// Copyright 2016 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "media/base/audio_latency.h" #include #include #include "base/logging.h" #include "base/time/time.h" #include "build/build_config.h" namespace media { namespace { #if !defined(OS_WIN) // Taken from "Bit Twiddling Hacks" // http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 uint32_t RoundUpToPowerOfTwo(uint32_t v) { v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v++; return v; } #endif } // namespace // static int AudioLatency::GetHighLatencyBufferSize(int sample_rate, int preferred_buffer_size) { // Empirically, we consider 20ms of samples to be high latency. const double twenty_ms_size = 2.0 * sample_rate / 100; #if defined(OS_WIN) preferred_buffer_size = std::max(preferred_buffer_size, 1); // Windows doesn't use power of two buffer sizes, so we should always round up // to the nearest multiple of the output buffer size. const int high_latency_buffer_size = std::ceil(twenty_ms_size / preferred_buffer_size) * preferred_buffer_size; #else // On other platforms use the nearest higher power of two buffer size. For a // given sample rate, this works out to: // // <= 3200 : 64 // <= 6400 : 128 // <= 12800 : 256 // <= 25600 : 512 // <= 51200 : 1024 // <= 102400 : 2048 // <= 204800 : 4096 // // On Linux, the minimum hardware buffer size is 512, so the lower calculated // values are unused. OSX may have a value as low as 128. const int high_latency_buffer_size = RoundUpToPowerOfTwo(twenty_ms_size); #endif // defined(OS_WIN) #if defined(OS_CHROMEOS) return high_latency_buffer_size; // No preference. #else return std::max(preferred_buffer_size, high_latency_buffer_size); #endif // defined(OS_CHROMEOS) } // static int AudioLatency::GetRtcBufferSize(int sample_rate, int hardware_buffer_size) { // Use native hardware buffer size as default. On Windows, we strive to open // up using this native hardware buffer size to achieve best // possible performance and to ensure that no FIFO is needed on the browser // side to match the client request. That is why there is no #if case for // Windows below. int frames_per_buffer = hardware_buffer_size; // No |hardware_buffer_size| is specified, fall back to 10 ms buffer size. if (!frames_per_buffer) { frames_per_buffer = sample_rate / 100; DVLOG(1) << "Using 10 ms sink output buffer size: " << frames_per_buffer; return frames_per_buffer; } #if defined(OS_LINUX) || defined(OS_MACOSX) // On Linux and MacOS, the low level IO implementations on the browser side // supports all buffer size the clients want. We use the native peer // connection buffer size (10ms) to achieve best possible performance. frames_per_buffer = sample_rate / 100; #elif defined(OS_ANDROID) // TODO(olka/henrika): This settings are very old, need to be revisited. int frames_per_10ms = sample_rate / 100; if (frames_per_buffer < 2 * frames_per_10ms) { // Examples of low-latency frame sizes and the resulting |buffer_size|: // Nexus 7 : 240 audio frames => 2*480 = 960 // Nexus 10 : 256 => 2*441 = 882 // Galaxy Nexus: 144 => 2*441 = 882 frames_per_buffer = 2 * frames_per_10ms; DVLOG(1) << "Low-latency output detected on Android"; } #endif DVLOG(1) << "Using sink output buffer size: " << frames_per_buffer; return frames_per_buffer; } // static int AudioLatency::GetInteractiveBufferSize(int hardware_buffer_size) { #if defined(OS_ANDROID) // The optimum low-latency hardware buffer size is usually too small on // Android for WebAudio to render without glitching. So, if it is small, use // a larger size. // // Since WebAudio renders in 128-frame blocks, the small buffer sizes (144 for // a Galaxy Nexus), cause significant processing jitter. Sometimes multiple // blocks will processed, but other times will not be since the WebAudio can't // satisfy the request. By using a larger render buffer size, we smooth out // the jitter. const int kSmallBufferSize = 1024; const int kDefaultCallbackBufferSize = 2048; if (hardware_buffer_size <= kSmallBufferSize) return kDefaultCallbackBufferSize; #endif return hardware_buffer_size; } int AudioLatency::GetExactBufferSize(base::TimeDelta duration, int sample_rate, int hardware_buffer_size) { const double requested_buffer_size = duration.InSecondsF() * sample_rate; DCHECK_NE(0, hardware_buffer_size); // Round the requested size to the nearest multiple of the hardware size const int buffer_size = std::round(std::max(requested_buffer_size, 1.0) / hardware_buffer_size) * hardware_buffer_size; return std::max(buffer_size, hardware_buffer_size); } } // namespace media