// Copyright (c) 2017 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "gpu/command_buffer/service/scheduler.h" #include #include "base/callback.h" #include "base/memory/ptr_util.h" #include "base/stl_util.h" #include "base/trace_event/trace_event.h" #include "base/trace_event/trace_event_argument.h" #include "gpu/command_buffer/service/sync_point_manager.h" namespace gpu { class Scheduler::Sequence { public: Sequence(SequenceId sequence_id, SchedulingPriority priority, scoped_refptr order_data); ~Sequence(); SequenceId sequence_id() const { return sequence_id_; } const SchedulingState& scheduling_state() const { return scheduling_state_; } bool enabled() const { return enabled_; } bool scheduled() const { return running_state_ == SCHEDULED; } bool running() const { return running_state_ == RUNNING; } // The sequence is runnable if its enabled and has tasks which are not blocked // by wait fences. bool IsRunnable() const; bool NeedsRescheduling() const; void UpdateSchedulingState(); // If this sequence runs before the other sequence. bool RunsBefore(const Sequence* other) const; void SetEnabled(bool enabled); // Sets running state to SCHEDULED. void SetScheduled(); // Called before running the next task on the sequence. Returns the closure // for the task. Sets running state to RUNNING. base::OnceClosure BeginTask(); // Called after running the closure returned by BeginTask. Sets running state // to IDLE. void FinishTask(); // Enqueues a task in the sequence and returns the generated order number. uint32_t ScheduleTask(base::OnceClosure closure); // Continue running the current task with the given closure. Must be called in // between |BeginTask| and |FinishTask|. void ContinueTask(base::OnceClosure closure); // Add a sync token fence that this sequence should wait on. void AddWaitFence(const SyncToken& sync_token, uint32_t order_num); // Remove a waiting sync token fence. void RemoveWaitFence(const SyncToken& sync_token, uint32_t order_num); // Add a sync token fence that this sequence is expected to release. void AddReleaseFence(const SyncToken& sync_token, uint32_t order_num); // Remove a release sync token fence. void RemoveReleaseFence(const SyncToken& sync_token, uint32_t order_num); private: enum RunningState { IDLE, SCHEDULED, RUNNING }; struct Fence { SyncToken sync_token; uint32_t order_num; bool operator==(const Fence& other) const { return std::tie(sync_token, order_num) == std::tie(other.sync_token, other.order_num); } }; struct Task { base::OnceClosure closure; uint32_t order_num; }; SchedulingPriority GetSchedulingPriority() const; // If the sequence is enabled. Sequences are disabled/enabled based on when // the command buffer is descheduled/scheduled. bool enabled_ = true; RunningState running_state_ = IDLE; // Cached scheduling state used for comparison with other sequences using // |RunsBefore|. Updated in |UpdateSchedulingState|. SchedulingState scheduling_state_; const SequenceId sequence_id_; const SchedulingPriority priority_; scoped_refptr order_data_; // Deque of tasks. Tasks are inserted at the back with increasing order number // generated from SyncPointOrderData. If a running task needs to be continued, // it is inserted at the front with the same order number. std::deque tasks_; // List of fences that this sequence is waiting on. Fences are inserted in // increasing order number but may be removed out of order. Tasks are blocked // if there's a wait fence with order number less than or equal to the task's // order number. std::vector wait_fences_; // List of fences that this sequence is expected to release. If this list is // non-empty, the priority of the sequence is raised. std::vector release_fences_; DISALLOW_COPY_AND_ASSIGN(Sequence); }; Scheduler::SchedulingState::SchedulingState() = default; Scheduler::SchedulingState::SchedulingState(const SchedulingState& other) = default; Scheduler::SchedulingState::~SchedulingState() = default; std::unique_ptr Scheduler::SchedulingState::AsValue() const { std::unique_ptr state( new base::trace_event::TracedValue()); state->SetInteger("sequence_id", sequence_id.GetUnsafeValue()); state->SetString("priority", SchedulingPriorityToString(priority)); state->SetInteger("order_num", order_num); return std::move(state); } Scheduler::Sequence::Sequence(SequenceId sequence_id, SchedulingPriority priority, scoped_refptr order_data) : sequence_id_(sequence_id), priority_(priority), order_data_(std::move(order_data)) {} Scheduler::Sequence::~Sequence() { order_data_->Destroy(); } bool Scheduler::Sequence::NeedsRescheduling() const { return running_state_ != IDLE && scheduling_state_.priority != GetSchedulingPriority(); } bool Scheduler::Sequence::IsRunnable() const { return enabled_ && !tasks_.empty() && (wait_fences_.empty() || wait_fences_.front().order_num > tasks_.front().order_num); } SchedulingPriority Scheduler::Sequence::GetSchedulingPriority() const { if (!release_fences_.empty()) return std::min(priority_, SchedulingPriority::kHigh); return priority_; } bool Scheduler::Sequence::RunsBefore(const Scheduler::Sequence* other) const { return scheduling_state_.RunsBefore(other->scheduling_state()); } void Scheduler::Sequence::SetEnabled(bool enabled) { if (enabled_ == enabled) return; DCHECK_EQ(running_state_, enabled ? IDLE : RUNNING); enabled_ = enabled; } void Scheduler::Sequence::SetScheduled() { DCHECK_NE(running_state_, RUNNING); running_state_ = SCHEDULED; UpdateSchedulingState(); } void Scheduler::Sequence::UpdateSchedulingState() { scheduling_state_.sequence_id = sequence_id_; scheduling_state_.priority = GetSchedulingPriority(); uint32_t order_num = UINT32_MAX; // IDLE if (running_state_ == SCHEDULED) { DCHECK(!tasks_.empty()); order_num = tasks_.front().order_num; } else if (running_state_ == RUNNING) { order_num = order_data_->current_order_num(); } scheduling_state_.order_num = order_num; } void Scheduler::Sequence::ContinueTask(base::OnceClosure closure) { DCHECK_EQ(running_state_, RUNNING); tasks_.push_front({std::move(closure), order_data_->current_order_num()}); } uint32_t Scheduler::Sequence::ScheduleTask(base::OnceClosure closure) { uint32_t order_num = order_data_->GenerateUnprocessedOrderNumber(); tasks_.push_back({std::move(closure), order_num}); return order_num; } base::OnceClosure Scheduler::Sequence::BeginTask() { DCHECK(!tasks_.empty()); DCHECK_EQ(running_state_, SCHEDULED); running_state_ = RUNNING; base::OnceClosure closure = std::move(tasks_.front().closure); uint32_t order_num = tasks_.front().order_num; tasks_.pop_front(); order_data_->BeginProcessingOrderNumber(order_num); UpdateSchedulingState(); return closure; } void Scheduler::Sequence::FinishTask() { DCHECK_EQ(running_state_, RUNNING); running_state_ = IDLE; uint32_t order_num = order_data_->current_order_num(); if (!tasks_.empty() && tasks_.front().order_num == order_num) { order_data_->PauseProcessingOrderNumber(order_num); } else { order_data_->FinishProcessingOrderNumber(order_num); } UpdateSchedulingState(); } void Scheduler::Sequence::AddWaitFence(const SyncToken& sync_token, uint32_t order_num) { wait_fences_.push_back({sync_token, order_num}); } void Scheduler::Sequence::RemoveWaitFence(const SyncToken& sync_token, uint32_t order_num) { base::Erase(wait_fences_, Fence{sync_token, order_num}); } void Scheduler::Sequence::AddReleaseFence(const SyncToken& sync_token, uint32_t order_num) { release_fences_.push_back({sync_token, order_num}); } void Scheduler::Sequence::RemoveReleaseFence(const SyncToken& sync_token, uint32_t order_num) { base::Erase(release_fences_, Fence{sync_token, order_num}); } Scheduler::Scheduler(scoped_refptr task_runner, SyncPointManager* sync_point_manager) : task_runner_(std::move(task_runner)), sync_point_manager_(sync_point_manager), weak_factory_(this) { DCHECK(thread_checker_.CalledOnValidThread()); } Scheduler::~Scheduler() { DCHECK(thread_checker_.CalledOnValidThread()); } SequenceId Scheduler::CreateSequence(SchedulingPriority priority) { DCHECK(thread_checker_.CalledOnValidThread()); base::AutoLock auto_lock(lock_); scoped_refptr order_data = sync_point_manager_->CreateSyncPointOrderData(); SequenceId sequence_id = order_data->sequence_id(); auto sequence = base::MakeUnique(sequence_id, priority, std::move(order_data)); sequences_.emplace(sequence_id, std::move(sequence)); return sequence_id; } void Scheduler::DestroySequence(SequenceId sequence_id) { DCHECK(thread_checker_.CalledOnValidThread()); base::AutoLock auto_lock(lock_); Sequence* sequence = GetSequence(sequence_id); DCHECK(sequence); if (sequence->scheduled()) rebuild_scheduling_queue_ = true; sequences_.erase(sequence_id); } Scheduler::Sequence* Scheduler::GetSequence(SequenceId sequence_id) { lock_.AssertAcquired(); auto it = sequences_.find(sequence_id); if (it != sequences_.end()) return it->second.get(); return nullptr; } void Scheduler::EnableSequence(SequenceId sequence_id) { DCHECK(thread_checker_.CalledOnValidThread()); base::AutoLock auto_lock(lock_); Sequence* sequence = GetSequence(sequence_id); DCHECK(sequence); sequence->SetEnabled(true); TryScheduleSequence(sequence); } void Scheduler::DisableSequence(SequenceId sequence_id) { DCHECK(thread_checker_.CalledOnValidThread()); base::AutoLock auto_lock(lock_); Sequence* sequence = GetSequence(sequence_id); DCHECK(sequence); sequence->SetEnabled(false); } void Scheduler::ScheduleTask(SequenceId sequence_id, base::OnceClosure closure, const std::vector& sync_token_fences) { base::AutoLock auto_lock(lock_); Sequence* sequence = GetSequence(sequence_id); DCHECK(sequence); uint32_t order_num = sequence->ScheduleTask(std::move(closure)); for (const SyncToken& sync_token : sync_token_fences) { SequenceId release_id = sync_point_manager_->GetSyncTokenReleaseSequenceId(sync_token); Sequence* release_sequence = GetSequence(release_id); if (!release_sequence) continue; if (sync_point_manager_->Wait( sync_token, order_num, base::Bind(&Scheduler::SyncTokenFenceReleased, weak_factory_.GetWeakPtr(), sync_token, order_num, release_id, sequence_id))) { sequence->AddWaitFence(sync_token, order_num); release_sequence->AddReleaseFence(sync_token, order_num); TryScheduleSequence(release_sequence); } } TryScheduleSequence(sequence); } void Scheduler::ContinueTask(SequenceId sequence_id, base::OnceClosure closure) { DCHECK(thread_checker_.CalledOnValidThread()); base::AutoLock auto_lock(lock_); Sequence* sequence = GetSequence(sequence_id); DCHECK(sequence); sequence->ContinueTask(std::move(closure)); } bool Scheduler::ShouldYield(SequenceId sequence_id) { DCHECK(thread_checker_.CalledOnValidThread()); base::AutoLock auto_lock(lock_); Sequence* sequence = GetSequence(sequence_id); DCHECK(sequence); DCHECK(sequence->running()); if (should_yield_) return true; RebuildSchedulingQueue(); sequence->UpdateSchedulingState(); if (!scheduling_queue_.empty()) { Sequence* next_sequence = GetSequence(scheduling_queue_.front().sequence_id); DCHECK(next_sequence); if (next_sequence->RunsBefore(sequence)) should_yield_ = true; } return should_yield_; } void Scheduler::SyncTokenFenceReleased(const SyncToken& sync_token, uint32_t order_num, SequenceId release_sequence_id, SequenceId waiting_sequence_id) { base::AutoLock auto_lock(lock_); Sequence* sequence = GetSequence(waiting_sequence_id); if (sequence) { sequence->RemoveWaitFence(sync_token, order_num); TryScheduleSequence(sequence); } Sequence* release_sequence = GetSequence(release_sequence_id); if (release_sequence) { release_sequence->RemoveReleaseFence(sync_token, order_num); TryScheduleSequence(release_sequence); } } void Scheduler::TryScheduleSequence(Sequence* sequence) { lock_.AssertAcquired(); if (sequence->running()) return; if (sequence->NeedsRescheduling()) { DCHECK(sequence->IsRunnable()); rebuild_scheduling_queue_ = true; } else if (!sequence->scheduled() && sequence->IsRunnable()) { sequence->SetScheduled(); scheduling_queue_.push_back(sequence->scheduling_state()); std::push_heap(scheduling_queue_.begin(), scheduling_queue_.end(), &SchedulingState::Comparator); } if (!running_) { TRACE_EVENT_ASYNC_BEGIN0("gpu", "Scheduler::Running", this); running_ = true; task_runner_->PostTask(FROM_HERE, base::Bind(&Scheduler::RunNextTask, weak_factory_.GetWeakPtr())); } } void Scheduler::RebuildSchedulingQueue() { DCHECK(thread_checker_.CalledOnValidThread()); lock_.AssertAcquired(); if (!rebuild_scheduling_queue_) return; rebuild_scheduling_queue_ = false; scheduling_queue_.clear(); for (const auto& kv : sequences_) { Sequence* sequence = kv.second.get(); if (!sequence->IsRunnable() || sequence->running()) continue; sequence->SetScheduled(); scheduling_queue_.push_back(sequence->scheduling_state()); } std::make_heap(scheduling_queue_.begin(), scheduling_queue_.end(), &SchedulingState::Comparator); } void Scheduler::RunNextTask() { DCHECK(thread_checker_.CalledOnValidThread()); base::AutoLock auto_lock(lock_); should_yield_ = false; RebuildSchedulingQueue(); if (scheduling_queue_.empty()) { TRACE_EVENT_ASYNC_END0("gpu", "Scheduler::Running", this); running_ = false; return; } std::pop_heap(scheduling_queue_.begin(), scheduling_queue_.end(), &SchedulingState::Comparator); SchedulingState state = scheduling_queue_.back(); scheduling_queue_.pop_back(); TRACE_EVENT1("gpu", "Scheduler::RunNextTask", "state", state.AsValue()); DCHECK(GetSequence(state.sequence_id)); base::OnceClosure closure = GetSequence(state.sequence_id)->BeginTask(); { base::AutoUnlock auto_unlock(lock_); std::move(closure).Run(); } // Check if sequence hasn't been destroyed. Sequence* sequence = GetSequence(state.sequence_id); if (sequence) { sequence->FinishTask(); if (sequence->IsRunnable()) { sequence->SetScheduled(); scheduling_queue_.push_back(sequence->scheduling_state()); std::push_heap(scheduling_queue_.begin(), scheduling_queue_.end(), &SchedulingState::Comparator); } } task_runner_->PostTask(FROM_HERE, base::Bind(&Scheduler::RunNextTask, weak_factory_.GetWeakPtr())); } } // namespace gpu