// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/memory/discardable_memory_allocator_android.h" #include #include #include "base/memory/discardable_memory.h" #include "base/memory/scoped_ptr.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_split.h" #include "base/strings/stringprintf.h" #include "build/build_config.h" #include "testing/gtest/include/gtest/gtest.h" namespace base { namespace internal { const char kAllocatorName[] = "allocator-for-testing"; const size_t kPageSize = 4096; const size_t kMinAshmemRegionSize = DiscardableMemoryAllocator::kMinAshmemRegionSize; class DiscardableMemoryAllocatorTest : public testing::Test { protected: DiscardableMemoryAllocatorTest() : allocator_(kAllocatorName) {} DiscardableMemoryAllocator allocator_; }; void WriteToDiscardableMemory(DiscardableMemory* memory, size_t size) { // Write to the first and the last pages only to avoid paging in up to 64 // MBytes. static_cast(memory->Memory())[0] = 'a'; static_cast(memory->Memory())[size - 1] = 'a'; } TEST_F(DiscardableMemoryAllocatorTest, Basic) { const size_t size = 128; scoped_ptr memory(allocator_.Allocate(size)); ASSERT_TRUE(memory); WriteToDiscardableMemory(memory.get(), size); } TEST_F(DiscardableMemoryAllocatorTest, LargeAllocation) { // Note that large allocations should just use DiscardableMemoryAndroidSimple // instead. const size_t size = 64 * 1024 * 1024; scoped_ptr memory(allocator_.Allocate(size)); ASSERT_TRUE(memory); WriteToDiscardableMemory(memory.get(), size); } TEST_F(DiscardableMemoryAllocatorTest, ChunksArePageAligned) { scoped_ptr memory(allocator_.Allocate(kPageSize)); ASSERT_TRUE(memory); EXPECT_EQ(0U, reinterpret_cast(memory->Memory()) % kPageSize); WriteToDiscardableMemory(memory.get(), kPageSize); } TEST_F(DiscardableMemoryAllocatorTest, AllocateFreeAllocate) { scoped_ptr memory(allocator_.Allocate(kPageSize)); // Extra allocation that prevents the region from being deleted when |memory| // gets deleted. scoped_ptr memory_lock(allocator_.Allocate(kPageSize)); ASSERT_TRUE(memory); void* const address = memory->Memory(); memory->Unlock(); // Tests that the reused chunk is being locked correctly. memory.reset(); memory = allocator_.Allocate(kPageSize); ASSERT_TRUE(memory); // The previously freed chunk should be reused. EXPECT_EQ(address, memory->Memory()); WriteToDiscardableMemory(memory.get(), kPageSize); } TEST_F(DiscardableMemoryAllocatorTest, FreeingWholeAshmemRegionClosesAshmem) { scoped_ptr memory(allocator_.Allocate(kPageSize)); ASSERT_TRUE(memory); const int kMagic = 0xdeadbeef; *static_cast(memory->Memory()) = kMagic; memory.reset(); // The previous ashmem region should have been closed thus it should not be // reused. memory = allocator_.Allocate(kPageSize); ASSERT_TRUE(memory); EXPECT_NE(kMagic, *static_cast(memory->Memory())); } TEST_F(DiscardableMemoryAllocatorTest, AllocateUsesBestFitAlgorithm) { scoped_ptr memory1(allocator_.Allocate(3 * kPageSize)); ASSERT_TRUE(memory1); scoped_ptr memory2(allocator_.Allocate(2 * kPageSize)); ASSERT_TRUE(memory2); scoped_ptr memory3(allocator_.Allocate(1 * kPageSize)); ASSERT_TRUE(memory3); void* const address_3 = memory3->Memory(); memory1.reset(); // Don't free |memory2| to avoid merging the 3 blocks together. memory3.reset(); memory1 = allocator_.Allocate(1 * kPageSize); ASSERT_TRUE(memory1); // The chunk whose size is closest to the requested size should be reused. EXPECT_EQ(address_3, memory1->Memory()); WriteToDiscardableMemory(memory1.get(), kPageSize); } TEST_F(DiscardableMemoryAllocatorTest, MergeFreeChunks) { scoped_ptr memory1(allocator_.Allocate(kPageSize)); ASSERT_TRUE(memory1); scoped_ptr memory2(allocator_.Allocate(kPageSize)); ASSERT_TRUE(memory2); scoped_ptr memory3(allocator_.Allocate(kPageSize)); ASSERT_TRUE(memory3); scoped_ptr memory4(allocator_.Allocate(kPageSize)); ASSERT_TRUE(memory4); void* const memory1_address = memory1->Memory(); memory1.reset(); memory3.reset(); // Freeing |memory2| (located between memory1 and memory3) should merge the // three free blocks together. memory2.reset(); memory1 = allocator_.Allocate(3 * kPageSize); EXPECT_EQ(memory1_address, memory1->Memory()); } TEST_F(DiscardableMemoryAllocatorTest, MergeFreeChunksAdvanced) { scoped_ptr memory1(allocator_.Allocate(4 * kPageSize)); ASSERT_TRUE(memory1); scoped_ptr memory2(allocator_.Allocate(4 * kPageSize)); ASSERT_TRUE(memory2); void* const memory1_address = memory1->Memory(); memory1.reset(); memory1 = allocator_.Allocate(2 * kPageSize); memory2.reset(); // At this point, the region should be in this state: // 8 KBytes (used), 24 KBytes (free). memory2 = allocator_.Allocate(6 * kPageSize); EXPECT_EQ( static_cast(memory2->Memory()), static_cast(memory1_address) + 2 * kPageSize); } TEST_F(DiscardableMemoryAllocatorTest, MergeFreeChunksAdvanced2) { scoped_ptr memory1(allocator_.Allocate(4 * kPageSize)); ASSERT_TRUE(memory1); scoped_ptr memory2(allocator_.Allocate(4 * kPageSize)); ASSERT_TRUE(memory2); void* const memory1_address = memory1->Memory(); memory1.reset(); memory1 = allocator_.Allocate(2 * kPageSize); scoped_ptr memory3(allocator_.Allocate(2 * kPageSize)); // At this point, the region should be in this state: // 8 KBytes (used), 8 KBytes (used), 16 KBytes (used). memory3.reset(); memory2.reset(); // At this point, the region should be in this state: // 8 KBytes (used), 24 KBytes (free). memory2 = allocator_.Allocate(6 * kPageSize); EXPECT_EQ( static_cast(memory2->Memory()), static_cast(memory1_address) + 2 * kPageSize); } TEST_F(DiscardableMemoryAllocatorTest, MergeFreeChunksAndDeleteAshmemRegion) { scoped_ptr memory1(allocator_.Allocate(4 * kPageSize)); ASSERT_TRUE(memory1); scoped_ptr memory2(allocator_.Allocate(4 * kPageSize)); ASSERT_TRUE(memory2); memory1.reset(); memory1 = allocator_.Allocate(2 * kPageSize); scoped_ptr memory3(allocator_.Allocate(2 * kPageSize)); // At this point, the region should be in this state: // 8 KBytes (used), 8 KBytes (used), 16 KBytes (used). memory1.reset(); memory3.reset(); // At this point, the region should be in this state: // 8 KBytes (free), 8 KBytes (used), 8 KBytes (free). const int kMagic = 0xdeadbeef; *static_cast(memory2->Memory()) = kMagic; memory2.reset(); // The whole region should have been deleted. memory2 = allocator_.Allocate(2 * kPageSize); EXPECT_NE(kMagic, *static_cast(memory2->Memory())); } TEST_F(DiscardableMemoryAllocatorTest, TooLargeFreeChunksDontCauseTooMuchFragmentationWhenRecycled) { // Keep |memory_1| below allocated so that the ashmem region doesn't get // closed when |memory_2| is deleted. scoped_ptr memory_1(allocator_.Allocate(64 * 1024)); ASSERT_TRUE(memory_1); scoped_ptr memory_2(allocator_.Allocate(32 * 1024)); ASSERT_TRUE(memory_2); void* const address = memory_2->Memory(); memory_2.reset(); const size_t size = 16 * 1024; memory_2 = allocator_.Allocate(size); ASSERT_TRUE(memory_2); EXPECT_EQ(address, memory_2->Memory()); WriteToDiscardableMemory(memory_2.get(), size); scoped_ptr memory_3(allocator_.Allocate(size)); // The unused tail (16 KBytes large) of the previously freed chunk should be // reused. EXPECT_EQ(static_cast(address) + size, memory_3->Memory()); WriteToDiscardableMemory(memory_3.get(), size); } TEST_F(DiscardableMemoryAllocatorTest, UseMultipleAshmemRegions) { // Leave one page untouched at the end of the ashmem region. const size_t size = kMinAshmemRegionSize - kPageSize; scoped_ptr memory1(allocator_.Allocate(size)); ASSERT_TRUE(memory1); WriteToDiscardableMemory(memory1.get(), size); scoped_ptr memory2( allocator_.Allocate(kMinAshmemRegionSize)); ASSERT_TRUE(memory2); WriteToDiscardableMemory(memory2.get(), kMinAshmemRegionSize); // The last page of the first ashmem region should be used for this // allocation. scoped_ptr memory3(allocator_.Allocate(kPageSize)); ASSERT_TRUE(memory3); WriteToDiscardableMemory(memory3.get(), kPageSize); EXPECT_EQ(memory3->Memory(), static_cast(memory1->Memory()) + size); } } // namespace internal } // namespace base