// Copyright 2016 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_NUMERICS_SATURATED_ARITHMETIC_ARM_H_ #define BASE_NUMERICS_SATURATED_ARITHMETIC_ARM_H_ #include namespace base { inline int32_t SaturatedAddition(int32_t a, int32_t b) { int32_t result; asm("qadd %[output],%[first],%[second]" : [output] "=r"(result) : [first] "r"(a), [second] "r"(b)); return result; } inline int32_t SaturatedSubtraction(int32_t a, int32_t b) { int32_t result; asm("qsub %[output],%[first],%[second]" : [output] "=r"(result) : [first] "r"(a), [second] "r"(b)); return result; } inline int32_t SaturatedNegative(int32_t a) { return SaturatedSubtraction(0, a); } inline int GetMaxSaturatedSetResultForTesting(int fractional_shift) { // For ARM Asm version the set function maxes out to the biggest // possible integer part with the fractional part zero'd out. // e.g. 0x7fffffc0. return std::numeric_limits::max() & ~((1 << fractional_shift) - 1); } inline int GetMinSaturatedSetResultForTesting(int fractional_shift) { return std::numeric_limits::min(); } template inline int SaturatedSet(int value) { // Figure out how many bits are left for storing the integer part of // the fixed point number, and saturate our input to that enum { Saturate = 32 - fractional_shift }; int result; // The following ARM code will Saturate the passed value to the number of // bits used for the whole part of the fixed point representation, then // shift it up into place. This will result in the low bits // all being 0's. When the value saturates this gives a different result // to from the C++ case; in the C++ code a saturated value has all the low // bits set to 1 (for a +ve number at least). This cannot be done rapidly // in ARM ... we live with the difference, for the sake of speed. asm("ssat %[output],%[saturate],%[value]\n\t" "lsl %[output],%[shift]" : [output] "=r"(result) : [value] "r"(value), [saturate] "n"(Saturate), [shift] "n"(fractional_shift)); return result; } template inline int SaturatedSet(unsigned value) { // Here we are being passed an unsigned value to saturate, // even though the result is returned as a signed integer. The ARM // instruction for unsigned saturation therefore needs to be given one // less bit (i.e. the sign bit) for the saturation to work correctly; hence // the '31' below. enum { Saturate = 31 - fractional_shift }; // The following ARM code will Saturate the passed value to the number of // bits used for the whole part of the fixed point representation, then // shift it up into place. This will result in the low bits // all being 0's. When the value saturates this gives a different result // to from the C++ case; in the C++ code a saturated value has all the low // bits set to 1. This cannot be done rapidly in ARM, so we live with the // difference, for the sake of speed. int result; asm("usat %[output],%[saturate],%[value]\n\t" "lsl %[output],%[shift]" : [output] "=r"(result) : [value] "r"(value), [saturate] "n"(Saturate), [shift] "n"(fractional_shift)); return result; } } // namespace base #endif // BASE_NUMERICS_SATURATED_ARITHMETIC_ARM_H_