// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/raster/raster_source.h" #include #include #include "cc/raster/playback_image_provider.h" #include "cc/test/fake_recording_source.h" #include "cc/test/skia_common.h" #include "cc/test/test_skcanvas.h" #include "cc/tiles/software_image_decode_cache.h" #include "testing/gtest/include/gtest/gtest.h" #include "third_party/skia/include/core/SkPixelRef.h" #include "third_party/skia/include/core/SkRefCnt.h" #include "third_party/skia/include/core/SkShader.h" #include "ui/gfx/geometry/axis_transform2d.h" #include "ui/gfx/geometry/rect.h" #include "ui/gfx/geometry/size_conversions.h" using ::testing::_; using ::testing::StrictMock; using ::testing::Sequence; namespace cc { namespace { gfx::ColorSpace ColorSpaceForTesting() { return gfx::ColorSpace(); } TEST(RasterSourceTest, AnalyzeIsSolidUnscaled) { gfx::Size layer_bounds(400, 400); std::unique_ptr recording_source = FakeRecordingSource::CreateFilledRecordingSource(layer_bounds); PaintFlags solid_flags; SkColor solid_color = SkColorSetARGB(255, 12, 23, 34); solid_flags.setColor(solid_color); SkColor non_solid_color = SkColorSetARGB(128, 45, 56, 67); SkColor color = SK_ColorTRANSPARENT; PaintFlags non_solid_flags; bool is_solid_color = false; non_solid_flags.setColor(non_solid_color); recording_source->add_draw_rect_with_flags(gfx::Rect(layer_bounds), solid_flags); recording_source->Rerecord(); scoped_refptr raster = recording_source->CreateRasterSource(); // Ensure everything is solid. for (int y = 0; y <= 300; y += 100) { for (int x = 0; x <= 300; x += 100) { gfx::Rect rect(x, y, 100, 100); is_solid_color = raster->PerformSolidColorAnalysis(rect, &color); EXPECT_TRUE(is_solid_color) << rect.ToString(); EXPECT_EQ(solid_color, color) << rect.ToString(); } } // Add one non-solid pixel and recreate the raster source. recording_source->add_draw_rect_with_flags(gfx::Rect(50, 50, 1, 1), non_solid_flags); recording_source->Rerecord(); raster = recording_source->CreateRasterSource(); color = SK_ColorTRANSPARENT; is_solid_color = raster->PerformSolidColorAnalysis(gfx::Rect(0, 0, 100, 100), &color); EXPECT_FALSE(is_solid_color); color = SK_ColorTRANSPARENT; is_solid_color = raster->PerformSolidColorAnalysis(gfx::Rect(100, 0, 100, 100), &color); EXPECT_TRUE(is_solid_color); EXPECT_EQ(solid_color, color); // Boundaries should be clipped. color = SK_ColorTRANSPARENT; is_solid_color = raster->PerformSolidColorAnalysis(gfx::Rect(350, 0, 100, 100), &color); EXPECT_TRUE(is_solid_color); EXPECT_EQ(solid_color, color); color = SK_ColorTRANSPARENT; is_solid_color = raster->PerformSolidColorAnalysis(gfx::Rect(0, 350, 100, 100), &color); EXPECT_TRUE(is_solid_color); EXPECT_EQ(solid_color, color); color = SK_ColorTRANSPARENT; is_solid_color = raster->PerformSolidColorAnalysis(gfx::Rect(350, 350, 100, 100), &color); EXPECT_TRUE(is_solid_color); EXPECT_EQ(solid_color, color); } TEST(RasterSourceTest, AnalyzeIsSolidScaled) { gfx::Size layer_bounds(400, 400); const std::vector recording_scales = {1.25f, 1.33f, 1.5f, 1.6f, 1.66f, 2.f, 2.25f, 2.5f}; for (float recording_scale : recording_scales) { std::unique_ptr recording_source = FakeRecordingSource::CreateFilledRecordingSource(layer_bounds); recording_source->SetRecordingScaleFactor(recording_scale); PaintFlags solid_flags; SkColor solid_color = SkColorSetARGB(255, 12, 23, 34); solid_flags.setColor(solid_color); SkColor non_solid_color = SkColorSetARGB(128, 45, 56, 67); SkColor color = SK_ColorTRANSPARENT; PaintFlags non_solid_flags; bool is_solid_color = false; non_solid_flags.setColor(non_solid_color); recording_source->add_draw_rect_with_flags( gfx::ScaleToEnclosingRect(gfx::Rect(layer_bounds), recording_scale), solid_flags); recording_source->Rerecord(); scoped_refptr raster = recording_source->CreateRasterSource(); // Ensure everything is solid. for (int y = 0; y <= 300; y += 100) { for (int x = 0; x <= 300; x += 100) { gfx::Rect rect(x, y, 100, 100); is_solid_color = raster->PerformSolidColorAnalysis(rect, &color); EXPECT_TRUE(is_solid_color) << rect.ToString() << " recording_scale: " << recording_scale; EXPECT_EQ(solid_color, color) << rect.ToString() << " recording_scale: " << recording_scale; } } // Add one non-solid pixel and recreate the raster source. recording_source->add_draw_rect_with_flags( gfx::Rect(std::round(50 * recording_scale), std::round(50 * recording_scale), 1, 1), non_solid_flags); recording_source->Rerecord(); raster = recording_source->CreateRasterSource(); color = SK_ColorTRANSPARENT; is_solid_color = raster->PerformSolidColorAnalysis(gfx::Rect(0, 0, 100, 100), &color); EXPECT_FALSE(is_solid_color) << " recording_scale: " << recording_scale; color = SK_ColorTRANSPARENT; is_solid_color = raster->PerformSolidColorAnalysis(gfx::Rect(0, 0, 51, 51), &color); EXPECT_FALSE(is_solid_color) << " recording_scale: " << recording_scale; color = SK_ColorTRANSPARENT; is_solid_color = raster->PerformSolidColorAnalysis(gfx::Rect(51, 0, 100, 100), &color); EXPECT_TRUE(is_solid_color) << " recording_scale: " << recording_scale; EXPECT_EQ(solid_color, color) << " recording_scale: " << recording_scale; // Boundaries should be clipped. color = SK_ColorTRANSPARENT; is_solid_color = raster->PerformSolidColorAnalysis(gfx::Rect(350, 0, 100, 100), &color); EXPECT_TRUE(is_solid_color) << " recording_scale: " << recording_scale; EXPECT_EQ(solid_color, color) << " recording_scale: " << recording_scale; color = SK_ColorTRANSPARENT; is_solid_color = raster->PerformSolidColorAnalysis(gfx::Rect(0, 350, 100, 100), &color); EXPECT_TRUE(is_solid_color) << " recording_scale: " << recording_scale; EXPECT_EQ(solid_color, color) << " recording_scale: " << recording_scale; color = SK_ColorTRANSPARENT; is_solid_color = raster->PerformSolidColorAnalysis( gfx::Rect(350, 350, 100, 100), &color); EXPECT_TRUE(is_solid_color) << " recording_scale: " << recording_scale; EXPECT_EQ(solid_color, color) << " recording_scale: " << recording_scale; } } TEST(RasterSourceTest, PixelRefIteratorDiscardableRefsOneTile) { gfx::Size layer_bounds(512, 512); std::unique_ptr recording_source = FakeRecordingSource::CreateFilledRecordingSource(layer_bounds); PaintImage discardable_image[2][2]; discardable_image[0][0] = CreateDiscardablePaintImage(gfx::Size(32, 32)); discardable_image[0][1] = CreateDiscardablePaintImage(gfx::Size(32, 32)); discardable_image[1][1] = CreateDiscardablePaintImage(gfx::Size(32, 32)); // Discardable pixel refs are found in the following cells: // |---|---| // | x | x | // |---|---| // | | x | // |---|---| recording_source->add_draw_image(discardable_image[0][0], gfx::Point(0, 0)); recording_source->add_draw_image(discardable_image[0][1], gfx::Point(260, 0)); recording_source->add_draw_image(discardable_image[1][1], gfx::Point(260, 260)); recording_source->Rerecord(); scoped_refptr raster = recording_source->CreateRasterSource(); // Tile sized iterators. These should find only one pixel ref. { gfx::ColorSpace target_color_space = gfx::ColorSpace::CreateSRGB(); std::vector images; raster->GetDiscardableImagesInRect(gfx::Rect(0, 0, 256, 256), &images); EXPECT_EQ(1u, images.size()); DrawImage image(*images[0], 1.f, PaintImage::kDefaultFrameIndex, target_color_space); EXPECT_EQ(discardable_image[0][0], images[0]->paint_image()); EXPECT_EQ(target_color_space, image.target_color_space()); } // Shifted tile sized iterators. These should find only one pixel ref. { gfx::ColorSpace target_color_space = gfx::ColorSpace::CreateXYZD50(); std::vector images; raster->GetDiscardableImagesInRect(gfx::Rect(260, 260, 256, 256), &images); EXPECT_EQ(1u, images.size()); DrawImage image(*images[0], 1.f, PaintImage::kDefaultFrameIndex, target_color_space); EXPECT_EQ(discardable_image[1][1], images[0]->paint_image()); EXPECT_EQ(target_color_space, image.target_color_space()); } // Ensure there's no discardable pixel refs in the empty cell { std::vector images; raster->GetDiscardableImagesInRect(gfx::Rect(0, 256, 256, 256), &images); EXPECT_EQ(0u, images.size()); } // Layer sized iterators. These should find three pixel ref. { std::vector images; raster->GetDiscardableImagesInRect(gfx::Rect(0, 0, 512, 512), &images); EXPECT_EQ(3u, images.size()); EXPECT_EQ(discardable_image[0][0], images[0]->paint_image()); EXPECT_EQ(discardable_image[0][1], images[1]->paint_image()); EXPECT_EQ(discardable_image[1][1], images[2]->paint_image()); } } TEST(RasterSourceTest, RasterFullContents) { gfx::Size layer_bounds(3, 5); float contents_scale = 1.5f; float raster_divisions = 2.f; std::unique_ptr recording_source = FakeRecordingSource::CreateFilledRecordingSource(layer_bounds); recording_source->SetBackgroundColor(SK_ColorBLACK); recording_source->SetClearCanvasWithDebugColor(false); // Because the caller sets content opaque, it also promises that it // has at least filled in layer_bounds opaquely. PaintFlags white_flags; white_flags.setColor(SK_ColorWHITE); recording_source->add_draw_rect_with_flags(gfx::Rect(layer_bounds), white_flags); recording_source->Rerecord(); scoped_refptr raster = recording_source->CreateRasterSource(); gfx::Size content_bounds( gfx::ScaleToCeiledSize(layer_bounds, contents_scale)); // Simulate drawing into different tiles at different offsets. int step_x = std::ceil(content_bounds.width() / raster_divisions); int step_y = std::ceil(content_bounds.height() / raster_divisions); for (int offset_x = 0; offset_x < content_bounds.width(); offset_x += step_x) { for (int offset_y = 0; offset_y < content_bounds.height(); offset_y += step_y) { gfx::Rect content_rect(offset_x, offset_y, step_x, step_y); content_rect.Intersect(gfx::Rect(content_bounds)); // Simulate a canvas rect larger than the content rect. Every pixel // up to one pixel outside the content rect is guaranteed to be opaque. // Outside of that is undefined. gfx::Rect canvas_rect(content_rect); canvas_rect.Inset(0, 0, -1, -1); SkBitmap bitmap; bitmap.allocN32Pixels(canvas_rect.width(), canvas_rect.height()); SkCanvas canvas(bitmap); canvas.clear(SK_ColorTRANSPARENT); raster->PlaybackToCanvas( &canvas, ColorSpaceForTesting(), content_bounds, canvas_rect, canvas_rect, gfx::AxisTransform2d(contents_scale, gfx::Vector2dF()), RasterSource::PlaybackSettings()); SkColor* pixels = reinterpret_cast(bitmap.getPixels()); int num_pixels = bitmap.width() * bitmap.height(); bool all_white = true; for (int i = 0; i < num_pixels; ++i) { EXPECT_EQ(SkColorGetA(pixels[i]), 255u); all_white &= (SkColorGetR(pixels[i]) == 255); all_white &= (SkColorGetG(pixels[i]) == 255); all_white &= (SkColorGetB(pixels[i]) == 255); } // If the canvas doesn't extend past the edge of the content, // it should be entirely white. Otherwise, the edge of the content // will be non-white. EXPECT_EQ(all_white, gfx::Rect(content_bounds).Contains(canvas_rect)); } } } TEST(RasterSourceTest, RasterPartialContents) { gfx::Size layer_bounds(3, 5); float contents_scale = 1.5f; std::unique_ptr recording_source = FakeRecordingSource::CreateFilledRecordingSource(layer_bounds); recording_source->SetBackgroundColor(SK_ColorGREEN); recording_source->SetClearCanvasWithDebugColor(false); // First record everything as white. PaintFlags white_flags; white_flags.setColor(SK_ColorWHITE); recording_source->add_draw_rect_with_flags(gfx::Rect(layer_bounds), white_flags); recording_source->Rerecord(); scoped_refptr raster = recording_source->CreateRasterSource(); gfx::Size content_bounds( gfx::ScaleToCeiledSize(layer_bounds, contents_scale)); SkBitmap bitmap; bitmap.allocN32Pixels(content_bounds.width(), content_bounds.height()); SkCanvas canvas(bitmap); canvas.clear(SK_ColorTRANSPARENT); // Playback the full rect which should make everything white. gfx::Rect raster_full_rect(content_bounds); gfx::Rect playback_rect(content_bounds); raster->PlaybackToCanvas( &canvas, ColorSpaceForTesting(), content_bounds, raster_full_rect, playback_rect, gfx::AxisTransform2d(contents_scale, gfx::Vector2dF()), RasterSource::PlaybackSettings()); { SkColor* pixels = reinterpret_cast(bitmap.getPixels()); for (int i = 0; i < bitmap.width(); ++i) { for (int j = 0; j < bitmap.height(); ++j) { SCOPED_TRACE(i); SCOPED_TRACE(j); EXPECT_EQ(255u, SkColorGetA(pixels[i + j * bitmap.width()])); EXPECT_EQ(255u, SkColorGetR(pixels[i + j * bitmap.width()])); EXPECT_EQ(255u, SkColorGetG(pixels[i + j * bitmap.width()])); EXPECT_EQ(255u, SkColorGetB(pixels[i + j * bitmap.width()])); } } } // Re-record everything as black. PaintFlags black_flags; black_flags.setColor(SK_ColorBLACK); recording_source->add_draw_rect_with_flags(gfx::Rect(layer_bounds), black_flags); recording_source->Rerecord(); // Make a new RasterSource from the new recording. raster = recording_source->CreateRasterSource(); // We're going to playback from "everything is black" into a smaller area, // that touches the edge pixels of the recording. playback_rect.Inset(1, 2, 0, 1); raster->PlaybackToCanvas( &canvas, ColorSpaceForTesting(), content_bounds, raster_full_rect, playback_rect, gfx::AxisTransform2d(contents_scale, gfx::Vector2dF()), RasterSource::PlaybackSettings()); SkColor* pixels = reinterpret_cast(bitmap.getPixels()); int num_black = 0; int num_white = 0; for (int i = 0; i < bitmap.width(); ++i) { for (int j = 0; j < bitmap.height(); ++j) { SCOPED_TRACE(j); SCOPED_TRACE(i); bool expect_black = playback_rect.Contains(i, j); if (expect_black) { EXPECT_EQ(255u, SkColorGetA(pixels[i + j * bitmap.width()])); EXPECT_EQ(0u, SkColorGetR(pixels[i + j * bitmap.width()])); EXPECT_EQ(0u, SkColorGetG(pixels[i + j * bitmap.width()])); EXPECT_EQ(0u, SkColorGetB(pixels[i + j * bitmap.width()])); ++num_black; } else { EXPECT_EQ(255u, SkColorGetA(pixels[i + j * bitmap.width()])); EXPECT_EQ(255u, SkColorGetR(pixels[i + j * bitmap.width()])); EXPECT_EQ(255u, SkColorGetG(pixels[i + j * bitmap.width()])); EXPECT_EQ(255u, SkColorGetB(pixels[i + j * bitmap.width()])); ++num_white; } } } EXPECT_GT(num_black, 0); EXPECT_GT(num_white, 0); } TEST(RasterSourceTest, RasterPartialClear) { gfx::Size layer_bounds(3, 5); gfx::Size partial_bounds(2, 4); float contents_scale = 1.5f; std::unique_ptr recording_source = FakeRecordingSource::CreateFilledRecordingSource(layer_bounds); recording_source->SetBackgroundColor(SK_ColorGREEN); recording_source->SetRequiresClear(true); recording_source->SetClearCanvasWithDebugColor(false); // First record everything as white. const unsigned alpha_dark = 10u; PaintFlags white_flags; white_flags.setColor(SK_ColorWHITE); white_flags.setAlpha(alpha_dark); recording_source->add_draw_rect_with_flags(gfx::Rect(layer_bounds), white_flags); recording_source->Rerecord(); scoped_refptr raster = recording_source->CreateRasterSource(); gfx::Size content_bounds( gfx::ScaleToCeiledSize(layer_bounds, contents_scale)); SkBitmap bitmap; bitmap.allocN32Pixels(content_bounds.width(), content_bounds.height()); SkCanvas canvas(bitmap); canvas.clear(SK_ColorTRANSPARENT); // Playback the full rect which should make everything light gray (alpha=10). gfx::Rect raster_full_rect(content_bounds); gfx::Rect playback_rect(content_bounds); raster->PlaybackToCanvas( &canvas, ColorSpaceForTesting(), content_bounds, raster_full_rect, playback_rect, gfx::AxisTransform2d(contents_scale, gfx::Vector2dF()), RasterSource::PlaybackSettings()); { SkColor* pixels = reinterpret_cast(bitmap.getPixels()); for (int i = 0; i < bitmap.width(); ++i) { for (int j = 0; j < bitmap.height(); ++j) { SCOPED_TRACE(i); SCOPED_TRACE(j); EXPECT_EQ(alpha_dark, SkColorGetA(pixels[i + j * bitmap.width()])); EXPECT_EQ(alpha_dark, SkColorGetR(pixels[i + j * bitmap.width()])); EXPECT_EQ(alpha_dark, SkColorGetG(pixels[i + j * bitmap.width()])); EXPECT_EQ(alpha_dark, SkColorGetB(pixels[i + j * bitmap.width()])); } } } std::unique_ptr recording_source_light = FakeRecordingSource::CreateFilledRecordingSource(layer_bounds); recording_source_light->SetBackgroundColor(SK_ColorGREEN); recording_source_light->SetRequiresClear(true); recording_source_light->SetClearCanvasWithDebugColor(false); // Record everything as a slightly lighter white. const unsigned alpha_light = 18u; white_flags.setAlpha(alpha_light); recording_source_light->add_draw_rect_with_flags(gfx::Rect(layer_bounds), white_flags); recording_source_light->Rerecord(); // Make a new RasterSource from the new recording. raster = recording_source_light->CreateRasterSource(); // We're going to playback from alpha(18) white rectangle into a smaller area // of the recording resulting in a smaller lighter white rectangle over a // darker white background rectangle. playback_rect = gfx::Rect(gfx::ScaleToCeiledSize(partial_bounds, contents_scale)); raster->PlaybackToCanvas( &canvas, ColorSpaceForTesting(), content_bounds, raster_full_rect, playback_rect, gfx::AxisTransform2d(contents_scale, gfx::Vector2dF()), RasterSource::PlaybackSettings()); // Test that the whole playback_rect was cleared and repainted with new alpha. SkColor* pixels = reinterpret_cast(bitmap.getPixels()); for (int i = 0; i < playback_rect.width(); ++i) { for (int j = 0; j < playback_rect.height(); ++j) { SCOPED_TRACE(j); SCOPED_TRACE(i); EXPECT_EQ(alpha_light, SkColorGetA(pixels[i + j * bitmap.width()])); EXPECT_EQ(alpha_light, SkColorGetR(pixels[i + j * bitmap.width()])); EXPECT_EQ(alpha_light, SkColorGetG(pixels[i + j * bitmap.width()])); EXPECT_EQ(alpha_light, SkColorGetB(pixels[i + j * bitmap.width()])); } } } TEST(RasterSourceTest, RasterContentsTransparent) { gfx::Size layer_bounds(5, 3); float contents_scale = 0.5f; std::unique_ptr recording_source = FakeRecordingSource::CreateFilledRecordingSource(layer_bounds); recording_source->SetBackgroundColor(SK_ColorTRANSPARENT); recording_source->SetRequiresClear(true); recording_source->SetClearCanvasWithDebugColor(false); recording_source->Rerecord(); scoped_refptr raster = recording_source->CreateRasterSource(); gfx::Size content_bounds( gfx::ScaleToCeiledSize(layer_bounds, contents_scale)); gfx::Rect canvas_rect(content_bounds); canvas_rect.Inset(0, 0, -1, -1); SkBitmap bitmap; bitmap.allocN32Pixels(canvas_rect.width(), canvas_rect.height()); SkCanvas canvas(bitmap); raster->PlaybackToCanvas( &canvas, ColorSpaceForTesting(), content_bounds, canvas_rect, canvas_rect, gfx::AxisTransform2d(contents_scale, gfx::Vector2dF()), RasterSource::PlaybackSettings()); SkColor* pixels = reinterpret_cast(bitmap.getPixels()); int num_pixels = bitmap.width() * bitmap.height(); for (int i = 0; i < num_pixels; ++i) { EXPECT_EQ(SkColorGetA(pixels[i]), 0u); } } TEST(RasterSourceTest, GetPictureMemoryUsageIncludesClientReportedMemory) { const size_t kReportedMemoryUsageInBytes = 100 * 1024 * 1024; gfx::Size layer_bounds(5, 3); std::unique_ptr recording_source = FakeRecordingSource::CreateFilledRecordingSource(layer_bounds); recording_source->set_reported_memory_usage(kReportedMemoryUsageInBytes); recording_source->Rerecord(); scoped_refptr raster = recording_source->CreateRasterSource(); size_t total_memory_usage = raster->GetMemoryUsage(); EXPECT_GE(total_memory_usage, kReportedMemoryUsageInBytes); EXPECT_LT(total_memory_usage, 2 * kReportedMemoryUsageInBytes); } TEST(RasterSourceTest, RasterTransformWithoutRecordingScale) { gfx::Size size(100, 100); float recording_scale = 2.f; std::unique_ptr recording_source = FakeRecordingSource::CreateFilledRecordingSource(size); recording_source->Rerecord(); recording_source->SetRecordingScaleFactor(recording_scale); scoped_refptr raster_source = recording_source->CreateRasterSource(); StrictMock mock_canvas; Sequence s; SkMatrix m; m.setScale(1.f / recording_scale, 1.f / recording_scale); // The recording source has no ops, so will only do the setup. EXPECT_CALL(mock_canvas, willSave()).InSequence(s); EXPECT_CALL(mock_canvas, didConcat(m)).InSequence(s); EXPECT_CALL(mock_canvas, willRestore()).InSequence(s); gfx::Size small_size(50, 50); raster_source->PlaybackToCanvas(&mock_canvas, ColorSpaceForTesting(), size, gfx::Rect(small_size), gfx::Rect(small_size), gfx::AxisTransform2d(), RasterSource::PlaybackSettings()); } } // namespace } // namespace cc