. Thus the entire tree is destroyed. There are two maps of targets, keywords, and contents. One map is indexed by ref, the other by title. The ref is just the canonical form of the title. Both maps use the same set of TargetRec objects as the values, so the destructor only deletes the values from one of the maps. Then it clears both maps. */ Tree::~Tree() { TargetMap::iterator i = nodesByTargetRef_.begin(); while (i != nodesByTargetRef_.end()) { delete i.value(); ++i; } nodesByTargetRef_.clear(); nodesByTargetTitle_.clear(); if (Generator::writeQaPages() && targetListMap_) { TargetListMap::iterator i = targetListMap_->begin(); while (i != targetListMap_->end()) { TargetList* tlist = i.value(); if (tlist) { foreach (TargetLoc* tloc, *tlist) delete tloc; } delete tlist; ++i; } } } /* API members */ /*! Calls findClassNode() first with \a path and \a start. If it finds a node, the node is returned. If not, it calls findNamespaceNode() with the same parameters. The result is returned. */ Node* Tree::findNodeForInclude(const QStringList& path) const { Node* n = findClassNode(path); if (!n) n = findNamespaceNode(path); return n; } /*! Find the C++ class node named \a path. Begin the search at the \a start node. If the \a start node is 0, begin the search at the root of the tree. Only a C++ class node named \a path is acceptible. If one is not found, 0 is returned. */ ClassNode* Tree::findClassNode(const QStringList& path, const Node* start) const { if (!start) start = const_cast(root()); return static_cast(findNodeRecursive(path, 0, start, Node::Class)); } /*! Find the Namespace node named \a path. Begin the search at the root of the tree. Only a Namespace node named \a path is acceptible. If one is not found, 0 is returned. */ NamespaceNode* Tree::findNamespaceNode(const QStringList& path) const { Node* start = const_cast(root()); return static_cast(findNodeRecursive(path, 0, start, Node::Namespace)); } /*! This function first ignores the \a clone node and searches for the parent node with \a parentPath. If that search is successful, it searches for a child node of the parent that matches the \a clone node. If it finds a node that is just like the \a clone, it returns a pointer to the found node. Apparently the search order is important here. Don't change it unless you know what you are doing, or you will introduce qdoc warnings. */ FunctionNode* Tree::findFunctionNode(const QStringList& parentPath, const FunctionNode* clone) { const Node* parent = findNamespaceNode(parentPath); if (parent == 0) parent = findClassNode(parentPath, 0); if (parent == 0) parent = findNode(parentPath, 0, 0, Node::DontCare); if (parent == 0 || !parent->isAggregate()) return 0; return ((const Aggregate*)parent)->findFunctionNode(clone); } /*! Find the Qml type node named \a path. Begin the search at the \a start node. If the \a start node is 0, begin the search at the root of the tree. Only a Qml type node named <\a path is acceptible. If one is not found, 0 is returned. */ QmlTypeNode* Tree::findQmlTypeNode(const QStringList& path) { /* If the path contains one or two double colons ("::"), check first to see if the first two path strings refer to a QML element. If they do, path[0] will be the QML module identifier, and path[1] will be the QML type. If the anser is yes, the reference identifies a QML class node. */ if (path.size() >= 2 && !path[0].isEmpty()) { QmlTypeNode* qcn = qdb_->findQmlType(path[0], path[1]); if (qcn) return qcn; } return static_cast(findNodeRecursive(path, 0, root(), Node::QmlType)); } /*! This function begins searching the tree at \a relative for the \l {FunctionNode} {function node} identified by \a path. The \a findFlags are used to restrict the search. If a node that matches the \a path is found, it is returned. Otherwise, 0 is returned. If \a relative is 0, the root of the tree is used as the starting point. */ const FunctionNode* Tree::findFunctionNode(const QStringList& path, const QString& params, const Node* relative, int findFlags, Node::Genus genus) const { if (path.size() == 3 && !path[0].isEmpty() && ((genus == Node::QML) || (genus == Node::DontCare))) { QmlTypeNode* qcn = lookupQmlType(QString(path[0] + "::" + path[1])); if (!qcn) { QStringList p(path[1]); Node* n = findNodeByNameAndType(p, Node::QmlType); if (n && (n->isQmlType() || n->isJsType())) qcn = static_cast(n); } if (qcn) return static_cast(qcn->findFunctionNode(path[2], params)); } if (!relative) relative = root(); else if (genus != Node::DontCare) { if (genus != relative->genus()) relative = root(); } do { const Node* node = relative; int i; for (i = 0; i < path.size(); ++i) { if (node == 0 || !node->isAggregate()) break; const Node* next; if (i == path.size() - 1) next = ((const Aggregate*) node)->findFunctionNode(path.at(i), params); else next = ((const Aggregate*) node)->findChildNode(path.at(i), genus); if (!next && node->isClass() && (findFlags & SearchBaseClasses)) { NodeList baseClasses = allBaseClasses(static_cast(node)); foreach (const Node* baseClass, baseClasses) { if (i == path.size() - 1) next = static_cast(baseClass)->findFunctionNode(path.at(i), params); else next = static_cast(baseClass)->findChildNode(path.at(i), genus); if (next) break; } } node = next; } if (node && i == path.size() && node->isFunction()) { // CppCodeParser::processOtherMetaCommand ensures that reimplemented // functions are private. const FunctionNode* func = static_cast(node); while (func->access() == Node::Private) { const FunctionNode* from = func->reimplementedFrom(); if (from != 0) { if (from->access() != Node::Private) return from; else func = from; } else break; } return func; } relative = relative->parent(); } while (relative); return 0; } static NodeTypeList t; static const NodeTypeList& relatesTypes() { if (t.isEmpty()) { t.reserve(3); t.append(NodeTypePair(Node::Class, Node::NoSubtype)); t.append(NodeTypePair(Node::Namespace, Node::NoSubtype)); t.append(NodeTypePair(Node::Document, Node::HeaderFile)); } return t; } /*! This function searches for the node specified by \a path. The matching node can be one of several different types including a C++ class, a C++ namespace, or a C++ header file. I'm not sure if it can be a QML type, but if that is a possibility, the code can easily accommodate it. If a matching node is found, a pointer to it is returned. Otherwise 0 is returned. */ Aggregate* Tree::findRelatesNode(const QStringList& path) { Node* n = findNodeRecursive(path, 0, root(), relatesTypes()); return ((n && n->isAggregate()) ? static_cast(n) : 0); } /*! Inserts function name \a funcName and function role \a funcRole into the property function map for the specified \a property. */ void Tree::addPropertyFunction(PropertyNode* property, const QString& funcName, PropertyNode::FunctionRole funcRole) { unresolvedPropertyMap[property].insert(funcRole, funcName); } /*! This function resolves C++ inheritance and reimplementation settings for each C++ class node found in the tree beginning at \a n. It also calls itself recursively for each C++ class node or namespace node it encounters. For each child of \a n that is a class node, it calls resolveInheritanceHelper(). This function does not resolve QML inheritance. */ void Tree::resolveInheritance(Aggregate* n) { if (!n) n = root(); for (int pass = 0; pass < 2; pass++) { NodeList::ConstIterator c = n->childNodes().constBegin(); while (c != n->childNodes().constEnd()) { if ((*c)->type() == Node::Class) { resolveInheritanceHelper(pass, (ClassNode*)*c); resolveInheritance((ClassNode*)*c); } else if ((*c)->type() == Node::Namespace) { NamespaceNode* ns = static_cast(*c); resolveInheritance(ns); } ++c; } } } /*! This function is run twice for eachclass node \a cn in the tree. First it is run with \a pass set to 0 for each class node \a cn. Then it is run with \a pass set to 1 for eachclass node \a cn. In \a pass 0, all the base classes ofclass node \a cn are found and added to the base class list forclass node \a cn. In \a pass 1, each child ofclass node \a cn that is a function that is reimplemented from one of the base classes is marked as being reimplemented from that class. Some property node fixing up is also done in \a pass 1. */ void Tree::resolveInheritanceHelper(int pass, ClassNode* cn) { if (pass == 0) { QList& bases = cn->baseClasses(); QList::iterator b = bases.begin(); while (b != bases.end()) { if (!(*b).node_) { Node* n = qdb_->findClassNode((*b).path_); /* If the node for the base class was not found, the reason might be that the subclass is in a namespace and the base class is in the same namespace, but the base class name was not qualified with the namespace name. That is the case most of the time. Then restart the search at the parent of the subclass node (the namespace node) using the unqualified base class name. */ if (!n) { Aggregate* parent = cn->parent(); if (parent) // Exclude the root namespace if (parent->isNamespace() && !parent->name().isEmpty()) n = findClassNode((*b).path_, parent); } if (n) { ClassNode* bcn = static_cast(n); (*b).node_ = bcn; bcn->addDerivedClass((*b).access_, cn); } } ++b; } } else { NodeList::ConstIterator c = cn->childNodes().constBegin(); while (c != cn->childNodes().constEnd()) { if ((*c)->type() == Node::Function) { FunctionNode* func = (FunctionNode*)* c; FunctionNode* from = findVirtualFunctionInBaseClasses(cn, func); if (from != 0) { if (func->isNonvirtual()) func->setVirtual(); func->setReimplementedFrom(from); } } else if ((*c)->type() == Node::Property) cn->fixPropertyUsingBaseClasses(static_cast(*c)); ++c; } } } /*! */ void Tree::resolveProperties() { PropertyMap::ConstIterator propEntry; propEntry = unresolvedPropertyMap.constBegin(); while (propEntry != unresolvedPropertyMap.constEnd()) { PropertyNode* property = propEntry.key(); Aggregate* parent = property->parent(); QString getterName = (*propEntry)[PropertyNode::Getter]; QString setterName = (*propEntry)[PropertyNode::Setter]; QString resetterName = (*propEntry)[PropertyNode::Resetter]; QString notifierName = (*propEntry)[PropertyNode::Notifier]; NodeList::ConstIterator c = parent->childNodes().constBegin(); while (c != parent->childNodes().constEnd()) { if ((*c)->type() == Node::Function) { FunctionNode* function = static_cast(*c); if (function->access() == property->access() && (function->status() == property->status() || function->doc().isEmpty())) { if (function->name() == getterName) { property->addFunction(function, PropertyNode::Getter); } else if (function->name() == setterName) { property->addFunction(function, PropertyNode::Setter); } else if (function->name() == resetterName) { property->addFunction(function, PropertyNode::Resetter); } else if (function->name() == notifierName) { property->addSignal(function, PropertyNode::Notifier); } } } ++c; } ++propEntry; } propEntry = unresolvedPropertyMap.constBegin(); while (propEntry != unresolvedPropertyMap.constEnd()) { PropertyNode* property = propEntry.key(); // redo it to set the property functions if (property->overriddenFrom()) property->setOverriddenFrom(property->overriddenFrom()); ++propEntry; } unresolvedPropertyMap.clear(); } /*! For each QML class node that points to a C++ class node, follow its C++ class node pointer and set the C++ class node's QML class node pointer back to the QML class node. */ void Tree::resolveCppToQmlLinks() { foreach (Node* child, root_.childNodes()) { if (child->isQmlType() || child->isJsType()) { QmlTypeNode* qcn = static_cast(child); ClassNode* cn = const_cast(qcn->classNode()); if (cn) cn->setQmlElement(qcn); } } } /*! For each C++ class node, resolve any \c using clauses that appeared in the class declaration. */ void Tree::resolveUsingClauses() { foreach (Node* child, root_.childNodes()) { if (child->isClass()) { ClassNode* cn = static_cast(child); QList& usingClauses = cn->usingClauses(); QList::iterator uc = usingClauses.begin(); while (uc != usingClauses.end()) { if (!(*uc).node()) { const Node* n = qdb_->findFunctionNode((*uc).signature(), cn, Node::CPP); if (n) (*uc).setNode(n); } ++uc; } } } } /*! */ void Tree::fixInheritance(NamespaceNode* rootNode) { if (!rootNode) rootNode = root(); NodeList::ConstIterator c = rootNode->childNodes().constBegin(); while (c != rootNode->childNodes().constEnd()) { if ((*c)->type() == Node::Class) static_cast(*c)->fixBaseClasses(); else if ((*c)->type() == Node::Namespace) { NamespaceNode* ns = static_cast(*c); fixInheritance(ns); } ++c; } } /*! */ FunctionNode* Tree::findVirtualFunctionInBaseClasses(ClassNode* cn, FunctionNode* clone) { const QList& rc = cn->baseClasses(); QList::ConstIterator r = rc.constBegin(); while (r != rc.constEnd()) { FunctionNode* func; if ((*r).node_) { if (((func = findVirtualFunctionInBaseClasses((*r).node_, clone)) != 0 || (func = (*r).node_->findFunctionNode(clone)) != 0)) { if (!func->isNonvirtual()) return func; } } ++r; } return 0; } /*! */ NodeList Tree::allBaseClasses(const ClassNode* classNode) const { NodeList result; foreach (const RelatedClass& r, classNode->baseClasses()) { if (r.node_) { result += r.node_; result += allBaseClasses(r.node_); } } return result; } /*! Find the node with the specified \a path name that is of the specified \a type and \a subtype. Begin the search at the \a start node. If the \a start node is 0, begin the search at the tree root. \a subtype is not used unless \a type is \c{Document}. */ Node* Tree::findNodeByNameAndType(const QStringList& path, Node::NodeType type) const { return findNodeRecursive(path, 0, root(), type); } /*! Recursive search for a node identified by \a path. Each path element is a name. \a pathIndex specifies the index of the name in \a path to try to match. \a start is the node whose children shoulod be searched for one that has that name. Each time a match is found, increment the \a pathIndex and call this function recursively. If the end of the path is reached (i.e. if a matching node is found for each name in the \a path), the \a type must match the type of the last matching node, and if the type is \e{Document}, the \a subtype must match as well. If the algorithm is successful, the pointer to the final node is returned. Otherwise 0 is returned. */ Node* Tree::findNodeRecursive(const QStringList& path, int pathIndex, const Node* start, Node::NodeType type) const { if (!start || path.isEmpty()) return 0; // no place to start, or nothing to search for. Node* node = const_cast(start); if (start->isLeaf()) { if (pathIndex >= path.size()) return node; // found a match. return 0; // premature leaf } Aggregate* current = static_cast(node); const NodeList& children = current->childNodes(); const QString& name = path.at(pathIndex); for (int i=0; iisQmlPropertyGroup()) { if (type == Node::QmlProperty) { n = findNodeRecursive(path, pathIndex, n, type); if (n) return n; } } else if (n->name() == name) { if (pathIndex+1 >= path.size()) { if ((n->type() == type) || (type == Node::NoType)) return n; continue; } else { // Search the children of n for the next name in the path. n = findNodeRecursive(path, pathIndex+1, n, type); if (n) return n; } } } return 0; } /*! Recursive search for a node identified by \a path. Each path element is a name. \a pathIndex specifies the index of the name in \a path to try to match. \a start is the node whose children shoulod be searched for one that has that name. Each time a name match is found, increment the \a pathIndex and call this function recursively. If the end of the path is reached (i.e. if a matching node is found for each name in the \a path), test the matching node's type and subtype values against the ones listed in \a types. If a match is found there, return the pointer to the final node. Otherwise return 0. */ Node* Tree::findNodeRecursive(const QStringList& path, int pathIndex, Node* start, const NodeTypeList& types) const { if (!start || path.isEmpty()) return 0; if (start->isLeaf()) return ((pathIndex >= path.size()) ? start : 0); if (pathIndex >= path.size()) return 0; Aggregate* current = static_cast(start); const NodeList& children = current->childNodes(); for (int i=0; iname() == path.at(pathIndex)) { if (pathIndex+1 >= path.size()) { if (n->match(types)) return n; } else if (!n->isLeaf()) { n = findNodeRecursive(path, pathIndex+1, n, types); if (n) return n; } } } return 0; } /*! Searches the tree for a node that matches the \a path plus the \a target. The search begins at \a start and moves up the parent chain from there, or, if \a start is 0, the search begins at the root. The \a flags can indicate whether to search base classes and/or the enum values in enum types. \a genus can be a further restriction on what kind of node is an acceptible match, i.e. CPP or QML. If a matching node is found, \a ref is an output parameter that is set to the HTML reference to use for the link. */ const Node* Tree::findNodeForTarget(const QStringList& path, const QString& target, const Node* start, int flags, Node::Genus genus, QString& ref) const { const Node* node = 0; if ((genus == Node::DontCare) || (genus == Node::DOC)) { node = findDocumentNodeByTitle(path.at(0)); if (node) { if (!target.isEmpty()) { ref = getRef(target, node); if (ref.isEmpty()) node = 0; } if (node) return node; } } node = findUnambiguousTarget(path.join(QStringLiteral("::")), genus, ref); if (node) { if (!target.isEmpty()) { ref = getRef(target, node); if (ref.isEmpty()) node = 0; } if (node) return node; } const Node* current = start; if (!current) current = root(); /* If the path contains one or two double colons ("::"), check first to see if the first two path strings refer to a QML element. If they do, path[0] will be the QML module identifier, and path[1] will be the QML type. If the answer is yes, the reference identifies a QML type node. */ int path_idx = 0; if (((genus == Node::QML) || (genus == Node::DontCare)) && (path.size() >= 2) && !path[0].isEmpty()) { QmlTypeNode* qcn = lookupQmlType(QString(path[0] + "::" + path[1])); if (qcn) { current = qcn; if (path.size() == 2) { if (!target.isEmpty()) { ref = getRef(target, current); if (!ref.isEmpty()) return current; return 0; } else return current; } path_idx = 2; } } while (current) { if (current->isAggregate()) { const Node* node = matchPathAndTarget(path, path_idx, target, current, flags, genus, ref); if (node) return node; } current = current->parent(); path_idx = 0; } return 0; } /*! First, the \a path is used to find a node. The \a path matches some part of the node's fully quallified name. If the \a target is not empty, it must match a target in the matching node. If the matching of the \a path and the \a target (if present) is successful, \a ref is set from the \a target, and the pointer to the matching node is returned. \a idx is the index into the \a path where to begin the matching. The function is recursive with idx being incremented for each recursive call. The matching node must be of the correct \a genus, i.e. either QML or C++, but \a genus can be set to \c DontCare. \a flags indicates whether to search base classes and whether to search for an enum value. \a node points to the node where the search should begin, assuming the \a path is a not a fully-qualified name. \a node is most often the root of this Tree. */ const Node* Tree::matchPathAndTarget(const QStringList& path, int idx, const QString& target, const Node* node, int flags, Node::Genus genus, QString& ref) const { /* If the path has been matched, then if there is a target, try to match the target. If there is a target, but you can't match it at the end of the path, give up; return 0. */ if (idx == path.size()) { if (!target.isEmpty()) { ref = getRef(target, node); if (ref.isEmpty()) return 0; } if (node->isFunction() && node->name() == node->parent()->name()) node = node->parent(); return node; } const Node* t = 0; QString name = path.at(idx); QList nodes; node->findChildren(name, nodes); foreach (const Node* n, nodes) { if (genus != Node::DontCare) { if (n->genus() != genus) continue; } t = matchPathAndTarget(path, idx+1, target, n, flags, genus, ref); if (t && !t->isPrivate()) return t; } if (target.isEmpty()) { if ((idx) == (path.size()-1) && node->isAggregate() && (flags & SearchEnumValues)) { t = static_cast(node)->findEnumNodeForValue(path.at(idx)); if (t) return t; } } if (((genus == Node::CPP) || (genus == Node::DontCare)) && node->isClass() && (flags & SearchBaseClasses)) { NodeList baseClasses = allBaseClasses(static_cast(node)); foreach (const Node* bc, baseClasses) { t = matchPathAndTarget(path, idx, target, bc, flags, genus, ref); if (t && ! t->isPrivate()) return t; if (target.isEmpty()) { if ((idx) == (path.size()-1) && (flags & SearchEnumValues)) { t = static_cast(bc)->findEnumNodeForValue(path.at(idx)); if (t) return t; } } } } return 0; } /*! Searches the tree for a node that matches the \a path. The search begins at \a start but can move up the parent chain recursively if no match is found. This findNode() callse the other findNode(), which is not called anywhere else. */ const Node* Tree::findNode(const QStringList& path, const Node* start, int findFlags, Node::Genus genus) const { const Node* current = start; if (!current) current = root(); do { const Node* node = current; int i; int start_idx = 0; /* If the path contains one or two double colons ("::"), check first to see if the first two path strings refer to a QML element. If they do, path[0] will be the QML module identifier, and path[1] will be the QML type. If the answer is yes, the reference identifies a QML type node. */ if (((genus == Node::QML) || (genus == Node::DontCare)) && (path.size() >= 2) && !path[0].isEmpty()) { QmlTypeNode* qcn = lookupQmlType(QString(path[0] + "::" + path[1])); if (qcn) { node = qcn; if (path.size() == 2) return node; start_idx = 2; } } for (i = start_idx; i < path.size(); ++i) { if (node == 0 || !node->isAggregate()) break; const Node* next = static_cast(node)->findChildNode(path.at(i), genus); if (!next && (findFlags & SearchEnumValues) && i == path.size()-1) { next = static_cast(node)->findEnumNodeForValue(path.at(i)); } if (!next && ((genus == Node::CPP) || (genus == Node::DontCare)) && node->isClass() && (findFlags & SearchBaseClasses)) { NodeList baseClasses = allBaseClasses(static_cast(node)); foreach (const Node* baseClass, baseClasses) { next = static_cast(baseClass)->findChildNode(path.at(i), genus); if (!next && (findFlags & SearchEnumValues) && i == path.size() - 1) next = static_cast(baseClass)->findEnumNodeForValue(path.at(i)); if (next) { break; } } } node = next; } if (node && i == path.size()) return node; current = current->parent(); } while (current); return 0; } /*! This function searches for a node with a canonical title constructed from \a target. If the node it finds is \a node, it returns the ref from that node. Otherwise it returns an empty string. */ QString Tree::getRef(const QString& target, const Node* node) const { TargetMap::const_iterator i = nodesByTargetTitle_.constFind(target); if (i != nodesByTargetTitle_.constEnd()) { do { if (i.value()->node_ == node) return i.value()->ref_; ++i; } while (i != nodesByTargetTitle_.constEnd() && i.key() == target); } QString key = Doc::canonicalTitle(target); i = nodesByTargetRef_.constFind(key); if (i != nodesByTargetRef_.constEnd()) { do { if (i.value()->node_ == node) return i.value()->ref_; ++i; } while (i != nodesByTargetRef_.constEnd() && i.key() == key); } return QString(); } /*! Inserts a new target into the target table. \a name is the key. The target record contains the \a type, a pointer to the \a node, the \a priority. and a canonicalized form of the \a name, which is later used. */ void Tree::insertTarget(const QString& name, const QString& title, TargetRec::TargetType type, Node* node, int priority) { TargetRec* target = new TargetRec(name, title, type, node, priority); nodesByTargetRef_.insert(name, target); nodesByTargetTitle_.insert(title, target); } /*! */ void Tree::resolveTargets(Aggregate* root) { foreach (Node* child, root->childNodes()) { if (child->type() == Node::Document) { DocumentNode* node = static_cast(child); QString key = node->title(); if (!key.isEmpty()) { if (key.contains(QChar(' '))) key = Doc::canonicalTitle(key); QList nodes = docNodesByTitle_.values(key); bool alreadyThere = false; if (!nodes.empty()) { for (int i=0; i< nodes.size(); ++i) { if (nodes[i]->docSubtype() == Node::ExternalPage) { if (node->name() == nodes[i]->name()) { alreadyThere = true; break; } } } } if (!alreadyThere) docNodesByTitle_.insert(key, node); } } if (child->doc().hasTableOfContents()) { const QList& toc = child->doc().tableOfContents(); for (int i = 0; i < toc.size(); ++i) { QString ref = refForAtom(toc.at(i)); QString title = Text::sectionHeading(toc.at(i)).toString(); if (!ref.isEmpty() && !title.isEmpty()) { QString key = Doc::canonicalTitle(title); TargetRec* target = new TargetRec(ref, title, TargetRec::Contents, child, 3); nodesByTargetRef_.insert(key, target); nodesByTargetTitle_.insert(title, target); } } } if (child->doc().hasKeywords()) { const QList& keywords = child->doc().keywords(); for (int i = 0; i < keywords.size(); ++i) { QString ref = refForAtom(keywords.at(i)); QString title = keywords.at(i)->string(); if (!ref.isEmpty() && !title.isEmpty()) { TargetRec* target = new TargetRec(ref, title, TargetRec::Keyword, child, 1); nodesByTargetRef_.insert(Doc::canonicalTitle(title), target); nodesByTargetTitle_.insert(title, target); } } } if (child->doc().hasTargets()) { const QList& targets = child->doc().targets(); for (int i = 0; i < targets.size(); ++i) { QString ref = refForAtom(targets.at(i)); QString title = targets.at(i)->string(); if (!ref.isEmpty() && !title.isEmpty()) { QString key = Doc::canonicalTitle(title); TargetRec* target = new TargetRec(ref, title, TargetRec::Target, child, 2); nodesByTargetRef_.insert(key, target); nodesByTargetTitle_.insert(title, target); } } } if (child->isAggregate()) resolveTargets(static_cast(child)); } } /*! This function searches for a \a target anchor node. If it finds one, it sets \a ref and returns the found node. */ const Node* Tree::findUnambiguousTarget(const QString& target, Node::Genus genus, QString& ref) const { int numBestTargets = 0; TargetRec* bestTarget = 0; QList bestTargetList; QString key = target; TargetMap::const_iterator i = nodesByTargetTitle_.find(key); while (i != nodesByTargetTitle_.constEnd()) { if (i.key() != key) break; TargetRec* candidate = i.value(); if ((genus == Node::DontCare) || (genus == candidate->genus())) { if (!bestTarget || (candidate->priority_ < bestTarget->priority_)) { bestTarget = candidate; bestTargetList.clear(); bestTargetList.append(candidate); numBestTargets = 1; } else if (candidate->priority_ == bestTarget->priority_) { bestTargetList.append(candidate); ++numBestTargets; } } ++i; } if (bestTarget) { ref = bestTarget->ref_; return bestTarget->node_; } numBestTargets = 0; bestTarget = 0; key = Doc::canonicalTitle(target); i = nodesByTargetRef_.find(key); while (i != nodesByTargetRef_.constEnd()) { if (i.key() != key) break; TargetRec* candidate = i.value(); if ((genus == Node::DontCare) || (genus == candidate->genus())) { if (!bestTarget || (candidate->priority_ < bestTarget->priority_)) { bestTarget = candidate; bestTargetList.clear(); bestTargetList.append(candidate); numBestTargets = 1; } else if (candidate->priority_ == bestTarget->priority_) { bestTargetList.append(candidate); ++numBestTargets; } } ++i; } if (bestTarget) { ref = bestTarget->ref_; return bestTarget->node_; } ref.clear(); return 0; } /*! This function searches for a node with the specified \a title. */ const DocumentNode* Tree::findDocumentNodeByTitle(const QString& title) const { DocumentNodeMultiMap::const_iterator i; if (title.contains(QChar(' '))) i = docNodesByTitle_.constFind(Doc::canonicalTitle(title)); else i = docNodesByTitle_.constFind(title); if (i != docNodesByTitle_.constEnd()) { /* Reporting all these duplicate section titles is probably overkill. We should report the duplicate file and let that suffice. */ DocumentNodeMultiMap::const_iterator j = i; ++j; if (j != docNodesByTitle_.constEnd() && j.key() == i.key()) { while (j != docNodesByTitle_.constEnd()) { if (j.key() == i.key() && j.value()->url().isEmpty()) { break; // Just report one duplicate for now. } ++j; } if (j != docNodesByTitle_.cend()) { i.value()->location().warning("This page title exists in more than one file: " + title); j.value()->location().warning("[It also exists here]"); } } return i.value(); } return 0; } /*! Returns a canonical title for the \a atom, if the \a atom is a SectionLeft or a Target. */ QString Tree::refForAtom(const Atom* atom) { if (atom) { if (atom->type() == Atom::SectionLeft) return Doc::canonicalTitle(Text::sectionHeading(atom).toString()); if ((atom->type() == Atom::Target) || (atom->type() == Atom::Keyword)) return Doc::canonicalTitle(atom->string()); } return QString(); } /*! \fn const CNMap& Tree::groups() const Returns a const reference to the collection of all group nodes. */ /*! \fn const ModuleMap& Tree::modules() const Returns a const reference to the collection of all module nodes. */ /*! \fn const QmlModuleMap& Tree::qmlModules() const Returns a const reference to the collection of all QML module nodes. */ /*! Returns a pointer to the collection map specified by \a genus. Returns null if \a genus is not specified. */ CNMap* Tree::getCollectionMap(Node::Genus genus) { switch (genus) { case Node::DOC: return &groups_; case Node::CPP: return &modules_; case Node::QML: return &qmlModules_; case Node::JS: return &jsModules_; default: break; } return 0; } /*! Returns a pointer to the collection named \a name of the specified \a genus in this tree. If there is no matching collection in this tree, 0 is returned. */ CollectionNode* Tree::getCollection(const QString& name, Node::Genus genus) { CNMap* m = getCollectionMap(genus); if (m) { CNMap::const_iterator i = m->constFind(name); if (i != m->cend()) return i.value(); } return 0; } /*! Find the group, module, QML module, or JavaScript module named \a name and return a pointer to that collection node. \a genus specifies which kind of collection node you want. If a collection node with the specified \a name and \a genus is not found, a new one is created, and the pointer to the new one is returned. If a new collection node is created, its parent is the tree root, and the new collection node is marked \e{not seen}. \a genus must be specified, i.e. it must not be \c{DontCare}. If it is \c{DontCare}, 0 is returned, which is a programming error. */ CollectionNode* Tree::findCollection(const QString& name, Node::Genus genus) { CNMap* m = getCollectionMap(genus); if (!m) // error return 0; CNMap::const_iterator i = m->constFind(name); if (i != m->cend()) return i.value(); Node::NodeType t = Node::NoType; switch (genus) { case Node::DOC: t = Node::Group; break; case Node::CPP: t = Node::Module; break; case Node::QML: t = Node::QmlModule; break; case Node::JS: t = Node::QmlModule; break; default: break; } CollectionNode* cn = new CollectionNode(t, root(), name, genus); cn->markNotSeen(); m->insert(name, cn); return cn; } /*! \fn CollectionNode* Tree::findGroup(const QString& name) Find the group node named \a name and return a pointer to it. If the group node is not found, add a new group node named \a name and return a pointer to the new one. If a new group node is added, its parent is the tree root, and the new group node is marked \e{not seen}. */ /*! \fn CollectionNode* Tree::findModule(const QString& name) Find the module node named \a name and return a pointer to it. If a matching node is not found, add a new module node named \a name and return a pointer to that one. If a new module node is added, its parent is the tree root, and the new module node is marked \e{not seen}. */ /*! \fn CollectionNode* Tree::findQmlModule(const QString& name) Find the QML module node named \a name and return a pointer to it. If a matching node is not found, add a new QML module node named \a name and return a pointer to that one. If a new QML module node is added, its parent is the tree root, and the new node is marked \e{not seen}. */ /*! \fn CollectionNode* Tree::findJsModule(const QString& name) Find the JavaScript module named \a name and return a pointer to it. If a matching node is not found, add a new JavaScript module node named \a name and return a pointer to that one. If a new JavaScript module node is added, its parent is the tree root, and the new node is marked \e{not seen}. */ /*! \fn CollectionNode* Tree::addGroup(const QString& name) Looks up the group node named \a name in the collection of all group nodes. If a match is found, a pointer to the node is returned. Otherwise, a new group node named \a name is created and inserted into the collection, and the pointer to that node is returned. */ /*! \fn CollectionNode* Tree::addModule(const QString& name) Looks up the module node named \a name in the collection of all module nodes. If a match is found, a pointer to the node is returned. Otherwise, a new module node named \a name is created and inserted into the collection, and the pointer to that node is returned. */ /*! \fn CollectionNode* Tree::addQmlModule(const QString& name) Looks up the QML module node named \a name in the collection of all QML module nodes. If a match is found, a pointer to the node is returned. Otherwise, a new QML module node named \a name is created and inserted into the collection, and the pointer to that node is returned. */ /*! \fn CollectionNode* Tree::addJsModule(const QString& name) Looks up the JavaScript module node named \a name in the collection of all JavaScript module nodes. If a match is found, a pointer to the node is returned. Otherwise, a new JavaScrpt module node named \a name is created and inserted into the collection, and the pointer to that node is returned. */ /*! Looks up the group node named \a name in the collection of all group nodes. If a match is not found, a new group node named \a name is created and inserted into the collection. Then append \a node to the group's members list, and append the group name to the list of group names in \a node. The parent of \a node is not changed by this function. Returns a pointer to the group node. */ CollectionNode* Tree::addToGroup(const QString& name, Node* node) { CollectionNode* cn = findGroup(name); if (!node->isInternal()) { cn->addMember(node); node->appendGroupName(name); } return cn; } /*! Looks up the module node named \a name in the collection of all module nodes. If a match is not found, a new module node named \a name is created and inserted into the collection. Then append \a node to the module's members list. The parent of \a node is not changed by this function. Returns the module node. */ CollectionNode* Tree::addToModule(const QString& name, Node* node) { CollectionNode* cn = findModule(name); cn->addMember(node); node->setPhysicalModuleName(name); return cn; } /*! Looks up the QML module named \a name. If it isn't there, create it. Then append \a node to the QML module's member list. The parent of \a node is not changed by this function. Returns the pointer to the QML module node. */ CollectionNode* Tree::addToQmlModule(const QString& name, Node* node) { QStringList qmid; QStringList dotSplit; QStringList blankSplit = name.split(QLatin1Char(' ')); qmid.append(blankSplit[0]); if (blankSplit.size() > 1) { qmid.append(blankSplit[0] + blankSplit[1]); dotSplit = blankSplit[1].split(QLatin1Char('.')); qmid.append(blankSplit[0] + dotSplit[0]); } CollectionNode* cn = findQmlModule(blankSplit[0]); cn->addMember(node); node->setQmlModule(cn); if (node->isQmlType()) { QmlTypeNode* n = static_cast(node); for (int i=0; iname(); insertQmlType(key, n); } } return cn; } /*! Looks up the QML module named \a name. If it isn't there, create it. Then append \a node to the QML module's member list. The parent of \a node is not changed by this function. Returns the pointer to the QML module node. */ CollectionNode* Tree::addToJsModule(const QString& name, Node* node) { QStringList qmid; QStringList dotSplit; QStringList blankSplit = name.split(QLatin1Char(' ')); qmid.append(blankSplit[0]); if (blankSplit.size() > 1) { qmid.append(blankSplit[0] + blankSplit[1]); dotSplit = blankSplit[1].split(QLatin1Char('.')); qmid.append(blankSplit[0] + dotSplit[0]); } CollectionNode* cn = findJsModule(blankSplit[0]); cn->addMember(node); node->setQmlModule(cn); if (node->isJsType()) { QmlTypeNode* n = static_cast(node); for (int i=0; iname(); insertQmlType(key, n); } } return cn; } /*! If the QML type map does not contain \a key, insert node \a n with the specified \a key. */ void Tree::insertQmlType(const QString& key, QmlTypeNode* n) { if (!qmlTypeMap_.contains(key)) qmlTypeMap_.insert(key,n); } /*! Split \a target on "::" and find the function node with that path. */ const Node* Tree::findFunctionNode(const QString& target, const QString& params, const Node* relative, Node::Genus genus) const { QString t = target; if (t.endsWith("()")) { t.chop(2); } QStringList path = t.split("::"); const FunctionNode* fn = findFunctionNode(path, params, relative, SearchBaseClasses, genus); if (fn && !fn->isMacroWithoutParams()) return fn; return 0; } /*! Search for a node that is identified by \a name. Return a pointer to a matching node, or 0. */ const Node* Tree::checkForCollision(const QString& name) { return findNode(QStringList(name), 0, 0, Node::DontCare); } /*! Generate a target of the form link-nnn, where the nnn is the current link count for this tree. This target string is returned. It will be output as an HTML anchor just before an HTML link to the node \a t. The node \a t */ QString Tree::getNewLinkTarget(const Node* locNode, const Node* t, const QString& fileName, QString& text, bool broken) { QString physicalModuleName; if (t && !broken) { Tree* tree = t->tree(); if (tree != this) tree->incrementLinkCount(); physicalModuleName = tree->physicalModuleName(); } else physicalModuleName = "broken"; incrementLinkCount(); QString target = QString("qa-target-%1").arg(-(linkCount())); TargetLoc* tloc = new TargetLoc(locNode, target, fileName, text, broken); TargetList* tList = 0; TargetListMap::iterator i = targetListMap_->find(physicalModuleName); if (i == targetListMap_->end()) { tList = new TargetList; i = targetListMap_->insert(physicalModuleName, tList); } else tList = i.value(); tList->append(tloc); return target; } /*! Look up the target list for the specified \a module and return a pointer to it. */ TargetList* Tree::getTargetList(const QString& module) { return targetListMap_->value(module); } QT_END_NAMESPACE