// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // We would like to use M_PI on windows too. #ifdef _WIN32 #define _USE_MATH_DEFINES #endif #include #include #include #include "base/memory/ptr_util.h" #include "base/stl_util.h" #include "cc/output/bsp_compare_result.h" #include "cc/quads/draw_polygon.h" #include "testing/gtest/include/gtest/gtest.h" #include "ui/gfx/transform.h" namespace cc { #if !defined(OS_WIN) void DrawPolygon::RecomputeNormalForTesting() { ConstructNormal(); } #endif static int sign(float v) { static const float epsilon = 0.00001f; if (v > epsilon) return 1; if (v < -epsilon) return -1; return 0; } bool IsPlanarForTesting(const DrawPolygon& p) { static const float epsilon = 0.00001f; for (size_t i = 1; i < p.points_.size(); i++) { if (gfx::DotProduct(p.points_[i] - p.points_[0], p.normal_) > epsilon) return false; } return true; } bool IsConvexForTesting(const DrawPolygon& p) { if (p.points_.size() < 3) return true; gfx::Vector3dF prev = p.points_[p.points_.size() - 1] - p.points_[p.points_.size() - 2]; gfx::Vector3dF next = p.points_[0] - p.points_[p.points_.size() - 1]; int ccw = sign(gfx::DotProduct(CrossProduct(prev, next), p.normal_)); for (size_t i = 1; i < p.points_.size(); i++) { prev = next; next = p.points_[i] - p.points_[i - 1]; int next_sign = sign(gfx::DotProduct(CrossProduct(prev, next), p.normal_)); if (ccw == 0) ccw = next_sign; if (next_sign != 0 && next_sign != ccw) return false; } return true; } namespace { #define CREATE_NEW_DRAW_POLYGON(name, points_vector, normal, polygon_id) \ DrawPolygon name(NULL, points_vector, normal, polygon_id) #define CREATE_NEW_DRAW_POLYGON_PTR(name, points_vector, normal, polygon_id) \ std::unique_ptr name(base::MakeUnique( \ nullptr, points_vector, normal, polygon_id)) #define CREATE_TEST_DRAW_FORWARD_POLYGON(name, points_vector, id) \ DrawPolygon name(NULL, points_vector, gfx::Vector3dF(0, 0, 1.0f), id); \ name.RecomputeNormalForTesting() #define CREATE_TEST_DRAW_REVERSE_POLYGON(name, points_vector, id) \ DrawPolygon name(NULL, points_vector, gfx::Vector3dF(0, 0, -1.0f), id); \ name.RecomputeNormalForTesting() #define EXPECT_FLOAT_WITHIN_EPSILON_OF(a, b) \ LOG(WARNING) << "a=" << a << " b= " << b << " diff=" << std::abs(a - b); \ EXPECT_TRUE(std::abs(a - b) < std::numeric_limits::epsilon()); #define EXPECT_POINT_EQ(point_a, point_b) \ EXPECT_FLOAT_EQ(point_a.x(), point_b.x()); \ EXPECT_FLOAT_EQ(point_a.y(), point_b.y()); \ EXPECT_FLOAT_EQ(point_a.z(), point_b.z()); #define EXPECT_NORMAL(poly, n_x, n_y, n_z) \ EXPECT_FLOAT_WITHIN_EPSILON_OF(poly.normal().x(), n_x); \ EXPECT_FLOAT_WITHIN_EPSILON_OF(poly.normal().y(), n_y); \ EXPECT_FLOAT_WITHIN_EPSILON_OF(poly.normal().z(), n_z); static void ValidatePoints(const DrawPolygon& polygon, const std::vector& points) { EXPECT_EQ(polygon.points().size(), points.size()); for (size_t i = 0; i < points.size(); i++) { EXPECT_POINT_EQ(polygon.points()[i], points[i]); } } static void ValidatePointsWithinDeltaOf(const DrawPolygon& polygon, const std::vector& points, float delta) { EXPECT_EQ(polygon.points().size(), points.size()); for (size_t i = 0; i < points.size(); i++) { EXPECT_LE((polygon.points()[i] - points[i]).Length(), delta); } } // A simple square in a plane. TEST(DrawPolygonConstructionTest, NormalNormal) { gfx::Transform Identity; DrawPolygon polygon(NULL, gfx::RectF(10.0f, 10.0f), Identity, 1); EXPECT_NORMAL(polygon, 0.0f, 0.0f, 1.0f); } // More complicated shapes. TEST(DrawPolygonConstructionTest, TestNormal) { std::vector vertices; vertices.push_back(gfx::Point3F(0.0f, 10.0f, 0.0f)); vertices.push_back(gfx::Point3F(0.0f, 0.0f, 0.0f)); vertices.push_back(gfx::Point3F(10.0f, 0.0f, 0.0f)); vertices.push_back(gfx::Point3F(10.0f, 10.0f, 0.0f)); CREATE_TEST_DRAW_FORWARD_POLYGON(polygon, vertices, 1); EXPECT_NORMAL(polygon, 0.0f, 0.0f, 1.0f); } TEST(DrawPolygonConstructionTest, ClippedNormal) { std::vector vertices; vertices.push_back(gfx::Point3F(0.1f, 10.0f, 0.0f)); vertices.push_back(gfx::Point3F(0.0f, 9.9f, 0.0f)); vertices.push_back(gfx::Point3F(0.0f, 10.0f, 0.0f)); vertices.push_back(gfx::Point3F(0.0f, 0.0f, 0.0f)); vertices.push_back(gfx::Point3F(10.0f, 0.0f, 0.0f)); vertices.push_back(gfx::Point3F(10.0f, 10.0f, 0.0f)); CREATE_TEST_DRAW_FORWARD_POLYGON(polygon, vertices, 1); EXPECT_NORMAL(polygon, 0.0f, 0.0f, 1.0f); } TEST(DrawPolygonConstructionTest, SlimTriangleNormal) { std::vector vertices; vertices.push_back(gfx::Point3F(0.0f, 0.0f, 0.0f)); vertices.push_back(gfx::Point3F(5000.0f, 0.0f, 0.0f)); vertices.push_back(gfx::Point3F(10000.0f, 1.0f, 0.0f)); CREATE_TEST_DRAW_FORWARD_POLYGON(polygon, vertices, 2); EXPECT_NORMAL(polygon, 0.0f, 0.0f, 1.0f); } TEST(DrawPolygonConstructionTest, ManyVertexNormal) { std::vector vertices_c; std::vector vertices_d; for (int i = 0; i < 100; i++) { vertices_c.push_back( gfx::Point3F(cos(i * M_PI / 50), sin(i * M_PI / 50), 0.0f)); vertices_d.push_back(gfx::Point3F(cos(i * M_PI / 50) + 99.0f, sin(i * M_PI / 50) + 99.0f, 100.0f)); } CREATE_TEST_DRAW_FORWARD_POLYGON(polygon_c, vertices_c, 3); EXPECT_NORMAL(polygon_c, 0.0f, 0.0f, 1.0f); CREATE_TEST_DRAW_FORWARD_POLYGON(polygon_d, vertices_d, 4); EXPECT_NORMAL(polygon_c, 0.0f, 0.0f, 1.0f); } // A simple rect being transformed. TEST(DrawPolygonConstructionTest, SimpleNormal) { gfx::RectF src(-0.1f, -10.0f, 0.2f, 20.0f); gfx::Transform transform_i(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); DrawPolygon polygon_i(NULL, src, transform_i, 1); EXPECT_NORMAL(polygon_i, 0.0f, 0.0f, 1.0f); } TEST(DrawPolygonConstructionTest, DISABLED_NormalInvertXY) { gfx::RectF src(-0.1f, -10.0f, 0.2f, 20.0f); gfx::Transform transform(0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); DrawPolygon polygon_a(NULL, src, transform, 2); EXPECT_NORMAL(polygon_a, 0.0f, 0.0f, 1.0f); } TEST(DrawPolygonConstructionTest, DISABLED_NormalInvertXZ) { gfx::RectF src(-0.1f, -10.0f, 0.2f, 20.0f); gfx::Transform transform(0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1); DrawPolygon polygon_b(NULL, src, transform, 3); EXPECT_NORMAL(polygon_b, 1.0f, 0.0f, 0.0f); } TEST(DrawPolygonConstructionTest, DISABLED_NormalInvertYZ) { gfx::RectF src(-0.1f, -10.0f, 0.2f, 20.0f); gfx::Transform transform(1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1); DrawPolygon polygon_c(NULL, src, transform, 4); EXPECT_NORMAL(polygon_c, 0.0f, 1.0f, 0.0f); } TEST(DrawPolygonConstructionTest, NormalRotate90) { gfx::RectF src(-0.1f, -10.0f, 0.2f, 20.0f); gfx::Transform transform(0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1); DrawPolygon polygon_b(NULL, src, transform, 3); EXPECT_NORMAL(polygon_b, 0.0f, 0.0f, 1.0f); } TEST(DrawPolygonConstructionTest, InvertXNormal) { gfx::RectF src(-0.1f, -10.0f, 0.2f, 20.0f); gfx::Transform transform(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); DrawPolygon polygon_d(NULL, src, transform, 5); EXPECT_NORMAL(polygon_d, 0.0f, 0.0f, 1.0f); } TEST(DrawPolygonConstructionTest, InvertYNormal) { gfx::RectF src(-0.1f, -10.0f, 0.2f, 20.0f); gfx::Transform transform(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); DrawPolygon polygon_d(NULL, src, transform, 5); EXPECT_NORMAL(polygon_d, 0.0f, 0.0f, 1.0f); } TEST(DrawPolygonConstructionTest, InvertZNormal) { gfx::RectF src(-0.1f, -10.0f, 0.2f, 20.0f); gfx::Transform transform(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1); DrawPolygon polygon_d(NULL, src, transform, 5); EXPECT_NORMAL(polygon_d, 0.0f, 0.0f, -1.0f); } // Two quads are nearly touching but definitely ordered. Second one should // compare in front. TEST(DrawPolygonSplitTest, NearlyTouchingOrder) { std::vector vertices_a; vertices_a.push_back(gfx::Point3F(0.0f, 10.0f, 0.0f)); vertices_a.push_back(gfx::Point3F(0.0f, 0.0f, 0.0f)); vertices_a.push_back(gfx::Point3F(10.0f, 0.0f, 0.0f)); vertices_a.push_back(gfx::Point3F(10.0f, 10.0f, 0.0f)); std::vector vertices_b; vertices_b.push_back(gfx::Point3F(0.0f, 10.0f, -1.0f)); vertices_b.push_back(gfx::Point3F(0.0f, 0.0f, -1.0f)); vertices_b.push_back(gfx::Point3F(10.0f, 0.0f, -1.0f)); vertices_b.push_back(gfx::Point3F(10.0f, 10.0f, -1.0f)); gfx::Vector3dF normal(0.0f, 0.0f, 1.0f); CREATE_NEW_DRAW_POLYGON(polygon_a, vertices_a, normal, 0); CREATE_NEW_DRAW_POLYGON_PTR(polygon_b, vertices_b, normal, 1); std::unique_ptr front; std::unique_ptr back; bool is_coplanar; polygon_a.SplitPolygon(std::move(polygon_b), &front, &back, &is_coplanar); EXPECT_EQ(is_coplanar, false); EXPECT_EQ(front, nullptr); EXPECT_NE(back, nullptr); } // Two quads are definitely not touching and so no split should occur. TEST(DrawPolygonSplitTest, NotClearlyInFront) { std::vector vertices_a; vertices_a.push_back(gfx::Point3F(87.2f, 1185.0f, 0.9f)); vertices_a.push_back(gfx::Point3F(288.3f, 1185.0f, -0.7f)); vertices_a.push_back(gfx::Point3F(288.3f, 1196.0f, -0.7f)); vertices_a.push_back(gfx::Point3F(87.2f, 1196.0f, 0.9f)); gfx::Vector3dF normal_a = gfx::CrossProduct(vertices_a[1] - vertices_a[0], vertices_a[1] - vertices_a[2]); normal_a.Scale(1.0f / normal_a.Length()); std::vector vertices_b; vertices_b.push_back(gfx::Point3F(62.1f, 1034.7f, 1.0f)); vertices_b.push_back(gfx::Point3F(313.4f, 1035.3f, -1.0f)); vertices_b.push_back(gfx::Point3F(313.4f, 1196.0f, -1.0f)); vertices_b.push_back(gfx::Point3F(62.1f, 1196.0f, 1.0f)); gfx::Vector3dF normal_b = gfx::CrossProduct(vertices_b[1] - vertices_b[0], vertices_b[1] - vertices_b[2]); normal_b.Scale(1.0f / normal_b.Length()); CREATE_NEW_DRAW_POLYGON(polygon_a, vertices_a, normal_a, 0); CREATE_NEW_DRAW_POLYGON_PTR(polygon_b, vertices_b, normal_b, 1); std::unique_ptr front; std::unique_ptr back; bool is_coplanar; polygon_a.SplitPolygon(std::move(polygon_b), &front, &back, &is_coplanar); EXPECT_EQ(is_coplanar, false); EXPECT_NE(front, nullptr); EXPECT_EQ(back, nullptr); } // Two quads are definitely not touching and so no split should occur. TEST(DrawPolygonSplitTest, NotTouchingNoSplit) { std::vector vertices_a; vertices_a.push_back(gfx::Point3F(0.0f, 10.0f, 0.0f)); vertices_a.push_back(gfx::Point3F(0.0f, 0.0f, 0.0f)); vertices_a.push_back(gfx::Point3F(10.0f, 0.0f, 0.0f)); vertices_a.push_back(gfx::Point3F(10.0f, 10.0f, 0.0f)); std::vector vertices_b; vertices_b.push_back(gfx::Point3F(5.0f, 10.0f, 5.0f)); vertices_b.push_back(gfx::Point3F(5.0f, 10.0f, 15.0f)); vertices_b.push_back(gfx::Point3F(5.0f, 0.0f, 15.0f)); vertices_b.push_back(gfx::Point3F(5.0f, 0.0f, 5.0f)); CREATE_NEW_DRAW_POLYGON(polygon_a, vertices_a, gfx::Vector3dF(0.0f, 0.0f, 1.0f), 0); CREATE_NEW_DRAW_POLYGON_PTR(polygon_b, vertices_b, gfx::Vector3dF(-1.0f, 0.0f, 0.0f), 1); std::unique_ptr front; std::unique_ptr back; bool is_coplanar; polygon_a.SplitPolygon(std::move(polygon_b), &front, &back, &is_coplanar); EXPECT_EQ(is_coplanar, false); EXPECT_NE(front, nullptr); EXPECT_EQ(back, nullptr); } // One quad is resting against another, but doesn't cross its plane so no // split // should occur. TEST(DrawPolygonSplitTest, BarelyTouchingNoSplit) { std::vector vertices_a; vertices_a.push_back(gfx::Point3F(0.0f, 10.0f, 0.0f)); vertices_a.push_back(gfx::Point3F(0.0f, 0.0f, 0.0f)); vertices_a.push_back(gfx::Point3F(10.0f, 0.0f, 0.0f)); vertices_a.push_back(gfx::Point3F(10.0f, 10.0f, 0.0f)); std::vector vertices_b; vertices_b.push_back(gfx::Point3F(5.0f, 10.0f, 0.0f)); vertices_b.push_back(gfx::Point3F(5.0f, 10.0f, -10.0f)); vertices_b.push_back(gfx::Point3F(5.0f, 0.0f, -10.0f)); vertices_b.push_back(gfx::Point3F(5.0f, 0.0f, 0.0f)); CREATE_NEW_DRAW_POLYGON(polygon_a, vertices_a, gfx::Vector3dF(0.0f, 0.0f, 1.0f), 0); CREATE_NEW_DRAW_POLYGON_PTR(polygon_b, vertices_b, gfx::Vector3dF(-1.0f, 0.0f, 0.0f), 1); std::unique_ptr front; std::unique_ptr back; bool is_coplanar; polygon_a.SplitPolygon(std::move(polygon_b), &front, &back, &is_coplanar); EXPECT_EQ(is_coplanar, false); EXPECT_EQ(front, nullptr); EXPECT_NE(back, nullptr); } // One quad intersects a pent with an occluded side. TEST(DrawPolygonSplitTest, SlimClip) { std::vector vertices_a; vertices_a.push_back(gfx::Point3F(0.0f, 10.0f, 0.0f)); vertices_a.push_back(gfx::Point3F(0.0f, 0.0f, 0.0f)); vertices_a.push_back(gfx::Point3F(10.0f, 0.0f, 0.0f)); vertices_a.push_back(gfx::Point3F(10.0f, 10.0f, 0.0f)); std::vector vertices_b; vertices_b.push_back(gfx::Point3F(9.0f, 9.0f, 5.000f)); vertices_b.push_back(gfx::Point3F(1.0f, 1.0f, 0.001f)); vertices_b.push_back(gfx::Point3F(1.0f, 1.0f, 0.000f)); vertices_b.push_back(gfx::Point3F(1.002f, 1.002f, -0.005f)); vertices_b.push_back(gfx::Point3F(9.0f, 9.0f, -4.000f)); CREATE_NEW_DRAW_POLYGON_PTR(polygon_a, vertices_a, gfx::Vector3dF(0.0f, 0.0f, 1.0f), 0); CREATE_NEW_DRAW_POLYGON_PTR( polygon_b, vertices_b, gfx::Vector3dF(sqrt(2) / 2, -sqrt(2) / 2, 0.000000), 1); // These are well formed, convex polygons. EXPECT_TRUE(IsPlanarForTesting(*polygon_a)); EXPECT_TRUE(IsConvexForTesting(*polygon_a)); EXPECT_TRUE(IsPlanarForTesting(*polygon_b)); EXPECT_TRUE(IsConvexForTesting(*polygon_b)); std::unique_ptr front_polygon; std::unique_ptr back_polygon; bool is_coplanar; polygon_a->SplitPolygon(std::move(polygon_b), &front_polygon, &back_polygon, &is_coplanar); EXPECT_FALSE(is_coplanar); EXPECT_TRUE(front_polygon != nullptr); EXPECT_TRUE(back_polygon != nullptr); } // One quad intersects another and becomes two pieces. TEST(DrawPolygonSplitTest, BasicSplit) { std::vector vertices_a; vertices_a.push_back(gfx::Point3F(0.0f, 10.0f, 0.0f)); vertices_a.push_back(gfx::Point3F(0.0f, 0.0f, 0.0f)); vertices_a.push_back(gfx::Point3F(10.0f, 0.0f, 0.0f)); vertices_a.push_back(gfx::Point3F(10.0f, 10.0f, 0.0f)); std::vector vertices_b; vertices_b.push_back(gfx::Point3F(5.0f, 10.0f, -5.0f)); vertices_b.push_back(gfx::Point3F(5.0f, 0.0f, -5.0f)); vertices_b.push_back(gfx::Point3F(5.0f, 0.0f, 5.0f)); vertices_b.push_back(gfx::Point3F(5.0f, 10.0f, 5.0f)); CREATE_NEW_DRAW_POLYGON_PTR(polygon_a, vertices_a, gfx::Vector3dF(0.0f, 0.0f, 1.0f), 0); CREATE_NEW_DRAW_POLYGON_PTR(polygon_b, vertices_b, gfx::Vector3dF(-1.0f, 0.0f, 0.0f), 1); std::unique_ptr front_polygon; std::unique_ptr back_polygon; bool is_coplanar; polygon_a->SplitPolygon(std::move(polygon_b), &front_polygon, &back_polygon, &is_coplanar); EXPECT_FALSE(is_coplanar); EXPECT_TRUE(front_polygon != nullptr); EXPECT_TRUE(back_polygon != nullptr); std::vector test_points_a; test_points_a.push_back(gfx::Point3F(5.0f, 0.0f, 0.0f)); test_points_a.push_back(gfx::Point3F(5.0f, 0.0f, 5.0f)); test_points_a.push_back(gfx::Point3F(5.0f, 10.0f, 5.0f)); test_points_a.push_back(gfx::Point3F(5.0f, 10.0f, 0.0f)); std::vector test_points_b; test_points_b.push_back(gfx::Point3F(5.0f, 10.0f, 0.0f)); test_points_b.push_back(gfx::Point3F(5.0f, 10.0f, -5.0f)); test_points_b.push_back(gfx::Point3F(5.0f, 0.0f, -5.0f)); test_points_b.push_back(gfx::Point3F(5.0f, 0.0f, 0.0f)); ValidatePoints(*front_polygon, test_points_a); ValidatePoints(*back_polygon, test_points_b); EXPECT_EQ(4u, front_polygon->points().size()); EXPECT_EQ(4u, back_polygon->points().size()); } // In this test we cut the corner of a quad so that it creates a triangle and // a pentagon as a result. TEST(DrawPolygonSplitTest, AngledSplit) { std::vector vertices_a; vertices_a.push_back(gfx::Point3F(0.0f, 0.0f, 0.0f)); vertices_a.push_back(gfx::Point3F(0.0f, 0.0f, 10.0f)); vertices_a.push_back(gfx::Point3F(10.0f, 0.0f, 10.0f)); vertices_a.push_back(gfx::Point3F(10.0f, 0.0f, 0.0f)); std::vector vertices_b; vertices_b.push_back(gfx::Point3F(2.0f, 5.0f, 1.0f)); vertices_b.push_back(gfx::Point3F(2.0f, -5.0f, 1.0f)); vertices_b.push_back(gfx::Point3F(-1.0f, -5.0f, -2.0f)); vertices_b.push_back(gfx::Point3F(-1.0f, 5.0f, -2.0f)); CREATE_NEW_DRAW_POLYGON_PTR(polygon_a, vertices_a, gfx::Vector3dF(0.0f, 1.0f, 0.0f), 0); CREATE_NEW_DRAW_POLYGON_PTR(polygon_b, vertices_b, gfx::Vector3dF(0.707107f, 0.0f, -0.707107f), 1); std::unique_ptr front_polygon; std::unique_ptr back_polygon; bool is_coplanar; polygon_b->SplitPolygon(std::move(polygon_a), &front_polygon, &back_polygon, &is_coplanar); EXPECT_FALSE(is_coplanar); EXPECT_TRUE(front_polygon != nullptr); EXPECT_TRUE(back_polygon != nullptr); std::vector test_points_a; test_points_a.push_back(gfx::Point3F(10.0f, 0.0f, 9.0f)); test_points_a.push_back(gfx::Point3F(10.0f, 0.0f, 0.0f)); test_points_a.push_back(gfx::Point3F(1.0f, 0.0f, 0.0f)); std::vector test_points_b; test_points_b.push_back(gfx::Point3F(1.0f, 0.0f, 0.0f)); test_points_b.push_back(gfx::Point3F(0.0f, 0.0f, 0.0f)); test_points_b.push_back(gfx::Point3F(0.0f, 0.0f, 10.0f)); test_points_b.push_back(gfx::Point3F(10.0f, 0.0f, 10.0f)); test_points_b.push_back(gfx::Point3F(10.0f, 0.0f, 9.0f)); ValidatePointsWithinDeltaOf(*front_polygon, test_points_a, 1e-6f); ValidatePointsWithinDeltaOf(*back_polygon, test_points_b, 1e-6f); } // This test was derived from crbug.com/693826. An almost coplanar // pair of polygons are used for splitting. In this case, the // splitting plane distance signs are [ 0 0 + - ]. This configuration // represents a case where snapping to the splitting plane causes the // polygon to become twisted. Splitting should still give a valid // result, indicated by all four of the input split polygon vertices // being present in the output polygons. TEST(DrawPolygonSplitTest, AlmostCoplanarSplit) { std::vector vertices_a; vertices_a.push_back(gfx::Point3F(723.814758300781250f, 552.810119628906250f, -206.656036376953125f)); vertices_a.push_back(gfx::Point3F(797.634155273437500f, 549.095703125000000f, -209.802902221679688f)); vertices_a.push_back(gfx::Point3F(799.264648437500000f, 490.325805664062500f, -172.261627197265625f)); vertices_a.push_back(gfx::Point3F(720.732421875000000f, 493.944458007812500f, -168.700469970703125f)); std::vector vertices_b; vertices_b.push_back(gfx::Point3F(720.631286621093750f, 487.595977783203125f, -164.681198120117188f)); vertices_b.push_back(gfx::Point3F(799.672851562500000f, 484.059020996093750f, -168.219161987304688f)); vertices_b.push_back(gfx::Point3F(801.565490722656250f, 416.416809082031250f, -125.007690429687500f)); vertices_b.push_back(gfx::Point3F(717.096801757812500f, 419.792327880859375f, -120.967689514160156f)); CREATE_NEW_DRAW_POLYGON_PTR( splitting_polygon, vertices_a, gfx::Vector3dF(-0.062916249036789f, -0.538499474525452f, -0.840273618698120f), 0); CREATE_NEW_DRAW_POLYGON_PTR( split_polygon, vertices_b, gfx::Vector3dF(-0.061713f, -0.538550f, -0.840330f), 1); std::unique_ptr front_polygon; std::unique_ptr back_polygon; bool is_coplanar; splitting_polygon->SplitPolygon(std::move(split_polygon), &front_polygon, &back_polygon, &is_coplanar); EXPECT_FALSE(is_coplanar); EXPECT_TRUE(front_polygon != nullptr); EXPECT_TRUE(back_polygon != nullptr); for (auto vertex : vertices_b) { EXPECT_TRUE(base::ContainsValue(front_polygon->points(), vertex) || base::ContainsValue(back_polygon->points(), vertex)); } } // In this test we cut the corner of a quad so that it creates a triangle and // a pentagon as a result, and then cut the pentagon. TEST(DrawPolygonSplitTest, DoubleSplit) { std::vector vertices_a; vertices_a.push_back(gfx::Point3F(0.0f, 0.0f, 0.0f)); vertices_a.push_back(gfx::Point3F(0.0f, 0.0f, 10.0f)); vertices_a.push_back(gfx::Point3F(10.0f, 0.0f, 10.0f)); vertices_a.push_back(gfx::Point3F(10.0f, 0.0f, 0.0f)); std::vector vertices_b; vertices_b.push_back(gfx::Point3F(2.0f, 5.0f, 1.0f)); vertices_b.push_back(gfx::Point3F(2.0f, -5.0f, 1.0f)); vertices_b.push_back(gfx::Point3F(-1.0f, -5.0f, -2.0f)); vertices_b.push_back(gfx::Point3F(-1.0f, 5.0f, -2.0f)); CREATE_NEW_DRAW_POLYGON_PTR(polygon_a, vertices_a, gfx::Vector3dF(0.0f, 1.0f, 0.0f), 0); CREATE_NEW_DRAW_POLYGON_PTR(polygon_b, vertices_b, gfx::Vector3dF(sqrt(2) / 2, 0.0f, -sqrt(2) / 2), 1); std::unique_ptr front_polygon; std::unique_ptr back_polygon; bool is_coplanar; polygon_b->SplitPolygon(std::move(polygon_a), &front_polygon, &back_polygon, &is_coplanar); EXPECT_FALSE(is_coplanar); EXPECT_TRUE(front_polygon != nullptr); EXPECT_TRUE(back_polygon != nullptr); EXPECT_EQ(3u, front_polygon->points().size()); EXPECT_EQ(5u, back_polygon->points().size()); std::vector saved_back_polygon_vertices = back_polygon->points(); std::vector vertices_c; vertices_c.push_back(gfx::Point3F(0.0f, 0.0f, 10.0f)); vertices_c.push_back(gfx::Point3F(1.0f, -0.05f, 0.0f)); vertices_c.push_back(gfx::Point3F(10.0f, 0.05f, 9.0f)); CREATE_NEW_DRAW_POLYGON_PTR(polygon_c, vertices_c, gfx::Vector3dF(0.005555f, -0.99997f, 0.005555f), 0); polygon_c->RecomputeNormalForTesting(); std::unique_ptr second_front_polygon; std::unique_ptr second_back_polygon; polygon_c->SplitPolygon(std::move(back_polygon), &second_front_polygon, &second_back_polygon, &is_coplanar); EXPECT_FALSE(is_coplanar); EXPECT_TRUE(second_front_polygon != nullptr); EXPECT_TRUE(second_back_polygon != nullptr); EXPECT_EQ(4u, second_front_polygon->points().size()); EXPECT_EQ(3u, second_back_polygon->points().size()); for (auto vertex : saved_back_polygon_vertices) { EXPECT_TRUE(base::ContainsValue(second_front_polygon->points(), vertex) || base::ContainsValue(second_back_polygon->points(), vertex)); } } TEST(DrawPolygonTransformTest, TransformNormal) { std::vector vertices_a; vertices_a.push_back(gfx::Point3F(1.0f, 0.0f, 1.0f)); vertices_a.push_back(gfx::Point3F(-1.0f, 0.0f, -1.0f)); vertices_a.push_back(gfx::Point3F(0.0f, 1.0f, 0.0f)); CREATE_NEW_DRAW_POLYGON(polygon_a, vertices_a, gfx::Vector3dF(sqrt(2) / 2, 0.0f, -sqrt(2) / 2), 0); EXPECT_NORMAL(polygon_a, sqrt(2) / 2, 0.0f, -sqrt(2) / 2); gfx::Transform transform; transform.RotateAboutYAxis(45.0f); // This would transform the vertices as well, but we are transforming a // DrawPolygon with 0 vertices just to make sure our normal transformation // using the inverse tranpose matrix gives us the right result. polygon_a.TransformToScreenSpace(transform); // Note: We use EXPECT_FLOAT_WITHIN_EPSILON instead of EXPECT_FLOAT_EQUAL here // because some architectures (e.g., Arm64) employ a fused multiply-add // instruction which causes rounding asymmetry and reduces precision. // http://crbug.com/401117. EXPECT_NORMAL(polygon_a, 0.0f, 0.0f, -1.0f); } } // namespace } // namespace cc