// Copyright 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/layers/picture_layer_impl.h" #include #include #include #include "base/debug/trace_event_argument.h" #include "base/time/time.h" #include "cc/base/math_util.h" #include "cc/base/util.h" #include "cc/debug/debug_colors.h" #include "cc/debug/micro_benchmark_impl.h" #include "cc/debug/traced_value.h" #include "cc/layers/append_quads_data.h" #include "cc/layers/solid_color_layer_impl.h" #include "cc/output/begin_frame_args.h" #include "cc/quads/checkerboard_draw_quad.h" #include "cc/quads/debug_border_draw_quad.h" #include "cc/quads/picture_draw_quad.h" #include "cc/quads/solid_color_draw_quad.h" #include "cc/quads/tile_draw_quad.h" #include "cc/resources/tile_manager.h" #include "cc/trees/layer_tree_impl.h" #include "cc/trees/occlusion.h" #include "ui/gfx/geometry/quad_f.h" #include "ui/gfx/geometry/rect_conversions.h" #include "ui/gfx/geometry/size_conversions.h" namespace { const float kMaxScaleRatioDuringPinch = 2.0f; // When creating a new tiling during pinch, snap to an existing // tiling's scale if the desired scale is within this ratio. const float kSnapToExistingTilingRatio = 1.2f; // Estimate skewport 60 frames ahead for pre-rasterization on the CPU. const float kCpuSkewportTargetTimeInFrames = 60.0f; // Don't pre-rasterize on the GPU (except for kBackflingGuardDistancePixels in // TileManager::BinFromTilePriority). const float kGpuSkewportTargetTimeInFrames = 0.0f; // Even for really wide viewports, at some point GPU raster should use // less than 4 tiles to fill the viewport. This is set to 256 as a // sane minimum for now, but we might want to tune this for low-end. const int kMinHeightForGpuRasteredTile = 256; // When making odd-sized tiles, round them up to increase the chances // of using the same tile size. const int kTileRoundUp = 64; } // namespace namespace cc { PictureLayerImpl::Pair::Pair() : active(nullptr), pending(nullptr) { } PictureLayerImpl::Pair::Pair(PictureLayerImpl* active_layer, PictureLayerImpl* pending_layer) : active(active_layer), pending(pending_layer) { } PictureLayerImpl::Pair::~Pair() { } PictureLayerImpl::PictureLayerImpl(LayerTreeImpl* tree_impl, int id) : LayerImpl(tree_impl, id), twin_layer_(nullptr), pile_(PicturePileImpl::Create()), ideal_page_scale_(0.f), ideal_device_scale_(0.f), ideal_source_scale_(0.f), ideal_contents_scale_(0.f), raster_page_scale_(0.f), raster_device_scale_(0.f), raster_source_scale_(0.f), raster_contents_scale_(0.f), low_res_raster_contents_scale_(0.f), raster_source_scale_is_fixed_(false), was_screen_space_transform_animating_(false), needs_post_commit_initialization_(true), should_update_tile_priorities_(false), only_used_low_res_last_append_quads_(false) { layer_tree_impl()->RegisterPictureLayerImpl(this); } PictureLayerImpl::~PictureLayerImpl() { if (twin_layer_) twin_layer_->twin_layer_ = nullptr; layer_tree_impl()->UnregisterPictureLayerImpl(this); } const char* PictureLayerImpl::LayerTypeAsString() const { return "cc::PictureLayerImpl"; } scoped_ptr PictureLayerImpl::CreateLayerImpl( LayerTreeImpl* tree_impl) { return PictureLayerImpl::Create(tree_impl, id()); } void PictureLayerImpl::PushPropertiesTo(LayerImpl* base_layer) { // It's possible this layer was never drawn or updated (e.g. because it was // a descendant of an opacity 0 layer). DoPostCommitInitializationIfNeeded(); PictureLayerImpl* layer_impl = static_cast(base_layer); LayerImpl::PushPropertiesTo(base_layer); // Twin relationships should never change once established. DCHECK_IMPLIES(twin_layer_, twin_layer_ == layer_impl); DCHECK_IMPLIES(twin_layer_, layer_impl->twin_layer_ == this); // The twin relationship does not need to exist before the first // PushPropertiesTo from pending to active layer since before that the active // layer can not have a pile or tilings, it has only been created and inserted // into the tree at that point. twin_layer_ = layer_impl; layer_impl->twin_layer_ = this; layer_impl->UpdatePile(pile_); DCHECK(!pile_->is_solid_color() || !tilings_->num_tilings()); // Tilings would be expensive to push, so we swap. layer_impl->tilings_.swap(tilings_); layer_impl->tilings_->SetClient(layer_impl); if (tilings_) tilings_->SetClient(this); // Ensure that the recycle tree doesn't have any unshared tiles. if (tilings_ && pile_->is_solid_color()) tilings_->RemoveAllTilings(); // Remove invalidated tiles from what will become a recycle tree. if (tilings_) tilings_->RemoveTilesInRegion(invalidation_); layer_impl->raster_page_scale_ = raster_page_scale_; layer_impl->raster_device_scale_ = raster_device_scale_; layer_impl->raster_source_scale_ = raster_source_scale_; layer_impl->raster_contents_scale_ = raster_contents_scale_; layer_impl->low_res_raster_contents_scale_ = low_res_raster_contents_scale_; layer_impl->needs_post_commit_initialization_ = false; // The invalidation on this soon-to-be-recycled layer must be cleared to // mirror clearing the invalidation in PictureLayer's version of this function // in case push properties is skipped. layer_impl->invalidation_.Swap(&invalidation_); invalidation_.Clear(); needs_post_commit_initialization_ = true; // We always need to push properties. // See http://crbug.com/303943 needs_push_properties_ = true; } void PictureLayerImpl::UpdatePile(scoped_refptr pile) { bool could_have_tilings = CanHaveTilings(); pile_.swap(pile); // Need to call UpdateTiles again if CanHaveTilings changed. if (could_have_tilings != CanHaveTilings()) { layer_tree_impl()->set_needs_update_draw_properties(); } } void PictureLayerImpl::AppendQuads(RenderPass* render_pass, const Occlusion& occlusion_in_content_space, AppendQuadsData* append_quads_data) { DCHECK(!needs_post_commit_initialization_); // The bounds and the pile size may differ if the pile wasn't updated (ie. // PictureLayer::Update didn't happen). In that case the pile will be empty. DCHECK_IMPLIES(!pile_->tiling_size().IsEmpty(), bounds() == pile_->tiling_size()) << " bounds " << bounds().ToString() << " pile " << pile_->tiling_size().ToString(); SharedQuadState* shared_quad_state = render_pass->CreateAndAppendSharedQuadState(); if (pile_->is_solid_color()) { PopulateSharedQuadState(shared_quad_state); AppendDebugBorderQuad( render_pass, bounds(), shared_quad_state, append_quads_data); SolidColorLayerImpl::AppendSolidQuads(render_pass, occlusion_in_content_space, shared_quad_state, visible_content_rect(), pile_->solid_color(), append_quads_data); return; } float max_contents_scale = MaximumTilingContentsScale(); gfx::Transform scaled_draw_transform = draw_transform(); scaled_draw_transform.Scale(SK_MScalar1 / max_contents_scale, SK_MScalar1 / max_contents_scale); gfx::Size scaled_content_bounds = gfx::ToCeiledSize(gfx::ScaleSize(bounds(), max_contents_scale)); gfx::Rect scaled_visible_content_rect = gfx::ScaleToEnclosingRect(visible_content_rect(), max_contents_scale); scaled_visible_content_rect.Intersect(gfx::Rect(scaled_content_bounds)); Occlusion scaled_occlusion = occlusion_in_content_space.GetOcclusionWithGivenDrawTransform( scaled_draw_transform); shared_quad_state->SetAll(scaled_draw_transform, scaled_content_bounds, scaled_visible_content_rect, draw_properties().clip_rect, draw_properties().is_clipped, draw_properties().opacity, blend_mode(), sorting_context_id_); if (current_draw_mode_ == DRAW_MODE_RESOURCELESS_SOFTWARE) { AppendDebugBorderQuad( render_pass, scaled_content_bounds, shared_quad_state, append_quads_data, DebugColors::DirectPictureBorderColor(), DebugColors::DirectPictureBorderWidth(layer_tree_impl())); gfx::Rect geometry_rect = scaled_visible_content_rect; gfx::Rect opaque_rect = contents_opaque() ? geometry_rect : gfx::Rect(); gfx::Rect visible_geometry_rect = scaled_occlusion.GetUnoccludedContentRect(geometry_rect); if (visible_geometry_rect.IsEmpty()) return; gfx::Size texture_size = scaled_visible_content_rect.size(); gfx::RectF texture_rect = gfx::RectF(texture_size); gfx::Rect quad_content_rect = scaled_visible_content_rect; PictureDrawQuad* quad = render_pass->CreateAndAppendDrawQuad(); quad->SetNew(shared_quad_state, geometry_rect, opaque_rect, visible_geometry_rect, texture_rect, texture_size, RGBA_8888, quad_content_rect, max_contents_scale, pile_); return; } AppendDebugBorderQuad( render_pass, scaled_content_bounds, shared_quad_state, append_quads_data); if (ShowDebugBorders()) { for (PictureLayerTilingSet::CoverageIterator iter( tilings_.get(), max_contents_scale, scaled_visible_content_rect, ideal_contents_scale_); iter; ++iter) { SkColor color; float width; if (*iter && iter->IsReadyToDraw()) { ManagedTileState::DrawInfo::Mode mode = iter->draw_info().mode(); if (mode == ManagedTileState::DrawInfo::SOLID_COLOR_MODE) { color = DebugColors::SolidColorTileBorderColor(); width = DebugColors::SolidColorTileBorderWidth(layer_tree_impl()); } else if (mode == ManagedTileState::DrawInfo::PICTURE_PILE_MODE) { color = DebugColors::PictureTileBorderColor(); width = DebugColors::PictureTileBorderWidth(layer_tree_impl()); } else if (iter.resolution() == HIGH_RESOLUTION) { color = DebugColors::HighResTileBorderColor(); width = DebugColors::HighResTileBorderWidth(layer_tree_impl()); } else if (iter.resolution() == LOW_RESOLUTION) { color = DebugColors::LowResTileBorderColor(); width = DebugColors::LowResTileBorderWidth(layer_tree_impl()); } else if (iter->contents_scale() > max_contents_scale) { color = DebugColors::ExtraHighResTileBorderColor(); width = DebugColors::ExtraHighResTileBorderWidth(layer_tree_impl()); } else { color = DebugColors::ExtraLowResTileBorderColor(); width = DebugColors::ExtraLowResTileBorderWidth(layer_tree_impl()); } } else { color = DebugColors::MissingTileBorderColor(); width = DebugColors::MissingTileBorderWidth(layer_tree_impl()); } DebugBorderDrawQuad* debug_border_quad = render_pass->CreateAndAppendDrawQuad(); gfx::Rect geometry_rect = iter.geometry_rect(); gfx::Rect visible_geometry_rect = geometry_rect; debug_border_quad->SetNew(shared_quad_state, geometry_rect, visible_geometry_rect, color, width); } } // Keep track of the tilings that were used so that tilings that are // unused can be considered for removal. std::vector seen_tilings; // Ignore missing tiles outside of viewport for tile priority. This is // normally the same as draw viewport but can be independently overridden by // embedders like Android WebView with SetExternalDrawConstraints. gfx::Rect scaled_viewport_for_tile_priority = gfx::ScaleToEnclosingRect( GetViewportForTilePriorityInContentSpace(), max_contents_scale); size_t missing_tile_count = 0u; size_t on_demand_missing_tile_count = 0u; only_used_low_res_last_append_quads_ = true; for (PictureLayerTilingSet::CoverageIterator iter(tilings_.get(), max_contents_scale, scaled_visible_content_rect, ideal_contents_scale_); iter; ++iter) { gfx::Rect geometry_rect = iter.geometry_rect(); gfx::Rect opaque_rect = contents_opaque() ? geometry_rect : gfx::Rect(); gfx::Rect visible_geometry_rect = scaled_occlusion.GetUnoccludedContentRect(geometry_rect); if (visible_geometry_rect.IsEmpty()) continue; append_quads_data->visible_content_area += visible_geometry_rect.width() * visible_geometry_rect.height(); bool has_draw_quad = false; if (*iter && iter->IsReadyToDraw()) { const ManagedTileState::DrawInfo& draw_info = iter->draw_info(); switch (draw_info.mode()) { case ManagedTileState::DrawInfo::RESOURCE_MODE: { gfx::RectF texture_rect = iter.texture_rect(); // The raster_contents_scale_ is the best scale that the layer is // trying to produce, even though it may not be ideal. Since that's // the best the layer can promise in the future, consider those as // complete. But if a tile is ideal scale, we don't want to consider // it incomplete and trying to replace it with a tile at a worse // scale. if (iter->contents_scale() != raster_contents_scale_ && iter->contents_scale() != ideal_contents_scale_ && geometry_rect.Intersects(scaled_viewport_for_tile_priority)) { append_quads_data->num_incomplete_tiles++; } TileDrawQuad* quad = render_pass->CreateAndAppendDrawQuad(); quad->SetNew(shared_quad_state, geometry_rect, opaque_rect, visible_geometry_rect, draw_info.get_resource_id(), texture_rect, iter.texture_size(), draw_info.contents_swizzled()); has_draw_quad = true; break; } case ManagedTileState::DrawInfo::PICTURE_PILE_MODE: { if (!layer_tree_impl() ->GetRendererCapabilities() .allow_rasterize_on_demand) { ++on_demand_missing_tile_count; break; } gfx::RectF texture_rect = iter.texture_rect(); ResourceProvider* resource_provider = layer_tree_impl()->resource_provider(); ResourceFormat format = resource_provider->memory_efficient_texture_format(); PictureDrawQuad* quad = render_pass->CreateAndAppendDrawQuad(); quad->SetNew(shared_quad_state, geometry_rect, opaque_rect, visible_geometry_rect, texture_rect, iter.texture_size(), format, iter->content_rect(), iter->contents_scale(), pile_); has_draw_quad = true; break; } case ManagedTileState::DrawInfo::SOLID_COLOR_MODE: { SolidColorDrawQuad* quad = render_pass->CreateAndAppendDrawQuad(); quad->SetNew(shared_quad_state, geometry_rect, visible_geometry_rect, draw_info.get_solid_color(), false); has_draw_quad = true; break; } } } if (!has_draw_quad) { if (draw_checkerboard_for_missing_tiles()) { CheckerboardDrawQuad* quad = render_pass->CreateAndAppendDrawQuad(); SkColor color = DebugColors::DefaultCheckerboardColor(); quad->SetNew( shared_quad_state, geometry_rect, visible_geometry_rect, color); } else { SkColor color = SafeOpaqueBackgroundColor(); SolidColorDrawQuad* quad = render_pass->CreateAndAppendDrawQuad(); quad->SetNew(shared_quad_state, geometry_rect, visible_geometry_rect, color, false); } if (geometry_rect.Intersects(scaled_viewport_for_tile_priority)) { append_quads_data->num_missing_tiles++; ++missing_tile_count; } append_quads_data->approximated_visible_content_area += visible_geometry_rect.width() * visible_geometry_rect.height(); continue; } if (iter.resolution() != HIGH_RESOLUTION) { append_quads_data->approximated_visible_content_area += visible_geometry_rect.width() * visible_geometry_rect.height(); } // If we have a draw quad, but it's not low resolution, then // mark that we've used something other than low res to draw. if (iter.resolution() != LOW_RESOLUTION) only_used_low_res_last_append_quads_ = false; if (seen_tilings.empty() || seen_tilings.back() != iter.CurrentTiling()) seen_tilings.push_back(iter.CurrentTiling()); } if (missing_tile_count) { TRACE_EVENT_INSTANT2("cc", "PictureLayerImpl::AppendQuads checkerboard", TRACE_EVENT_SCOPE_THREAD, "missing_tile_count", missing_tile_count, "on_demand_missing_tile_count", on_demand_missing_tile_count); } // Aggressively remove any tilings that are not seen to save memory. Note // that this is at the expense of doing cause more frequent re-painting. A // better scheme would be to maintain a tighter visible_content_rect for the // finer tilings. CleanUpTilingsOnActiveLayer(seen_tilings); } void PictureLayerImpl::UpdateTiles(const Occlusion& occlusion_in_content_space, bool resourceless_software_draw) { DCHECK_EQ(1.f, contents_scale_x()); DCHECK_EQ(1.f, contents_scale_y()); DoPostCommitInitializationIfNeeded(); if (!resourceless_software_draw) { visible_rect_for_tile_priority_ = visible_content_rect(); } if (!CanHaveTilings()) { ideal_page_scale_ = 0.f; ideal_device_scale_ = 0.f; ideal_contents_scale_ = 0.f; ideal_source_scale_ = 0.f; SanityCheckTilingState(); return; } UpdateIdealScales(); DCHECK(tilings_->num_tilings() > 0 || raster_contents_scale_ == 0.f) << "A layer with no tilings shouldn't have valid raster scales"; if (!raster_contents_scale_ || ShouldAdjustRasterScale()) { RecalculateRasterScales(); AddTilingsForRasterScale(); } DCHECK(raster_page_scale_); DCHECK(raster_device_scale_); DCHECK(raster_source_scale_); DCHECK(raster_contents_scale_); DCHECK(low_res_raster_contents_scale_); was_screen_space_transform_animating_ = draw_properties().screen_space_transform_is_animating; if (draw_transform_is_animating()) pile_->set_likely_to_be_used_for_transform_animation(); should_update_tile_priorities_ = true; UpdateTilePriorities(occlusion_in_content_space); } void PictureLayerImpl::UpdateTilePriorities( const Occlusion& occlusion_in_content_space) { DCHECK(!pile_->is_solid_color() || !tilings_->num_tilings()); double current_frame_time_in_seconds = (layer_tree_impl()->CurrentBeginFrameArgs().frame_time - base::TimeTicks()).InSecondsF(); gfx::Rect viewport_rect_in_layer_space = GetViewportForTilePriorityInContentSpace(); bool tiling_needs_update = false; for (size_t i = 0; i < tilings_->num_tilings(); ++i) { if (tilings_->tiling_at(i)->NeedsUpdateForFrameAtTimeAndViewport( current_frame_time_in_seconds, viewport_rect_in_layer_space)) { tiling_needs_update = true; break; } } if (!tiling_needs_update) return; WhichTree tree = layer_tree_impl()->IsActiveTree() ? ACTIVE_TREE : PENDING_TREE; bool can_require_tiles_for_activation = !only_used_low_res_last_append_quads_ || RequiresHighResToDraw() || !layer_tree_impl()->SmoothnessTakesPriority(); for (size_t i = 0; i < tilings_->num_tilings(); ++i) { PictureLayerTiling* tiling = tilings_->tiling_at(i); tiling->set_can_require_tiles_for_activation( can_require_tiles_for_activation); // Pass |occlusion_in_content_space| for |occlusion_in_layer_space| since // they are the same space in picture layer, as contents scale is always 1. tiling->ComputeTilePriorityRects(tree, viewport_rect_in_layer_space, ideal_contents_scale_, current_frame_time_in_seconds, occlusion_in_content_space); } // Tile priorities were modified. // TODO(vmpstr): See if this can be removed in favour of calling it from LTHI layer_tree_impl()->DidModifyTilePriorities(); } gfx::Rect PictureLayerImpl::GetViewportForTilePriorityInContentSpace() const { // If visible_rect_for_tile_priority_ is empty or // viewport_rect_for_tile_priority is set to be different from the device // viewport, try to inverse project the viewport into layer space and use // that. Otherwise just use visible_rect_for_tile_priority_ gfx::Rect visible_rect_in_content_space = visible_rect_for_tile_priority_; gfx::Rect viewport_rect_for_tile_priority = layer_tree_impl()->ViewportRectForTilePriority(); if (visible_rect_in_content_space.IsEmpty() || layer_tree_impl()->DeviceViewport() != viewport_rect_for_tile_priority) { gfx::Transform view_to_layer(gfx::Transform::kSkipInitialization); if (screen_space_transform().GetInverse(&view_to_layer)) { // Transform from view space to content space. visible_rect_in_content_space = gfx::ToEnclosingRect(MathUtil::ProjectClippedRect( view_to_layer, viewport_rect_for_tile_priority)); } } return visible_rect_in_content_space; } PictureLayerImpl* PictureLayerImpl::GetPendingOrActiveTwinLayer() const { if (!twin_layer_ || !twin_layer_->IsOnActiveOrPendingTree()) return nullptr; return twin_layer_; } PictureLayerImpl* PictureLayerImpl::GetRecycledTwinLayer() const { if (!twin_layer_ || twin_layer_->IsOnActiveOrPendingTree()) return nullptr; return twin_layer_; } void PictureLayerImpl::NotifyTileStateChanged(const Tile* tile) { if (layer_tree_impl()->IsActiveTree()) { gfx::RectF layer_damage_rect = gfx::ScaleRect(tile->content_rect(), 1.f / tile->contents_scale()); AddDamageRect(layer_damage_rect); } } void PictureLayerImpl::DidBecomeActive() { LayerImpl::DidBecomeActive(); // TODO(vmpstr): See if this can be removed in favour of calling it from LTHI layer_tree_impl()->DidModifyTilePriorities(); } void PictureLayerImpl::DidBeginTracing() { pile_->DidBeginTracing(); } void PictureLayerImpl::ReleaseResources() { if (tilings_) RemoveAllTilings(); ResetRasterScale(); // To avoid an edge case after lost context where the tree is up to date but // the tilings have not been managed, request an update draw properties // to force tilings to get managed. layer_tree_impl()->set_needs_update_draw_properties(); } skia::RefPtr PictureLayerImpl::GetPicture() { return pile_->GetFlattenedPicture(); } scoped_refptr PictureLayerImpl::CreateTile(PictureLayerTiling* tiling, const gfx::Rect& content_rect) { DCHECK(!pile_->is_solid_color()); if (!pile_->CoversRect(content_rect, tiling->contents_scale())) return scoped_refptr(); int flags = 0; // TODO(vmpstr): Revisit this. For now, enabling analysis means that we get as // much savings on memory as we can. However, for some cases like ganesh or // small layers, the amount of time we spend analyzing might not justify // memory savings that we can get. Note that we don't handle solid color // masks, so we shouldn't bother analyzing those. // Bugs: crbug.com/397198, crbug.com/396908 if (!pile_->is_mask()) flags = Tile::USE_PICTURE_ANALYSIS; return layer_tree_impl()->tile_manager()->CreateTile( pile_.get(), content_rect.size(), content_rect, tiling->contents_scale(), id(), layer_tree_impl()->source_frame_number(), flags); } RasterSource* PictureLayerImpl::GetRasterSource() { return pile_.get(); } const Region* PictureLayerImpl::GetPendingInvalidation() { if (layer_tree_impl()->IsPendingTree()) return &invalidation_; DCHECK(layer_tree_impl()->IsActiveTree()); if (PictureLayerImpl* twin_layer = GetPendingOrActiveTwinLayer()) return &twin_layer->invalidation_; return nullptr; } const PictureLayerTiling* PictureLayerImpl::GetPendingOrActiveTwinTiling( const PictureLayerTiling* tiling) const { PictureLayerImpl* twin_layer = GetPendingOrActiveTwinLayer(); if (!twin_layer) return nullptr; // TODO(danakj): Remove this when no longer swapping tilings. if (!twin_layer->tilings_) return nullptr; return twin_layer->tilings_->TilingAtScale(tiling->contents_scale()); } PictureLayerTiling* PictureLayerImpl::GetRecycledTwinTiling( const PictureLayerTiling* tiling) { PictureLayerImpl* recycled_twin = GetRecycledTwinLayer(); if (!recycled_twin || !recycled_twin->tilings_) return nullptr; return recycled_twin->tilings_->TilingAtScale(tiling->contents_scale()); } size_t PictureLayerImpl::GetMaxTilesForInterestArea() const { return layer_tree_impl()->settings().max_tiles_for_interest_area; } float PictureLayerImpl::GetSkewportTargetTimeInSeconds() const { float skewport_target_time_in_frames = layer_tree_impl()->use_gpu_rasterization() ? kGpuSkewportTargetTimeInFrames : kCpuSkewportTargetTimeInFrames; return skewport_target_time_in_frames * layer_tree_impl()->begin_impl_frame_interval().InSecondsF() * layer_tree_impl()->settings().skewport_target_time_multiplier; } int PictureLayerImpl::GetSkewportExtrapolationLimitInContentPixels() const { return layer_tree_impl() ->settings() .skewport_extrapolation_limit_in_content_pixels; } bool PictureLayerImpl::RequiresHighResToDraw() const { return layer_tree_impl()->RequiresHighResToDraw(); } gfx::Size PictureLayerImpl::CalculateTileSize( const gfx::Size& content_bounds) const { int max_texture_size = layer_tree_impl()->resource_provider()->max_texture_size(); if (pile_->is_mask()) { // Masks are not tiled, so if we can't cover the whole mask with one tile, // don't make any tiles at all. Returning an empty size signals this. if (content_bounds.width() > max_texture_size || content_bounds.height() > max_texture_size) return gfx::Size(); return content_bounds; } int default_tile_width = 0; int default_tile_height = 0; if (layer_tree_impl()->use_gpu_rasterization()) { // For GPU rasterization, we pick an ideal tile size using the viewport // so we don't need any settings. The current approach uses 4 tiles // to cover the viewport vertically. int viewport_width = layer_tree_impl()->device_viewport_size().width(); int viewport_height = layer_tree_impl()->device_viewport_size().height(); default_tile_width = viewport_width; // Also, increase the height proportionally as the width decreases, and // pad by our border texels to make the tiles exactly match the viewport. int divisor = 4; if (content_bounds.width() <= viewport_width / 2) divisor = 2; if (content_bounds.width() <= viewport_width / 4) divisor = 1; default_tile_height = RoundUp(viewport_height, divisor) / divisor; default_tile_height += 2 * PictureLayerTiling::kBorderTexels; default_tile_height = std::max(default_tile_height, kMinHeightForGpuRasteredTile); } else { // For CPU rasterization we use tile-size settings. const LayerTreeSettings& settings = layer_tree_impl()->settings(); int max_untiled_content_width = settings.max_untiled_layer_size.width(); int max_untiled_content_height = settings.max_untiled_layer_size.height(); default_tile_width = settings.default_tile_size.width(); default_tile_height = settings.default_tile_size.height(); // If the content width is small, increase tile size vertically. // If the content height is small, increase tile size horizontally. // If both are less than the untiled-size, use a single tile. if (content_bounds.width() < default_tile_width) default_tile_height = max_untiled_content_height; if (content_bounds.height() < default_tile_height) default_tile_width = max_untiled_content_width; if (content_bounds.width() < max_untiled_content_width && content_bounds.height() < max_untiled_content_height) { default_tile_height = max_untiled_content_height; default_tile_width = max_untiled_content_width; } } int tile_width = default_tile_width; int tile_height = default_tile_height; // Clamp the tile width/height to the content width/height to save space. if (content_bounds.width() < default_tile_width) { tile_width = std::min(tile_width, content_bounds.width()); tile_width = RoundUp(tile_width, kTileRoundUp); tile_width = std::min(tile_width, default_tile_width); } if (content_bounds.height() < default_tile_height) { tile_height = std::min(tile_height, content_bounds.height()); tile_height = RoundUp(tile_height, kTileRoundUp); tile_height = std::min(tile_height, default_tile_height); } // Under no circumstance should we be larger than the max texture size. tile_width = std::min(tile_width, max_texture_size); tile_height = std::min(tile_height, max_texture_size); return gfx::Size(tile_width, tile_height); } void PictureLayerImpl::SyncFromActiveLayer(const PictureLayerImpl* other) { DCHECK(!other->needs_post_commit_initialization_); DCHECK(other->tilings_); if (!DrawsContent()) { RemoveAllTilings(); return; } raster_page_scale_ = other->raster_page_scale_; raster_device_scale_ = other->raster_device_scale_; raster_source_scale_ = other->raster_source_scale_; raster_contents_scale_ = other->raster_contents_scale_; low_res_raster_contents_scale_ = other->low_res_raster_contents_scale_; bool synced_high_res_tiling = false; if (CanHaveTilings()) { synced_high_res_tiling = tilings_->SyncTilings(*other->tilings_, pile_->tiling_size(), invalidation_, MinimumContentsScale()); } else { RemoveAllTilings(); } // If our MinimumContentsScale has changed to prevent the twin's high res // tiling from being synced, we should reset the raster scale and let it be // recalculated (1) again. This can happen if our bounds shrink to the point // where min contents scale grows. // (1) - TODO(vmpstr) Instead of hoping that this will be recalculated, we // should refactor this code a little bit and actually recalculate this. // However, this is a larger undertaking, so this will work for now. if (!synced_high_res_tiling) ResetRasterScale(); else SanityCheckTilingState(); } void PictureLayerImpl::SyncTiling( const PictureLayerTiling* tiling) { if (!tilings_) return; if (!CanHaveTilingWithScale(tiling->contents_scale())) return; tilings_->AddTiling(tiling->contents_scale(), pile_->tiling_size()); // If this tree needs update draw properties, then the tiling will // get updated prior to drawing or activation. If this tree does not // need update draw properties, then its transforms are up to date and // we can create tiles for this tiling immediately. if (!layer_tree_impl()->needs_update_draw_properties() && should_update_tile_priorities_) { // TODO(danakj): Add a DCHECK() that we are not using occlusion tracking // when we stop using the pending tree in the browser compositor. If we want // to support occlusion tracking here, we need to dirty the draw properties // or save occlusion as a draw property. UpdateTilePriorities(Occlusion()); } } void PictureLayerImpl::GetContentsResourceId( ResourceProvider::ResourceId* resource_id, gfx::Size* resource_size) const { DCHECK_EQ(bounds().ToString(), pile_->tiling_size().ToString()); gfx::Rect content_rect(bounds()); PictureLayerTilingSet::CoverageIterator iter( tilings_.get(), 1.f, content_rect, ideal_contents_scale_); // Mask resource not ready yet. if (!iter || !*iter) { *resource_id = 0; return; } // Masks only supported if they fit on exactly one tile. DCHECK(iter.geometry_rect() == content_rect) << "iter rect " << iter.geometry_rect().ToString() << " content rect " << content_rect.ToString(); const ManagedTileState::DrawInfo& draw_info = iter->draw_info(); if (!draw_info.IsReadyToDraw() || draw_info.mode() != ManagedTileState::DrawInfo::RESOURCE_MODE) { *resource_id = 0; return; } *resource_id = draw_info.get_resource_id(); *resource_size = iter.texture_size(); } void PictureLayerImpl::DoPostCommitInitialization() { DCHECK(needs_post_commit_initialization_); DCHECK(layer_tree_impl()->IsPendingTree()); if (!tilings_) tilings_ = make_scoped_ptr(new PictureLayerTilingSet(this)); PictureLayerImpl* twin_layer = GetPendingOrActiveTwinLayer(); if (twin_layer) { // If the twin has never been pushed to, do not sync from it. // This can happen if this function is called during activation. if (!twin_layer->needs_post_commit_initialization_) SyncFromActiveLayer(twin_layer); } needs_post_commit_initialization_ = false; } PictureLayerTiling* PictureLayerImpl::AddTiling(float contents_scale) { DCHECK(CanHaveTilingWithScale(contents_scale)) << "contents_scale: " << contents_scale; PictureLayerTiling* tiling = tilings_->AddTiling(contents_scale, pile_->tiling_size()); DCHECK(pile_->HasRecordings()); if (PictureLayerImpl* twin_layer = GetPendingOrActiveTwinLayer()) twin_layer->SyncTiling(tiling); return tiling; } void PictureLayerImpl::RemoveTiling(float contents_scale) { if (!tilings_ || tilings_->num_tilings() == 0) return; for (size_t i = 0; i < tilings_->num_tilings(); ++i) { PictureLayerTiling* tiling = tilings_->tiling_at(i); if (tiling->contents_scale() == contents_scale) { tilings_->Remove(tiling); break; } } if (tilings_->num_tilings() == 0) ResetRasterScale(); SanityCheckTilingState(); } void PictureLayerImpl::RemoveAllTilings() { if (tilings_) tilings_->RemoveAllTilings(); // If there are no tilings, then raster scales are no longer meaningful. ResetRasterScale(); } namespace { inline float PositiveRatio(float float1, float float2) { DCHECK_GT(float1, 0); DCHECK_GT(float2, 0); return float1 > float2 ? float1 / float2 : float2 / float1; } } // namespace void PictureLayerImpl::AddTilingsForRasterScale() { PictureLayerTiling* high_res = nullptr; PictureLayerTiling* low_res = nullptr; for (size_t i = 0; i < tilings_->num_tilings(); ++i) { PictureLayerTiling* tiling = tilings_->tiling_at(i); if (tiling->contents_scale() == raster_contents_scale_) high_res = tiling; if (tiling->contents_scale() == low_res_raster_contents_scale_) low_res = tiling; // Reset all tilings to non-ideal until the end of this function. tiling->set_resolution(NON_IDEAL_RESOLUTION); } if (!high_res) { high_res = AddTiling(raster_contents_scale_); if (raster_contents_scale_ == low_res_raster_contents_scale_) low_res = high_res; } // Only create new low res tilings when the transform is static. This // prevents wastefully creating a paired low res tiling for every new high res // tiling during a pinch or a CSS animation. bool is_pinching = layer_tree_impl()->PinchGestureActive(); if (layer_tree_impl()->create_low_res_tiling() && !is_pinching && !draw_properties().screen_space_transform_is_animating && !low_res && low_res != high_res) low_res = AddTiling(low_res_raster_contents_scale_); // Set low-res if we have one. if (low_res && low_res != high_res) low_res->set_resolution(LOW_RESOLUTION); // Make sure we always have one high-res (even if high == low). high_res->set_resolution(HIGH_RESOLUTION); SanityCheckTilingState(); } bool PictureLayerImpl::ShouldAdjustRasterScale() const { if (was_screen_space_transform_animating_ != draw_properties().screen_space_transform_is_animating) return true; if (draw_properties().screen_space_transform_is_animating && raster_contents_scale_ != ideal_contents_scale_ && ShouldAdjustRasterScaleDuringScaleAnimations()) return true; bool is_pinching = layer_tree_impl()->PinchGestureActive(); if (is_pinching && raster_page_scale_) { // We change our raster scale when it is: // - Higher than ideal (need a lower-res tiling available) // - Too far from ideal (need a higher-res tiling available) float ratio = ideal_page_scale_ / raster_page_scale_; if (raster_page_scale_ > ideal_page_scale_ || ratio > kMaxScaleRatioDuringPinch) return true; } if (!is_pinching) { // When not pinching, match the ideal page scale factor. if (raster_page_scale_ != ideal_page_scale_) return true; } // Always match the ideal device scale factor. if (raster_device_scale_ != ideal_device_scale_) return true; // When the source scale changes we want to match it, but not when animating // or when we've fixed the scale in place. if (!draw_properties().screen_space_transform_is_animating && !raster_source_scale_is_fixed_ && raster_source_scale_ != ideal_source_scale_) return true; return false; } float PictureLayerImpl::SnappedContentsScale(float scale) { // If a tiling exists within the max snapping ratio, snap to its scale. float snapped_contents_scale = scale; float snapped_ratio = kSnapToExistingTilingRatio; for (size_t i = 0; i < tilings_->num_tilings(); ++i) { float tiling_contents_scale = tilings_->tiling_at(i)->contents_scale(); float ratio = PositiveRatio(tiling_contents_scale, scale); if (ratio < snapped_ratio) { snapped_contents_scale = tiling_contents_scale; snapped_ratio = ratio; } } return snapped_contents_scale; } void PictureLayerImpl::RecalculateRasterScales() { float old_raster_contents_scale = raster_contents_scale_; float old_raster_page_scale = raster_page_scale_; float old_raster_source_scale = raster_source_scale_; raster_device_scale_ = ideal_device_scale_; raster_page_scale_ = ideal_page_scale_; raster_source_scale_ = ideal_source_scale_; raster_contents_scale_ = ideal_contents_scale_; // If we're not animating, or leaving an animation, and the // ideal_source_scale_ changes, then things are unpredictable, and we fix // the raster_source_scale_ in place. if (old_raster_source_scale && !draw_properties().screen_space_transform_is_animating && !was_screen_space_transform_animating_ && old_raster_source_scale != ideal_source_scale_) raster_source_scale_is_fixed_ = true; // TODO(danakj): Adjust raster source scale closer to ideal source scale at // a throttled rate. Possibly make use of invalidation_.IsEmpty() on pending // tree. This will allow CSS scale changes to get re-rastered at an // appropriate rate. (crbug.com/413636) if (raster_source_scale_is_fixed_) { raster_contents_scale_ /= raster_source_scale_; raster_source_scale_ = 1.f; } // During pinch we completely ignore the current ideal scale, and just use // a multiple of the previous scale. // TODO(danakj): This seems crazy, we should use the current ideal, no? bool is_pinching = layer_tree_impl()->PinchGestureActive(); if (is_pinching && old_raster_contents_scale) { // See ShouldAdjustRasterScale: // - When zooming out, preemptively create new tiling at lower resolution. // - When zooming in, approximate ideal using multiple of kMaxScaleRatio. bool zooming_out = old_raster_page_scale > ideal_page_scale_; float desired_contents_scale = zooming_out ? old_raster_contents_scale / kMaxScaleRatioDuringPinch : old_raster_contents_scale * kMaxScaleRatioDuringPinch; raster_contents_scale_ = SnappedContentsScale(desired_contents_scale); raster_page_scale_ = raster_contents_scale_ / raster_device_scale_ / raster_source_scale_; } // If we're not re-rasterizing during animation, rasterize at the maximum // scale that will occur during the animation, if the maximum scale is // known. However we want to avoid excessive memory use. If the scale is // smaller than what we would choose otherwise, then it's always better off // for us memory-wise. But otherwise, we don't choose a scale at which this // layer's rastered content would become larger than the viewport. if (draw_properties().screen_space_transform_is_animating && !ShouldAdjustRasterScaleDuringScaleAnimations()) { bool can_raster_at_maximum_scale = false; // TODO(ajuma): If we need to deal with scale-down animations starting right // as a layer gets promoted, then we'd want to have the // |starting_animation_contents_scale| passed in here as a separate draw // property so we could try use that when the max is too large. // See crbug.com/422341. float maximum_scale = draw_properties().maximum_animation_contents_scale; if (maximum_scale) { gfx::Size bounds_at_maximum_scale = gfx::ToCeiledSize( gfx::ScaleSize(pile_->tiling_size(), maximum_scale)); int64 maximum_area = static_cast(bounds_at_maximum_scale.width()) * static_cast(bounds_at_maximum_scale.height()); gfx::Size viewport = layer_tree_impl()->device_viewport_size(); int64 viewport_area = static_cast(viewport.width()) * static_cast(viewport.height()); if (maximum_area <= viewport_area) can_raster_at_maximum_scale = true; } // Use the computed scales for the raster scale directly, do not try to use // the ideal scale here. The current ideal scale may be way too large in the // case of an animation with scale, and will be constantly changing. if (can_raster_at_maximum_scale) raster_contents_scale_ = maximum_scale; else raster_contents_scale_ = 1.f * ideal_page_scale_ * ideal_device_scale_; } raster_contents_scale_ = std::max(raster_contents_scale_, MinimumContentsScale()); // If this layer would create zero or one tiles at this content scale, // don't create a low res tiling. gfx::Size raster_bounds = gfx::ToCeiledSize( gfx::ScaleSize(pile_->tiling_size(), raster_contents_scale_)); gfx::Size tile_size = CalculateTileSize(raster_bounds); bool tile_covers_bounds = tile_size.width() >= raster_bounds.width() && tile_size.height() >= raster_bounds.height(); if (tile_size.IsEmpty() || tile_covers_bounds) { low_res_raster_contents_scale_ = raster_contents_scale_; return; } float low_res_factor = layer_tree_impl()->settings().low_res_contents_scale_factor; low_res_raster_contents_scale_ = std::max( raster_contents_scale_ * low_res_factor, MinimumContentsScale()); DCHECK_LE(low_res_raster_contents_scale_, raster_contents_scale_); DCHECK_GE(low_res_raster_contents_scale_, MinimumContentsScale()); } void PictureLayerImpl::CleanUpTilingsOnActiveLayer( std::vector used_tilings) { DCHECK(layer_tree_impl()->IsActiveTree()); if (tilings_->num_tilings() == 0) return; float min_acceptable_high_res_scale = std::min( raster_contents_scale_, ideal_contents_scale_); float max_acceptable_high_res_scale = std::max( raster_contents_scale_, ideal_contents_scale_); float twin_low_res_scale = 0.f; PictureLayerImpl* twin = GetPendingOrActiveTwinLayer(); if (twin && twin->CanHaveTilings()) { min_acceptable_high_res_scale = std::min( min_acceptable_high_res_scale, std::min(twin->raster_contents_scale_, twin->ideal_contents_scale_)); max_acceptable_high_res_scale = std::max( max_acceptable_high_res_scale, std::max(twin->raster_contents_scale_, twin->ideal_contents_scale_)); // TODO(danakj): Remove the tilings_ check when we create them in the // constructor. if (twin->tilings_) { for (size_t i = 0; i < twin->tilings_->num_tilings(); ++i) { PictureLayerTiling* tiling = twin->tilings_->tiling_at(i); if (tiling->resolution() == LOW_RESOLUTION) twin_low_res_scale = tiling->contents_scale(); } } } std::vector to_remove; for (size_t i = 0; i < tilings_->num_tilings(); ++i) { PictureLayerTiling* tiling = tilings_->tiling_at(i); // Keep multiple high resolution tilings even if not used to help // activate earlier at non-ideal resolutions. if (tiling->contents_scale() >= min_acceptable_high_res_scale && tiling->contents_scale() <= max_acceptable_high_res_scale) continue; // Keep low resolution tilings, if the layer should have them. if (layer_tree_impl()->create_low_res_tiling()) { if (tiling->resolution() == LOW_RESOLUTION || tiling->contents_scale() == twin_low_res_scale) continue; } // Don't remove tilings that are being used (and thus would cause a flash.) if (std::find(used_tilings.begin(), used_tilings.end(), tiling) != used_tilings.end()) continue; to_remove.push_back(tiling); } if (to_remove.empty()) return; PictureLayerImpl* recycled_twin = GetRecycledTwinLayer(); // Remove tilings on this tree and the twin tree. for (size_t i = 0; i < to_remove.size(); ++i) { const PictureLayerTiling* twin_tiling = GetPendingOrActiveTwinTiling(to_remove[i]); // Only remove tilings from the twin layer if they have // NON_IDEAL_RESOLUTION. if (twin_tiling && twin_tiling->resolution() == NON_IDEAL_RESOLUTION) twin->RemoveTiling(to_remove[i]->contents_scale()); // Remove the tiling from the recycle tree. Note that we ignore resolution, // since we don't need to maintain high/low res on the recycle tree. if (recycled_twin) recycled_twin->RemoveTiling(to_remove[i]->contents_scale()); // TODO(enne): temporary sanity CHECK for http://crbug.com/358350 CHECK_NE(HIGH_RESOLUTION, to_remove[i]->resolution()); tilings_->Remove(to_remove[i]); } DCHECK_GT(tilings_->num_tilings(), 0u); SanityCheckTilingState(); } float PictureLayerImpl::MinimumContentsScale() const { float setting_min = layer_tree_impl()->settings().minimum_contents_scale; // If the contents scale is less than 1 / width (also for height), // then it will end up having less than one pixel of content in that // dimension. Bump the minimum contents scale up in this case to prevent // this from happening. int min_dimension = std::min(pile_->tiling_size().width(), pile_->tiling_size().height()); if (!min_dimension) return setting_min; return std::max(1.f / min_dimension, setting_min); } void PictureLayerImpl::ResetRasterScale() { raster_page_scale_ = 0.f; raster_device_scale_ = 0.f; raster_source_scale_ = 0.f; raster_contents_scale_ = 0.f; low_res_raster_contents_scale_ = 0.f; raster_source_scale_is_fixed_ = false; // When raster scales aren't valid, don't update tile priorities until // this layer has been updated via UpdateDrawProperties. should_update_tile_priorities_ = false; } bool PictureLayerImpl::CanHaveTilings() const { if (pile_->is_solid_color()) return false; if (!DrawsContent()) return false; if (!pile_->HasRecordings()) return false; return true; } bool PictureLayerImpl::CanHaveTilingWithScale(float contents_scale) const { if (!CanHaveTilings()) return false; if (contents_scale < MinimumContentsScale()) return false; return true; } void PictureLayerImpl::SanityCheckTilingState() const { #if DCHECK_IS_ON // Recycle tree doesn't have any restrictions. if (layer_tree_impl()->IsRecycleTree()) return; if (!CanHaveTilings()) { DCHECK_EQ(0u, tilings_->num_tilings()); return; } if (tilings_->num_tilings() == 0) return; // We should only have one high res tiling. DCHECK_EQ(1, tilings_->NumHighResTilings()); #endif } bool PictureLayerImpl::ShouldAdjustRasterScaleDuringScaleAnimations() const { return layer_tree_impl()->use_gpu_rasterization(); } float PictureLayerImpl::MaximumTilingContentsScale() const { float max_contents_scale = MinimumContentsScale(); for (size_t i = 0; i < tilings_->num_tilings(); ++i) { const PictureLayerTiling* tiling = tilings_->tiling_at(i); max_contents_scale = std::max(max_contents_scale, tiling->contents_scale()); } return max_contents_scale; } void PictureLayerImpl::UpdateIdealScales() { DCHECK(CanHaveTilings()); float min_contents_scale = MinimumContentsScale(); DCHECK_GT(min_contents_scale, 0.f); float min_page_scale = layer_tree_impl()->min_page_scale_factor(); DCHECK_GT(min_page_scale, 0.f); float min_device_scale = 1.f; float min_source_scale = min_contents_scale / min_page_scale / min_device_scale; float ideal_page_scale = draw_properties().page_scale_factor; float ideal_device_scale = draw_properties().device_scale_factor; float ideal_source_scale = draw_properties().ideal_contents_scale / ideal_page_scale / ideal_device_scale; ideal_contents_scale_ = std::max(draw_properties().ideal_contents_scale, min_contents_scale); ideal_page_scale_ = draw_properties().page_scale_factor; ideal_device_scale_ = draw_properties().device_scale_factor; ideal_source_scale_ = std::max(ideal_source_scale, min_source_scale); } void PictureLayerImpl::GetDebugBorderProperties( SkColor* color, float* width) const { *color = DebugColors::TiledContentLayerBorderColor(); *width = DebugColors::TiledContentLayerBorderWidth(layer_tree_impl()); } void PictureLayerImpl::GetAllTilesForTracing( std::set* tiles) const { if (!tilings_) return; for (size_t i = 0; i < tilings_->num_tilings(); ++i) tilings_->tiling_at(i)->GetAllTilesForTracing(tiles); } void PictureLayerImpl::AsValueInto(base::debug::TracedValue* state) const { const_cast(this)->DoPostCommitInitializationIfNeeded(); LayerImpl::AsValueInto(state); state->SetDouble("ideal_contents_scale", ideal_contents_scale_); state->SetDouble("geometry_contents_scale", MaximumTilingContentsScale()); state->BeginArray("tilings"); tilings_->AsValueInto(state); state->EndArray(); state->BeginArray("tile_priority_rect"); MathUtil::AddToTracedValue(GetViewportForTilePriorityInContentSpace(), state); state->EndArray(); state->BeginArray("visible_rect"); MathUtil::AddToTracedValue(visible_content_rect(), state); state->EndArray(); state->BeginArray("pictures"); pile_->AsValueInto(state); state->EndArray(); state->BeginArray("invalidation"); invalidation_.AsValueInto(state); state->EndArray(); state->BeginArray("coverage_tiles"); for (PictureLayerTilingSet::CoverageIterator iter( tilings_.get(), 1.f, gfx::Rect(pile_->tiling_size()), ideal_contents_scale_); iter; ++iter) { state->BeginDictionary(); state->BeginArray("geometry_rect"); MathUtil::AddToTracedValue(iter.geometry_rect(), state); state->EndArray(); if (*iter) TracedValue::SetIDRef(*iter, state, "tile"); state->EndDictionary(); } state->EndArray(); } size_t PictureLayerImpl::GPUMemoryUsageInBytes() const { const_cast(this)->DoPostCommitInitializationIfNeeded(); return tilings_->GPUMemoryUsageInBytes(); } void PictureLayerImpl::RunMicroBenchmark(MicroBenchmarkImpl* benchmark) { benchmark->RunOnLayer(this); } WhichTree PictureLayerImpl::GetTree() const { return layer_tree_impl()->IsActiveTree() ? ACTIVE_TREE : PENDING_TREE; } bool PictureLayerImpl::IsOnActiveOrPendingTree() const { return !layer_tree_impl()->IsRecycleTree(); } bool PictureLayerImpl::HasValidTilePriorities() const { return IsOnActiveOrPendingTree() && IsDrawnRenderSurfaceLayerListMember(); } bool PictureLayerImpl::AllTilesRequiredForActivationAreReadyToDraw() const { if (!layer_tree_impl()->IsPendingTree()) return true; if (!HasValidTilePriorities()) return true; if (!tilings_) return true; if (visible_rect_for_tile_priority_.IsEmpty()) return true; gfx::Rect rect = GetViewportForTilePriorityInContentSpace(); rect.Intersect(visible_rect_for_tile_priority_); for (size_t i = 0; i < tilings_->num_tilings(); ++i) { PictureLayerTiling* tiling = tilings_->tiling_at(i); if (tiling->resolution() != HIGH_RESOLUTION && tiling->resolution() != LOW_RESOLUTION) continue; for (PictureLayerTiling::CoverageIterator iter(tiling, 1.f, rect); iter; ++iter) { const Tile* tile = *iter; // A null tile (i.e. missing recording) can just be skipped. // TODO(vmpstr): Verify this is true if we create tiles in raster // iterators. if (!tile) continue; // We can't check tile->required_for_activation, because that value might // be out of date. It is updated in the raster/eviction iterators. // TODO(vmpstr): Remove the comment once you can't access this information // from the tile. if (tiling->IsTileRequiredForActivation(tile) && !tile->IsReadyToDraw()) { TRACE_EVENT_INSTANT0("cc", "PictureLayerImpl::" "AllTilesRequiredForActivationAreReadyToDraw not " "ready to activate", TRACE_EVENT_SCOPE_THREAD); return false; } } } return true; } PictureLayerImpl::LayerRasterTileIterator::LayerRasterTileIterator() : layer_(nullptr), current_stage_(arraysize(stages_)) { } PictureLayerImpl::LayerRasterTileIterator::LayerRasterTileIterator( PictureLayerImpl* layer, bool prioritize_low_res) : layer_(layer), current_stage_(0) { DCHECK(layer_); // Early out if the layer has no tilings. if (!layer_->tilings_ || !layer_->tilings_->num_tilings()) { current_stage_ = arraysize(stages_); return; } // Tiles without valid priority are treated as having lowest priority and // never considered for raster. if (!layer_->HasValidTilePriorities()) { current_stage_ = arraysize(stages_); return; } // Find high and low res tilings and initialize the iterators. for (size_t i = 0; i < layer_->tilings_->num_tilings(); ++i) { PictureLayerTiling* tiling = layer_->tilings_->tiling_at(i); if (tiling->resolution() == HIGH_RESOLUTION) { iterators_[HIGH_RES] = PictureLayerTiling::TilingRasterTileIterator(tiling); } if (prioritize_low_res && tiling->resolution() == LOW_RESOLUTION) { iterators_[LOW_RES] = PictureLayerTiling::TilingRasterTileIterator(tiling); } } if (prioritize_low_res) { stages_[0].iterator_type = LOW_RES; stages_[0].tile_type = TilePriority::NOW; stages_[1].iterator_type = HIGH_RES; stages_[1].tile_type = TilePriority::NOW; } else { stages_[0].iterator_type = HIGH_RES; stages_[0].tile_type = TilePriority::NOW; stages_[1].iterator_type = LOW_RES; stages_[1].tile_type = TilePriority::NOW; } stages_[2].iterator_type = HIGH_RES; stages_[2].tile_type = TilePriority::SOON; stages_[3].iterator_type = HIGH_RES; stages_[3].tile_type = TilePriority::EVENTUALLY; IteratorType index = stages_[current_stage_].iterator_type; TilePriority::PriorityBin tile_type = stages_[current_stage_].tile_type; if (!iterators_[index] || iterators_[index].get_type() != tile_type) AdvanceToNextStage(); } PictureLayerImpl::LayerRasterTileIterator::~LayerRasterTileIterator() {} PictureLayerImpl::LayerRasterTileIterator::operator bool() const { return current_stage_ < arraysize(stages_); } PictureLayerImpl::LayerRasterTileIterator& PictureLayerImpl::LayerRasterTileIterator:: operator++() { IteratorType index = stages_[current_stage_].iterator_type; TilePriority::PriorityBin tile_type = stages_[current_stage_].tile_type; // First advance the iterator. DCHECK(iterators_[index]); DCHECK(iterators_[index].get_type() == tile_type); ++iterators_[index]; if (!iterators_[index] || iterators_[index].get_type() != tile_type) AdvanceToNextStage(); return *this; } Tile* PictureLayerImpl::LayerRasterTileIterator::operator*() { DCHECK(*this); IteratorType index = stages_[current_stage_].iterator_type; DCHECK(iterators_[index]); DCHECK(iterators_[index].get_type() == stages_[current_stage_].tile_type); return *iterators_[index]; } const Tile* PictureLayerImpl::LayerRasterTileIterator::operator*() const { DCHECK(*this); IteratorType index = stages_[current_stage_].iterator_type; DCHECK(iterators_[index]); DCHECK(iterators_[index].get_type() == stages_[current_stage_].tile_type); return *iterators_[index]; } void PictureLayerImpl::LayerRasterTileIterator::AdvanceToNextStage() { DCHECK_LT(current_stage_, arraysize(stages_)); ++current_stage_; while (current_stage_ < arraysize(stages_)) { IteratorType index = stages_[current_stage_].iterator_type; TilePriority::PriorityBin tile_type = stages_[current_stage_].tile_type; if (iterators_[index] && iterators_[index].get_type() == tile_type) break; ++current_stage_; } } PictureLayerImpl::LayerEvictionTileIterator::LayerEvictionTileIterator() : layer_(nullptr), tree_priority_(SAME_PRIORITY_FOR_BOTH_TREES), current_category_(PictureLayerTiling::EVENTUALLY), current_tiling_range_type_(PictureLayerTilingSet::HIGHER_THAN_HIGH_RES), current_tiling_(0u) { } PictureLayerImpl::LayerEvictionTileIterator::LayerEvictionTileIterator( PictureLayerImpl* layer, TreePriority tree_priority) : layer_(layer), tree_priority_(tree_priority), current_category_(PictureLayerTiling::EVENTUALLY), current_tiling_range_type_(PictureLayerTilingSet::HIGHER_THAN_HIGH_RES), current_tiling_(CurrentTilingRange().start - 1u) { // TODO(vmpstr): Once tile priorities are determined by the iterators, ensure // that layers that don't have valid tile priorities have lowest priorities so // they evict their tiles first (crbug.com/381704) DCHECK(layer_->tilings_); do { if (!AdvanceToNextTiling()) break; current_iterator_ = PictureLayerTiling::TilingEvictionTileIterator( layer_->tilings_->tiling_at(CurrentTilingIndex()), tree_priority, current_category_); } while (!current_iterator_); } PictureLayerImpl::LayerEvictionTileIterator::~LayerEvictionTileIterator() { } Tile* PictureLayerImpl::LayerEvictionTileIterator::operator*() { DCHECK(*this); return *current_iterator_; } const Tile* PictureLayerImpl::LayerEvictionTileIterator::operator*() const { DCHECK(*this); return *current_iterator_; } PictureLayerImpl::LayerEvictionTileIterator& PictureLayerImpl::LayerEvictionTileIterator:: operator++() { DCHECK(*this); ++current_iterator_; while (!current_iterator_) { if (!AdvanceToNextTiling()) break; current_iterator_ = PictureLayerTiling::TilingEvictionTileIterator( layer_->tilings_->tiling_at(CurrentTilingIndex()), tree_priority_, current_category_); } return *this; } PictureLayerImpl::LayerEvictionTileIterator::operator bool() const { return !!current_iterator_; } bool PictureLayerImpl::LayerEvictionTileIterator::AdvanceToNextCategory() { switch (current_category_) { case PictureLayerTiling::EVENTUALLY: current_category_ = PictureLayerTiling::EVENTUALLY_AND_REQUIRED_FOR_ACTIVATION; return true; case PictureLayerTiling::EVENTUALLY_AND_REQUIRED_FOR_ACTIVATION: current_category_ = PictureLayerTiling::SOON; return true; case PictureLayerTiling::SOON: current_category_ = PictureLayerTiling::SOON_AND_REQUIRED_FOR_ACTIVATION; return true; case PictureLayerTiling::SOON_AND_REQUIRED_FOR_ACTIVATION: current_category_ = PictureLayerTiling::NOW; return true; case PictureLayerTiling::NOW: current_category_ = PictureLayerTiling::NOW_AND_REQUIRED_FOR_ACTIVATION; return true; case PictureLayerTiling::NOW_AND_REQUIRED_FOR_ACTIVATION: return false; } NOTREACHED(); return false; } bool PictureLayerImpl::LayerEvictionTileIterator::AdvanceToNextTilingRangeType() { switch (current_tiling_range_type_) { case PictureLayerTilingSet::HIGHER_THAN_HIGH_RES: current_tiling_range_type_ = PictureLayerTilingSet::LOWER_THAN_LOW_RES; return true; case PictureLayerTilingSet::LOWER_THAN_LOW_RES: current_tiling_range_type_ = PictureLayerTilingSet::BETWEEN_HIGH_AND_LOW_RES; return true; case PictureLayerTilingSet::BETWEEN_HIGH_AND_LOW_RES: current_tiling_range_type_ = PictureLayerTilingSet::LOW_RES; return true; case PictureLayerTilingSet::LOW_RES: current_tiling_range_type_ = PictureLayerTilingSet::HIGH_RES; return true; case PictureLayerTilingSet::HIGH_RES: if (!AdvanceToNextCategory()) return false; current_tiling_range_type_ = PictureLayerTilingSet::HIGHER_THAN_HIGH_RES; return true; } NOTREACHED(); return false; } bool PictureLayerImpl::LayerEvictionTileIterator::AdvanceToNextTiling() { DCHECK_NE(current_tiling_, CurrentTilingRange().end); ++current_tiling_; while (current_tiling_ == CurrentTilingRange().end) { if (!AdvanceToNextTilingRangeType()) return false; current_tiling_ = CurrentTilingRange().start; } return true; } PictureLayerTilingSet::TilingRange PictureLayerImpl::LayerEvictionTileIterator::CurrentTilingRange() const { return layer_->tilings_->GetTilingRange(current_tiling_range_type_); } size_t PictureLayerImpl::LayerEvictionTileIterator::CurrentTilingIndex() const { DCHECK_NE(current_tiling_, CurrentTilingRange().end); switch (current_tiling_range_type_) { case PictureLayerTilingSet::HIGHER_THAN_HIGH_RES: case PictureLayerTilingSet::LOW_RES: case PictureLayerTilingSet::HIGH_RES: return current_tiling_; // Tilings in the following ranges are accessed in reverse order. case PictureLayerTilingSet::BETWEEN_HIGH_AND_LOW_RES: case PictureLayerTilingSet::LOWER_THAN_LOW_RES: { PictureLayerTilingSet::TilingRange tiling_range = CurrentTilingRange(); size_t current_tiling_range_offset = current_tiling_ - tiling_range.start; return tiling_range.end - 1 - current_tiling_range_offset; } } NOTREACHED(); return 0; } } // namespace cc