// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #define _CRT_SECURE_NO_WARNINGS #include #include #include #include "base/base_paths_fuchsia.h" #include "base/command_line.h" #include "base/debug/alias.h" #include "base/debug/stack_trace.h" #include "base/files/file_enumerator.h" #include "base/files/file_path.h" #include "base/files/file_util.h" #include "base/files/scoped_file.h" #include "base/logging.h" #include "base/macros.h" #include "base/path_service.h" #include "base/posix/eintr_wrapper.h" #include "base/process/kill.h" #include "base/process/launch.h" #include "base/process/memory.h" #include "base/process/process.h" #include "base/process/process_metrics.h" #include "base/strings/string_number_conversions.h" #include "base/strings/utf_string_conversions.h" #include "base/synchronization/waitable_event.h" #include "base/test/multiprocess_test.h" #include "base/test/scoped_task_environment.h" #include "base/test/test_timeouts.h" #include "base/threading/platform_thread.h" #include "base/threading/thread.h" #include "build/build_config.h" #include "testing/gtest/include/gtest/gtest.h" #include "testing/multiprocess_func_list.h" #if defined(OS_LINUX) #include #include #include #endif #if defined(OS_POSIX) #include #include #include #include #include #if !defined(OS_FUCHSIA) #include #endif #include #include #include #include #endif #if defined(OS_WIN) #include #endif #if defined(OS_MACOSX) #include #include #endif #if defined(OS_ANDROID) #include "third_party/lss/linux_syscall_support.h" #endif #if defined(OS_FUCHSIA) #include #include #include #include #endif namespace base { namespace { const char kSignalFileSlow[] = "SlowChildProcess.die"; const char kSignalFileKill[] = "KilledChildProcess.die"; #if defined(OS_POSIX) const char kSignalFileTerm[] = "TerminatedChildProcess.die"; #if defined(OS_ANDROID) const char kShellPath[] = "/system/bin/sh"; #elif defined(OS_FUCHSIA) const char kShellPath[] = "/boot/bin/sh"; const char kSignalFileClone[] = "/tmp/ClonedTmpDir.die"; #else const char kShellPath[] = "/bin/sh"; #endif #endif // defined(OS_POSIX) #if defined(OS_WIN) const int kExpectedStillRunningExitCode = 0x102; const int kExpectedKilledExitCode = 1; #else const int kExpectedStillRunningExitCode = 0; #endif // Sleeps until file filename is created. void WaitToDie(const char* filename) { FILE* fp; do { PlatformThread::Sleep(TimeDelta::FromMilliseconds(10)); fp = fopen(filename, "r"); } while (!fp); fclose(fp); } // Signals children they should die now. void SignalChildren(const char* filename) { FILE* fp = fopen(filename, "w"); fclose(fp); } // Using a pipe to the child to wait for an event was considered, but // there were cases in the past where pipes caused problems (other // libraries closing the fds, child deadlocking). This is a simple // case, so it's not worth the risk. Using wait loops is discouraged // in most instances. TerminationStatus WaitForChildTermination(ProcessHandle handle, int* exit_code) { // Now we wait until the result is something other than STILL_RUNNING. TerminationStatus status = TERMINATION_STATUS_STILL_RUNNING; const TimeDelta kInterval = TimeDelta::FromMilliseconds(20); TimeDelta waited; do { status = GetTerminationStatus(handle, exit_code); PlatformThread::Sleep(kInterval); waited += kInterval; } while (status == TERMINATION_STATUS_STILL_RUNNING && waited < TestTimeouts::action_max_timeout()); return status; } } // namespace const int kSuccess = 0; class ProcessUtilTest : public MultiProcessTest { public: #if defined(OS_POSIX) // Spawn a child process that counts how many file descriptors are open. int CountOpenFDsInChild(); #endif // Converts the filename to a platform specific filepath. // On Android files can not be created in arbitrary directories. static std::string GetSignalFilePath(const char* filename); }; std::string ProcessUtilTest::GetSignalFilePath(const char* filename) { #if !defined(OS_ANDROID) return filename; #else FilePath tmp_dir; PathService::Get(DIR_CACHE, &tmp_dir); tmp_dir = tmp_dir.Append(filename); return tmp_dir.value(); #endif } MULTIPROCESS_TEST_MAIN(SimpleChildProcess) { return kSuccess; } // TODO(viettrungluu): This should be in a "MultiProcessTestTest". TEST_F(ProcessUtilTest, SpawnChild) { Process process = SpawnChild("SimpleChildProcess"); ASSERT_TRUE(process.IsValid()); int exit_code; EXPECT_TRUE(process.WaitForExitWithTimeout(TestTimeouts::action_max_timeout(), &exit_code)); } MULTIPROCESS_TEST_MAIN(SlowChildProcess) { WaitToDie(ProcessUtilTest::GetSignalFilePath(kSignalFileSlow).c_str()); return kSuccess; } TEST_F(ProcessUtilTest, KillSlowChild) { const std::string signal_file = ProcessUtilTest::GetSignalFilePath(kSignalFileSlow); remove(signal_file.c_str()); Process process = SpawnChild("SlowChildProcess"); ASSERT_TRUE(process.IsValid()); SignalChildren(signal_file.c_str()); int exit_code; EXPECT_TRUE(process.WaitForExitWithTimeout(TestTimeouts::action_max_timeout(), &exit_code)); remove(signal_file.c_str()); } // Times out on Linux and Win, flakes on other platforms, http://crbug.com/95058 TEST_F(ProcessUtilTest, DISABLED_GetTerminationStatusExit) { const std::string signal_file = ProcessUtilTest::GetSignalFilePath(kSignalFileSlow); remove(signal_file.c_str()); Process process = SpawnChild("SlowChildProcess"); ASSERT_TRUE(process.IsValid()); int exit_code = 42; EXPECT_EQ(TERMINATION_STATUS_STILL_RUNNING, GetTerminationStatus(process.Handle(), &exit_code)); EXPECT_EQ(kExpectedStillRunningExitCode, exit_code); SignalChildren(signal_file.c_str()); exit_code = 42; TerminationStatus status = WaitForChildTermination(process.Handle(), &exit_code); EXPECT_EQ(TERMINATION_STATUS_NORMAL_TERMINATION, status); EXPECT_EQ(kSuccess, exit_code); remove(signal_file.c_str()); } #if defined(OS_FUCHSIA) MULTIPROCESS_TEST_MAIN(CheckTmpFileExists) { // Look through the filesystem to ensure that no other directories // besides "tmp" are in the namespace. base::FileEnumerator enumerator( base::FilePath("/"), false, base::FileEnumerator::FILES | base::FileEnumerator::DIRECTORIES); base::FilePath next_path; while (!(next_path = enumerator.Next()).empty()) { if (next_path != base::FilePath("/tmp")) { LOG(ERROR) << "Clone policy violation: found non-tmp directory " << next_path.MaybeAsASCII(); return 1; } } WaitToDie(ProcessUtilTest::GetSignalFilePath(kSignalFileClone).c_str()); return kSuccess; } TEST_F(ProcessUtilTest, SelectivelyClonedDir) { // Selective cloning only works if the test executable is deployed as a // package. if (GetPackageRoot().empty()) return; const std::string signal_file = ProcessUtilTest::GetSignalFilePath(kSignalFileClone); remove(signal_file.c_str()); LaunchOptions options; options.paths_to_map.push_back("/tmp"); options.clone_flags = LP_CLONE_FDIO_STDIO; Process process(SpawnChildWithOptions("CheckTmpFileExists", options)); ASSERT_TRUE(process.IsValid()); SignalChildren(signal_file.c_str()); int exit_code = 42; EXPECT_TRUE(process.WaitForExit(&exit_code)); EXPECT_EQ(kSuccess, exit_code); } // Test that we can clone other directories. CheckTmpFileExists will return an // error code if it detects a directory other than "/tmp", so we can use that as // a signal that it successfully detected another entry in the root namespace. TEST_F(ProcessUtilTest, CloneAlternateDir) { // Selective cloning only works if the test executable is deployed as a // package. if (GetPackageRoot().empty()) return; const std::string signal_file = ProcessUtilTest::GetSignalFilePath(kSignalFileClone); remove(signal_file.c_str()); LaunchOptions options; options.paths_to_map.push_back("/tmp"); options.paths_to_map.push_back("/data"); options.clone_flags = LP_CLONE_FDIO_STDIO; Process process(SpawnChildWithOptions("CheckTmpFileExists", options)); ASSERT_TRUE(process.IsValid()); SignalChildren(signal_file.c_str()); int exit_code = 42; EXPECT_TRUE(process.WaitForExit(&exit_code)); EXPECT_EQ(1, exit_code); } #endif // On Android SpawnProcess() doesn't use LaunchProcess() and doesn't support // LaunchOptions::current_directory. #if !defined(OS_ANDROID) MULTIPROCESS_TEST_MAIN(CheckCwdProcess) { FilePath expected; CHECK(GetTempDir(&expected)); expected = MakeAbsoluteFilePath(expected); CHECK(!expected.empty()); FilePath actual; CHECK(GetCurrentDirectory(&actual)); actual = MakeAbsoluteFilePath(actual); CHECK(!actual.empty()); CHECK(expected == actual) << "Expected: " << expected.value() << " Actual: " << actual.value(); return kSuccess; } TEST_F(ProcessUtilTest, CurrentDirectory) { // TODO(rickyz): Add support for passing arguments to multiprocess children, // then create a special directory for this test. FilePath tmp_dir; ASSERT_TRUE(GetTempDir(&tmp_dir)); LaunchOptions options; options.current_directory = tmp_dir; Process process(SpawnChildWithOptions("CheckCwdProcess", options)); ASSERT_TRUE(process.IsValid()); int exit_code = 42; EXPECT_TRUE(process.WaitForExit(&exit_code)); EXPECT_EQ(kSuccess, exit_code); } #endif // !defined(OS_ANDROID) #if defined(OS_WIN) // TODO(cpu): figure out how to test this in other platforms. TEST_F(ProcessUtilTest, GetProcId) { ProcessId id1 = GetProcId(GetCurrentProcess()); EXPECT_NE(0ul, id1); Process process = SpawnChild("SimpleChildProcess"); ASSERT_TRUE(process.IsValid()); ProcessId id2 = process.Pid(); EXPECT_NE(0ul, id2); EXPECT_NE(id1, id2); } #endif // defined(OS_WIN) #if !defined(OS_MACOSX) && !defined(OS_ANDROID) // This test is disabled on Mac, since it's flaky due to ReportCrash // taking a variable amount of time to parse and load the debug and // symbol data for this unit test's executable before firing the // signal handler. // // TODO(gspencer): turn this test process into a very small program // with no symbols (instead of using the multiprocess testing // framework) to reduce the ReportCrash overhead. // // It is disabled on Android as MultiprocessTests are started as services that // the framework restarts on crashes. const char kSignalFileCrash[] = "CrashingChildProcess.die"; MULTIPROCESS_TEST_MAIN(CrashingChildProcess) { WaitToDie(ProcessUtilTest::GetSignalFilePath(kSignalFileCrash).c_str()); #if defined(OS_POSIX) // Have to disable to signal handler for segv so we can get a crash // instead of an abnormal termination through the crash dump handler. ::signal(SIGSEGV, SIG_DFL); #endif // Make this process have a segmentation fault. volatile int* oops = nullptr; *oops = 0xDEAD; return 1; } // This test intentionally crashes, so we don't need to run it under // AddressSanitizer. #if defined(ADDRESS_SANITIZER) #define MAYBE_GetTerminationStatusCrash DISABLED_GetTerminationStatusCrash #else #define MAYBE_GetTerminationStatusCrash GetTerminationStatusCrash #endif TEST_F(ProcessUtilTest, MAYBE_GetTerminationStatusCrash) { const std::string signal_file = ProcessUtilTest::GetSignalFilePath(kSignalFileCrash); remove(signal_file.c_str()); Process process = SpawnChild("CrashingChildProcess"); ASSERT_TRUE(process.IsValid()); int exit_code = 42; EXPECT_EQ(TERMINATION_STATUS_STILL_RUNNING, GetTerminationStatus(process.Handle(), &exit_code)); EXPECT_EQ(kExpectedStillRunningExitCode, exit_code); SignalChildren(signal_file.c_str()); exit_code = 42; TerminationStatus status = WaitForChildTermination(process.Handle(), &exit_code); EXPECT_EQ(TERMINATION_STATUS_PROCESS_CRASHED, status); #if defined(OS_WIN) EXPECT_EQ(static_cast(0xc0000005), exit_code); #elif defined(OS_POSIX) int signaled = WIFSIGNALED(exit_code); EXPECT_NE(0, signaled); int signal = WTERMSIG(exit_code); EXPECT_EQ(SIGSEGV, signal); #endif // Reset signal handlers back to "normal". debug::EnableInProcessStackDumping(); remove(signal_file.c_str()); } #endif // !defined(OS_MACOSX) && !defined(OS_ANDROID) MULTIPROCESS_TEST_MAIN(KilledChildProcess) { WaitToDie(ProcessUtilTest::GetSignalFilePath(kSignalFileKill).c_str()); #if defined(OS_WIN) // Kill ourselves. HANDLE handle = ::OpenProcess(PROCESS_ALL_ACCESS, 0, ::GetCurrentProcessId()); ::TerminateProcess(handle, kExpectedKilledExitCode); #elif defined(OS_POSIX) // Send a SIGKILL to this process, just like the OOM killer would. ::kill(getpid(), SIGKILL); #endif return 1; } #if defined(OS_POSIX) MULTIPROCESS_TEST_MAIN(TerminatedChildProcess) { WaitToDie(ProcessUtilTest::GetSignalFilePath(kSignalFileTerm).c_str()); // Send a SIGTERM to this process. ::kill(getpid(), SIGTERM); return 1; } #endif // defined(OS_POSIX) TEST_F(ProcessUtilTest, GetTerminationStatusSigKill) { const std::string signal_file = ProcessUtilTest::GetSignalFilePath(kSignalFileKill); remove(signal_file.c_str()); Process process = SpawnChild("KilledChildProcess"); ASSERT_TRUE(process.IsValid()); int exit_code = 42; EXPECT_EQ(TERMINATION_STATUS_STILL_RUNNING, GetTerminationStatus(process.Handle(), &exit_code)); EXPECT_EQ(kExpectedStillRunningExitCode, exit_code); SignalChildren(signal_file.c_str()); exit_code = 42; TerminationStatus status = WaitForChildTermination(process.Handle(), &exit_code); #if defined(OS_CHROMEOS) EXPECT_EQ(TERMINATION_STATUS_PROCESS_WAS_KILLED_BY_OOM, status); #else EXPECT_EQ(TERMINATION_STATUS_PROCESS_WAS_KILLED, status); #endif #if defined(OS_WIN) EXPECT_EQ(kExpectedKilledExitCode, exit_code); #elif defined(OS_POSIX) int signaled = WIFSIGNALED(exit_code); EXPECT_NE(0, signaled); int signal = WTERMSIG(exit_code); EXPECT_EQ(SIGKILL, signal); #endif remove(signal_file.c_str()); } #if defined(OS_POSIX) TEST_F(ProcessUtilTest, GetTerminationStatusSigTerm) { const std::string signal_file = ProcessUtilTest::GetSignalFilePath(kSignalFileTerm); remove(signal_file.c_str()); Process process = SpawnChild("TerminatedChildProcess"); ASSERT_TRUE(process.IsValid()); int exit_code = 42; EXPECT_EQ(TERMINATION_STATUS_STILL_RUNNING, GetTerminationStatus(process.Handle(), &exit_code)); EXPECT_EQ(kExpectedStillRunningExitCode, exit_code); SignalChildren(signal_file.c_str()); exit_code = 42; TerminationStatus status = WaitForChildTermination(process.Handle(), &exit_code); EXPECT_EQ(TERMINATION_STATUS_PROCESS_WAS_KILLED, status); int signaled = WIFSIGNALED(exit_code); EXPECT_NE(0, signaled); int signal = WTERMSIG(exit_code); EXPECT_EQ(SIGTERM, signal); remove(signal_file.c_str()); } #endif // defined(OS_POSIX) TEST_F(ProcessUtilTest, EnsureTerminationUndying) { test::ScopedTaskEnvironment task_environment; Process child_process = SpawnChild("process_util_test_never_die"); ASSERT_TRUE(child_process.IsValid()); EnsureProcessTerminated(child_process.Duplicate()); // Allow a generous timeout, to cope with slow/loaded test bots. EXPECT_TRUE(child_process.WaitForExitWithTimeout( TestTimeouts::action_max_timeout(), nullptr)); } MULTIPROCESS_TEST_MAIN(process_util_test_never_die) { while (1) { PlatformThread::Sleep(TimeDelta::FromSeconds(500)); } return kSuccess; } TEST_F(ProcessUtilTest, EnsureTerminationGracefulExit) { test::ScopedTaskEnvironment task_environment; Process child_process = SpawnChild("process_util_test_die_immediately"); ASSERT_TRUE(child_process.IsValid()); // Wait for the child process to actually exit. child_process.Duplicate().WaitForExitWithTimeout( TestTimeouts::action_max_timeout(), nullptr); EnsureProcessTerminated(child_process.Duplicate()); // Verify that the process is really, truly gone. EXPECT_TRUE(child_process.WaitForExitWithTimeout( TestTimeouts::action_max_timeout(), nullptr)); } MULTIPROCESS_TEST_MAIN(process_util_test_die_immediately) { return kSuccess; } #if defined(OS_WIN) // TODO(estade): if possible, port this test. TEST_F(ProcessUtilTest, GetAppOutput) { // Let's create a decently long message. std::string message; for (int i = 0; i < 1025; i++) { // 1025 so it does not end on a kilo-byte // boundary. message += "Hello!"; } // cmd.exe's echo always adds a \r\n to its output. std::string expected(message); expected += "\r\n"; FilePath cmd(L"cmd.exe"); CommandLine cmd_line(cmd); cmd_line.AppendArg("/c"); cmd_line.AppendArg("echo " + message + ""); std::string output; ASSERT_TRUE(GetAppOutput(cmd_line, &output)); EXPECT_EQ(expected, output); // Let's make sure stderr is ignored. CommandLine other_cmd_line(cmd); other_cmd_line.AppendArg("/c"); // http://msdn.microsoft.com/library/cc772622.aspx cmd_line.AppendArg("echo " + message + " >&2"); output.clear(); ASSERT_TRUE(GetAppOutput(other_cmd_line, &output)); EXPECT_EQ("", output); } // TODO(estade): if possible, port this test. TEST_F(ProcessUtilTest, LaunchAsUser) { UserTokenHandle token; ASSERT_TRUE(OpenProcessToken(GetCurrentProcess(), TOKEN_ALL_ACCESS, &token)); LaunchOptions options; options.as_user = token; EXPECT_TRUE( LaunchProcess(MakeCmdLine("SimpleChildProcess"), options).IsValid()); } static const char kEventToTriggerHandleSwitch[] = "event-to-trigger-handle"; MULTIPROCESS_TEST_MAIN(TriggerEventChildProcess) { std::string handle_value_string = CommandLine::ForCurrentProcess()->GetSwitchValueASCII( kEventToTriggerHandleSwitch); CHECK(!handle_value_string.empty()); uint64_t handle_value_uint64; CHECK(StringToUint64(handle_value_string, &handle_value_uint64)); // Give ownership of the handle to |event|. WaitableEvent event( win::ScopedHandle(reinterpret_cast(handle_value_uint64))); event.Signal(); return 0; } TEST_F(ProcessUtilTest, InheritSpecifiedHandles) { // Manually create the event, so that it can be inheritable. SECURITY_ATTRIBUTES security_attributes = {}; security_attributes.nLength = static_cast(sizeof(security_attributes)); security_attributes.lpSecurityDescriptor = NULL; security_attributes.bInheritHandle = true; // Takes ownership of the event handle. WaitableEvent event( win::ScopedHandle(CreateEvent(&security_attributes, true, false, NULL))); LaunchOptions options; options.handles_to_inherit.emplace_back(event.handle()); CommandLine cmd_line = MakeCmdLine("TriggerEventChildProcess"); cmd_line.AppendSwitchASCII( kEventToTriggerHandleSwitch, NumberToString(reinterpret_cast(event.handle()))); // Launch the process and wait for it to trigger the event. ASSERT_TRUE(LaunchProcess(cmd_line, options).IsValid()); EXPECT_TRUE(event.TimedWait(TestTimeouts::action_max_timeout())); } #endif // defined(OS_WIN) #if defined(OS_POSIX) namespace { // Returns the maximum number of files that a process can have open. // Returns 0 on error. int GetMaxFilesOpenInProcess() { #if defined(OS_FUCHSIA) return FDIO_MAX_FD; #else struct rlimit rlim; if (getrlimit(RLIMIT_NOFILE, &rlim) != 0) { return 0; } // rlim_t is a uint64_t - clip to maxint. We do this since FD #s are ints // which are all 32 bits on the supported platforms. rlim_t max_int = static_cast(std::numeric_limits::max()); if (rlim.rlim_cur > max_int) { return max_int; } return rlim.rlim_cur; #endif // !defined(OS_FUCHSIA) } const int kChildPipe = 20; // FD # for write end of pipe in child process. #if defined(OS_MACOSX) // #if !defined(_GUARDID_T) #define _GUARDID_T typedef __uint64_t guardid_t; #endif // _GUARDID_T // From .../MacOSX10.9.sdk/usr/include/sys/syscall.h #if !defined(SYS_change_fdguard_np) #define SYS_change_fdguard_np 444 #endif // #if !defined(GUARD_DUP) #define GUARD_DUP (1u << 1) #endif // // // Atomically replaces |guard|/|guardflags| with |nguard|/|nguardflags| on |fd|. int change_fdguard_np(int fd, const guardid_t *guard, u_int guardflags, const guardid_t *nguard, u_int nguardflags, int *fdflagsp) { return syscall(SYS_change_fdguard_np, fd, guard, guardflags, nguard, nguardflags, fdflagsp); } // Attempt to set a file-descriptor guard on |fd|. In case of success, remove // it and return |true| to indicate that it can be guarded. Returning |false| // means either that |fd| is guarded by some other code, or more likely EBADF. // // Starting with 10.9, libdispatch began setting GUARD_DUP on a file descriptor. // Unfortunately, it is spun up as part of +[NSApplication initialize], which is // not really something that Chromium can avoid using on OSX. See // . This function allows querying whether the file // descriptor is guarded before attempting to close it. bool CanGuardFd(int fd) { // Saves the original flags to reset later. int original_fdflags = 0; // This can be any value at all, it just has to match up between the two // calls. const guardid_t kGuard = 15; // Attempt to change the guard. This can fail with EBADF if the file // descriptor is bad, or EINVAL if the fd already has a guard set. int ret = change_fdguard_np(fd, NULL, 0, &kGuard, GUARD_DUP, &original_fdflags); if (ret == -1) return false; // Remove the guard. It should not be possible to fail in removing the guard // just added. ret = change_fdguard_np(fd, &kGuard, GUARD_DUP, NULL, 0, &original_fdflags); DPCHECK(ret == 0); return true; } #endif // defined(OS_MACOSX) } // namespace MULTIPROCESS_TEST_MAIN(ProcessUtilsLeakFDChildProcess) { // This child process counts the number of open FDs, it then writes that // number out to a pipe connected to the parent. int num_open_files = 0; int write_pipe = kChildPipe; int max_files = GetMaxFilesOpenInProcess(); for (int i = STDERR_FILENO + 1; i < max_files; i++) { #if defined(OS_MACOSX) // Ignore guarded or invalid file descriptors. if (!CanGuardFd(i)) continue; #endif if (i != kChildPipe) { int fd; if ((fd = HANDLE_EINTR(dup(i))) != -1) { close(fd); num_open_files += 1; } } } int written = HANDLE_EINTR(write(write_pipe, &num_open_files, sizeof(num_open_files))); DCHECK_EQ(static_cast(written), sizeof(num_open_files)); int ret = IGNORE_EINTR(close(write_pipe)); DPCHECK(ret == 0); return 0; } int ProcessUtilTest::CountOpenFDsInChild() { int fds[2]; if (pipe(fds) < 0) NOTREACHED(); LaunchOptions options; options.fds_to_remap.emplace_back(fds[1], kChildPipe); Process process = SpawnChildWithOptions("ProcessUtilsLeakFDChildProcess", options); CHECK(process.IsValid()); int ret = IGNORE_EINTR(close(fds[1])); DPCHECK(ret == 0); // Read number of open files in client process from pipe; int num_open_files = -1; ssize_t bytes_read = HANDLE_EINTR(read(fds[0], &num_open_files, sizeof(num_open_files))); CHECK_EQ(bytes_read, static_cast(sizeof(num_open_files))); #if defined(THREAD_SANITIZER) // Compiler-based ThreadSanitizer makes this test slow. TimeDelta timeout = TimeDelta::FromSeconds(3); #else TimeDelta timeout = TimeDelta::FromSeconds(1); #endif int exit_code; CHECK(process.WaitForExitWithTimeout(timeout, &exit_code)); ret = IGNORE_EINTR(close(fds[0])); DPCHECK(ret == 0); return num_open_files; } #if defined(ADDRESS_SANITIZER) || defined(THREAD_SANITIZER) // ProcessUtilTest.FDRemapping is flaky when ran under xvfb-run on Precise. // The problem is 100% reproducible with both ASan and TSan. // See http://crbug.com/136720. #define MAYBE_FDRemapping DISABLED_FDRemapping #else #define MAYBE_FDRemapping FDRemapping #endif // defined(ADDRESS_SANITIZER) || defined(THREAD_SANITIZER) TEST_F(ProcessUtilTest, MAYBE_FDRemapping) { int fds_before = CountOpenFDsInChild(); // open some dummy fds to make sure they don't propagate over to the // child process. int dev_null = open("/dev/null", O_RDONLY); DPCHECK(dev_null != -1); int sockets[2]; int ret = socketpair(AF_UNIX, SOCK_STREAM, 0, sockets); DPCHECK(ret == 0); int fds_after = CountOpenFDsInChild(); ASSERT_EQ(fds_after, fds_before); ret = IGNORE_EINTR(close(sockets[0])); DPCHECK(ret == 0); ret = IGNORE_EINTR(close(sockets[1])); DPCHECK(ret == 0); ret = IGNORE_EINTR(close(dev_null)); DPCHECK(ret == 0); } const char kPipeValue = '\xcc'; MULTIPROCESS_TEST_MAIN(ProcessUtilsVerifyStdio) { // Write to stdio so the parent process can observe output. CHECK_EQ(1, HANDLE_EINTR(write(STDOUT_FILENO, &kPipeValue, 1))); // Close all of the handles, to verify they are valid. CHECK_EQ(0, IGNORE_EINTR(close(STDIN_FILENO))); CHECK_EQ(0, IGNORE_EINTR(close(STDOUT_FILENO))); CHECK_EQ(0, IGNORE_EINTR(close(STDERR_FILENO))); return 0; } TEST_F(ProcessUtilTest, FDRemappingIncludesStdio) { int dev_null = open("/dev/null", O_RDONLY); ASSERT_LT(2, dev_null); // Backup stdio and replace it with the write end of a pipe, for our // child process to inherit. int pipe_fds[2]; int result = pipe(pipe_fds); ASSERT_EQ(0, result); int backup_stdio = HANDLE_EINTR(dup(STDOUT_FILENO)); ASSERT_LE(0, backup_stdio); result = dup2(pipe_fds[1], STDOUT_FILENO); ASSERT_EQ(STDOUT_FILENO, result); // Launch the test process, which should inherit our pipe stdio. LaunchOptions options; options.fds_to_remap.emplace_back(dev_null, dev_null); Process process = SpawnChildWithOptions("ProcessUtilsVerifyStdio", options); ASSERT_TRUE(process.IsValid()); // Restore stdio, so we can output stuff. result = dup2(backup_stdio, STDOUT_FILENO); ASSERT_EQ(STDOUT_FILENO, result); // Close our copy of the write end of the pipe, so that the read() // from the other end will see EOF if it wasn't copied to the child. result = IGNORE_EINTR(close(pipe_fds[1])); ASSERT_EQ(0, result); result = IGNORE_EINTR(close(backup_stdio)); ASSERT_EQ(0, result); result = IGNORE_EINTR(close(dev_null)); ASSERT_EQ(0, result); // Read from the pipe to verify that it is connected to the child // process' stdio. char buf[16] = {}; EXPECT_EQ(1, HANDLE_EINTR(read(pipe_fds[0], buf, sizeof(buf)))); EXPECT_EQ(kPipeValue, buf[0]); result = IGNORE_EINTR(close(pipe_fds[0])); ASSERT_EQ(0, result); int exit_code; ASSERT_TRUE( process.WaitForExitWithTimeout(TimeDelta::FromSeconds(5), &exit_code)); EXPECT_EQ(0, exit_code); } // TODO(https://crbug.com/793412): Disable on Debug/component builds due to // process launch taking too long and triggering timeouts. #if defined(OS_FUCHSIA) && defined(NDEBUG) const uint16_t kStartupHandleId = 43; MULTIPROCESS_TEST_MAIN(ProcessUtilsVerifyHandle) { zx_handle_t handle = zx_get_startup_handle(PA_HND(PA_USER0, kStartupHandleId)); CHECK_NE(ZX_HANDLE_INVALID, handle); // Write to the pipe so the parent process can observe output. size_t bytes_written = 0; zx_status_t result = zx_socket_write(handle, 0, &kPipeValue, sizeof(kPipeValue), &bytes_written); CHECK_EQ(ZX_OK, result); CHECK_EQ(1u, bytes_written); CHECK_EQ(ZX_OK, zx_handle_close(handle)); return 0; } TEST_F(ProcessUtilTest, LaunchWithHandleTransfer) { // Create a pipe to pass to the child process. zx_handle_t handles[2]; zx_status_t result = zx_socket_create(ZX_SOCKET_STREAM, &handles[0], &handles[1]); ASSERT_EQ(ZX_OK, result); // Launch the test process, and pass it one end of the pipe. LaunchOptions options; options.handles_to_transfer.push_back( {PA_HND(PA_USER0, kStartupHandleId), handles[0]}); Process process = SpawnChildWithOptions("ProcessUtilsVerifyHandle", options); ASSERT_TRUE(process.IsValid()); // Read from the pipe to verify that the child received it. zx_signals_t signals = 0; result = zx_object_wait_one( handles[1], ZX_SOCKET_READABLE | ZX_SOCKET_PEER_CLOSED, (base::TimeTicks::Now() + TestTimeouts::action_timeout()).ToZxTime(), &signals); ASSERT_EQ(ZX_OK, result); ASSERT_TRUE(signals & ZX_SOCKET_READABLE); size_t bytes_read = 0; char buf[16] = {0}; result = zx_socket_read(handles[1], 0, buf, sizeof(buf), &bytes_read); EXPECT_EQ(ZX_OK, result); EXPECT_EQ(1u, bytes_read); EXPECT_EQ(kPipeValue, buf[0]); CHECK_EQ(ZX_OK, zx_handle_close(handles[1])); int exit_code; ASSERT_TRUE(process.WaitForExitWithTimeout(TestTimeouts::action_timeout(), &exit_code)); EXPECT_EQ(0, exit_code); } #endif // defined(OS_FUCHSIA) && defined(NDEBUG) namespace { std::string TestLaunchProcess(const std::vector& args, const EnvironmentMap& env_changes, const bool clear_environ, const int clone_flags) { int fds[2]; PCHECK(pipe(fds) == 0); LaunchOptions options; options.wait = true; options.environ = env_changes; options.clear_environ = clear_environ; options.fds_to_remap.emplace_back(fds[1], 1); #if defined(OS_LINUX) options.clone_flags = clone_flags; #else CHECK_EQ(0, clone_flags); #endif // defined(OS_LINUX) EXPECT_TRUE(LaunchProcess(args, options).IsValid()); PCHECK(IGNORE_EINTR(close(fds[1])) == 0); char buf[512]; const ssize_t n = HANDLE_EINTR(read(fds[0], buf, sizeof(buf))); PCHECK(IGNORE_EINTR(close(fds[0])) == 0); return std::string(buf, n); } const char kLargeString[] = "0123456789012345678901234567890123456789012345678901234567890123456789" "0123456789012345678901234567890123456789012345678901234567890123456789" "0123456789012345678901234567890123456789012345678901234567890123456789" "0123456789012345678901234567890123456789012345678901234567890123456789" "0123456789012345678901234567890123456789012345678901234567890123456789" "0123456789012345678901234567890123456789012345678901234567890123456789" "0123456789012345678901234567890123456789012345678901234567890123456789"; } // namespace TEST_F(ProcessUtilTest, LaunchProcess) { EnvironmentMap env_changes; std::vector echo_base_test; echo_base_test.emplace_back(kShellPath); echo_base_test.emplace_back("-c"); echo_base_test.emplace_back("echo $BASE_TEST"); std::vector print_env; print_env.emplace_back("/usr/bin/env"); const int no_clone_flags = 0; const bool no_clear_environ = false; const char kBaseTest[] = "BASE_TEST"; env_changes[kBaseTest] = "bar"; EXPECT_EQ("bar\n", TestLaunchProcess( echo_base_test, env_changes, no_clear_environ, no_clone_flags)); env_changes.clear(); EXPECT_EQ(0, setenv(kBaseTest, "testing", 1 /* override */)); EXPECT_EQ("testing\n", TestLaunchProcess( echo_base_test, env_changes, no_clear_environ, no_clone_flags)); env_changes[kBaseTest] = std::string(); EXPECT_EQ("\n", TestLaunchProcess( echo_base_test, env_changes, no_clear_environ, no_clone_flags)); env_changes[kBaseTest] = "foo"; EXPECT_EQ("foo\n", TestLaunchProcess( echo_base_test, env_changes, no_clear_environ, no_clone_flags)); env_changes.clear(); EXPECT_EQ(0, setenv(kBaseTest, kLargeString, 1 /* override */)); EXPECT_EQ(std::string(kLargeString) + "\n", TestLaunchProcess( echo_base_test, env_changes, no_clear_environ, no_clone_flags)); env_changes[kBaseTest] = "wibble"; EXPECT_EQ("wibble\n", TestLaunchProcess( echo_base_test, env_changes, no_clear_environ, no_clone_flags)); #if defined(OS_LINUX) // Test a non-trival value for clone_flags. EXPECT_EQ("wibble\n", TestLaunchProcess(echo_base_test, env_changes, no_clear_environ, CLONE_FS)); EXPECT_EQ( "BASE_TEST=wibble\n", TestLaunchProcess( print_env, env_changes, true /* clear_environ */, no_clone_flags)); env_changes.clear(); EXPECT_EQ( "", TestLaunchProcess( print_env, env_changes, true /* clear_environ */, no_clone_flags)); #endif // defined(OS_LINUX) } TEST_F(ProcessUtilTest, GetAppOutput) { std::string output; // There's no `true` or `false` on these platforms, so use exit 0/exit 1 // instead. #if defined(OS_ANDROID) || defined(OS_FUCHSIA) std::vector argv; #if defined(OS_FUCHSIA) // There's no sh in PATH on Fuchsia by default, so provide a full path to sh. argv.emplace_back("/boot/bin/sh"); #elif defined(OS_ANDROID) argv.emplace_back("sh"); // Instead of /bin/sh, force path search to find it. #else #error Port. #endif argv.emplace_back("-c"); argv.emplace_back("exit 0"); EXPECT_TRUE(GetAppOutput(CommandLine(argv), &output)); EXPECT_STREQ("", output.c_str()); argv[2] = "exit 1"; EXPECT_FALSE(GetAppOutput(CommandLine(argv), &output)); EXPECT_STREQ("", output.c_str()); argv[2] = "echo foobar42"; EXPECT_TRUE(GetAppOutput(CommandLine(argv), &output)); EXPECT_STREQ("foobar42\n", output.c_str()); #else EXPECT_TRUE(GetAppOutput(CommandLine(FilePath("true")), &output)); EXPECT_STREQ("", output.c_str()); EXPECT_FALSE(GetAppOutput(CommandLine(FilePath("false")), &output)); std::vector argv; argv.emplace_back("/bin/echo"); argv.emplace_back("-n"); argv.emplace_back("foobar42"); EXPECT_TRUE(GetAppOutput(CommandLine(argv), &output)); EXPECT_STREQ("foobar42", output.c_str()); #endif // defined(OS_ANDROID) } TEST_F(ProcessUtilTest, GetAppOutputWithExitCode) { // Test getting output from a successful application. std::vector argv; std::string output; int exit_code; argv.emplace_back(kShellPath); // argv[0] argv.emplace_back("-c"); // argv[1] argv.emplace_back("echo foo"); // argv[2]; EXPECT_TRUE(GetAppOutputWithExitCode(CommandLine(argv), &output, &exit_code)); EXPECT_STREQ("foo\n", output.c_str()); EXPECT_EQ(exit_code, kSuccess); // Test getting output from an application which fails with a specific exit // code. output.clear(); argv[2] = "echo foo; exit 2"; EXPECT_TRUE(GetAppOutputWithExitCode(CommandLine(argv), &output, &exit_code)); EXPECT_STREQ("foo\n", output.c_str()); EXPECT_EQ(exit_code, 2); } // There's no such thing as a parent process id on Fuchsia. #if !defined(OS_FUCHSIA) TEST_F(ProcessUtilTest, GetParentProcessId) { ProcessId ppid = GetParentProcessId(GetCurrentProcessHandle()); EXPECT_EQ(ppid, static_cast(getppid())); } #endif // !defined(OS_FUCHSIA) #if !defined(OS_ANDROID) && !defined(OS_FUCHSIA) class WriteToPipeDelegate : public LaunchOptions::PreExecDelegate { public: explicit WriteToPipeDelegate(int fd) : fd_(fd) {} ~WriteToPipeDelegate() override = default; void RunAsyncSafe() override { RAW_CHECK(HANDLE_EINTR(write(fd_, &kPipeValue, 1)) == 1); RAW_CHECK(IGNORE_EINTR(close(fd_)) == 0); } private: int fd_; DISALLOW_COPY_AND_ASSIGN(WriteToPipeDelegate); }; TEST_F(ProcessUtilTest, PreExecHook) { int pipe_fds[2]; ASSERT_EQ(0, pipe(pipe_fds)); ScopedFD read_fd(pipe_fds[0]); ScopedFD write_fd(pipe_fds[1]); WriteToPipeDelegate write_to_pipe_delegate(write_fd.get()); LaunchOptions options; options.fds_to_remap.emplace_back(write_fd.get(), write_fd.get()); options.pre_exec_delegate = &write_to_pipe_delegate; Process process(SpawnChildWithOptions("SimpleChildProcess", options)); ASSERT_TRUE(process.IsValid()); write_fd.reset(); char c; ASSERT_EQ(1, HANDLE_EINTR(read(read_fd.get(), &c, 1))); EXPECT_EQ(c, kPipeValue); int exit_code = 42; EXPECT_TRUE(process.WaitForExit(&exit_code)); EXPECT_EQ(0, exit_code); } #endif // !defined(OS_ANDROID) && !defined(OS_FUCHSIA) #endif // defined(OS_POSIX) #if defined(OS_LINUX) MULTIPROCESS_TEST_MAIN(CheckPidProcess) { const pid_t kInitPid = 1; const pid_t pid = syscall(__NR_getpid); CHECK(pid == kInitPid); CHECK(getpid() == pid); return kSuccess; } #if defined(CLONE_NEWUSER) && defined(CLONE_NEWPID) TEST_F(ProcessUtilTest, CloneFlags) { if (!PathExists(FilePath("/proc/self/ns/user")) || !PathExists(FilePath("/proc/self/ns/pid"))) { // User or PID namespaces are not supported. return; } LaunchOptions options; options.clone_flags = CLONE_NEWUSER | CLONE_NEWPID; Process process(SpawnChildWithOptions("CheckPidProcess", options)); ASSERT_TRUE(process.IsValid()); int exit_code = 42; EXPECT_TRUE(process.WaitForExit(&exit_code)); EXPECT_EQ(kSuccess, exit_code); } #endif // defined(CLONE_NEWUSER) && defined(CLONE_NEWPID) TEST(ForkWithFlagsTest, UpdatesPidCache) { // Warm up the libc pid cache, if there is one. ASSERT_EQ(syscall(__NR_getpid), getpid()); pid_t ctid = 0; const pid_t pid = ForkWithFlags(SIGCHLD | CLONE_CHILD_SETTID, nullptr, &ctid); if (pid == 0) { // In child. Check both the raw getpid syscall and the libc getpid wrapper // (which may rely on a pid cache). RAW_CHECK(syscall(__NR_getpid) == ctid); RAW_CHECK(getpid() == ctid); _exit(kSuccess); } ASSERT_NE(-1, pid); int status = 42; ASSERT_EQ(pid, HANDLE_EINTR(waitpid(pid, &status, 0))); ASSERT_TRUE(WIFEXITED(status)); EXPECT_EQ(kSuccess, WEXITSTATUS(status)); } TEST_F(ProcessUtilTest, InvalidCurrentDirectory) { LaunchOptions options; options.current_directory = FilePath("/dev/null"); Process process(SpawnChildWithOptions("SimpleChildProcess", options)); ASSERT_TRUE(process.IsValid()); int exit_code = kSuccess; EXPECT_TRUE(process.WaitForExit(&exit_code)); EXPECT_NE(kSuccess, exit_code); } #endif // defined(OS_LINUX) } // namespace base