// Copyright 2016 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "media/base/audio_latency.h" #include #include #include "base/logging.h" #include "base/time/time.h" #include "build/build_config.h" #include "media/base/limits.h" #if defined(OS_ANDROID) #include "base/android/build_info.h" #endif #if defined(OS_MACOSX) #include "media/base/mac/audio_latency_mac.h" #endif namespace media { namespace { #if !defined(OS_WIN) // Taken from "Bit Twiddling Hacks" // http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 uint32_t RoundUpToPowerOfTwo(uint32_t v) { v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v++; return v; } #endif } // namespace // static bool AudioLatency::IsResamplingPassthroughSupported(LatencyType type) { #if defined(OS_CHROMEOS) return true; #elif defined(OS_ANDROID) // Only N MR1+ has support for OpenSLES performance modes which allow for // power efficient playback. Per the Android audio team, we shouldn't waste // cycles on resampling when using the playback mode. See OpenSLESOutputStream // for additional implementation details. return type == LATENCY_PLAYBACK && base::android::BuildInfo::GetInstance()->sdk_int() >= base::android::SDK_VERSION_NOUGAT_MR1; #else return false; #endif } // static int AudioLatency::GetHighLatencyBufferSize(int sample_rate, int preferred_buffer_size) { // Empirically, we consider 20ms of samples to be high latency. const double twenty_ms_size = 2.0 * sample_rate / 100; #if defined(OS_WIN) preferred_buffer_size = std::max(preferred_buffer_size, 1); // Windows doesn't use power of two buffer sizes, so we should always round up // to the nearest multiple of the output buffer size. const int high_latency_buffer_size = std::ceil(twenty_ms_size / preferred_buffer_size) * preferred_buffer_size; #else // On other platforms use the nearest higher power of two buffer size. For a // given sample rate, this works out to: // // <= 3200 : 64 // <= 6400 : 128 // <= 12800 : 256 // <= 25600 : 512 // <= 51200 : 1024 // <= 102400 : 2048 // <= 204800 : 4096 // // On Linux, the minimum hardware buffer size is 512, so the lower calculated // values are unused. OSX may have a value as low as 128. const int high_latency_buffer_size = RoundUpToPowerOfTwo(twenty_ms_size); #endif // defined(OS_WIN) return std::max(preferred_buffer_size, high_latency_buffer_size); } // static int AudioLatency::GetRtcBufferSize(int sample_rate, int hardware_buffer_size) { // Use native hardware buffer size as default. On Windows, we strive to open // up using this native hardware buffer size to achieve best // possible performance and to ensure that no FIFO is needed on the browser // side to match the client request. That is why there is no #if case for // Windows below. int frames_per_buffer = hardware_buffer_size; // No |hardware_buffer_size| is specified, fall back to 10 ms buffer size. if (!frames_per_buffer) { frames_per_buffer = sample_rate / 100; DVLOG(1) << "Using 10 ms sink output buffer size: " << frames_per_buffer; return frames_per_buffer; } #if defined(OS_LINUX) || defined(OS_MACOSX) || defined(OS_FUCHSIA) // On Linux, MacOS and Fuchsia, the low level IO implementations on the // browser side supports all buffer size the clients want. We use the native // peer connection buffer size (10ms) to achieve best possible performance. frames_per_buffer = sample_rate / 100; #elif defined(OS_ANDROID) // TODO(olka/henrika): This settings are very old, need to be revisited. int frames_per_10ms = sample_rate / 100; if (frames_per_buffer < 2 * frames_per_10ms) { // Examples of low-latency frame sizes and the resulting |buffer_size|: // Nexus 7 : 240 audio frames => 2*480 = 960 // Nexus 10 : 256 => 2*441 = 882 // Galaxy Nexus: 144 => 2*441 = 882 frames_per_buffer = 2 * frames_per_10ms; DVLOG(1) << "Low-latency output detected on Android"; } #endif DVLOG(1) << "Using sink output buffer size: " << frames_per_buffer; return frames_per_buffer; } // static int AudioLatency::GetInteractiveBufferSize(int hardware_buffer_size) { #if defined(OS_ANDROID) // Always log this because it's relatively hard to get this // information out. LOG(INFO) << "audioHardwareBufferSize = " << hardware_buffer_size; #endif return hardware_buffer_size; } int AudioLatency::GetExactBufferSize(base::TimeDelta duration, int sample_rate, int hardware_buffer_size) { DCHECK_NE(0, hardware_buffer_size); const int requested_buffer_size = duration.InSecondsF() * sample_rate; // On OSX and CRAS the preferred buffer size is larger than the minimum, // however we allow values down to the minimum if requested explicitly. #if defined(OS_MACOSX) const int minimum_buffer_size = GetMinAudioBufferSizeMacOS(limits::kMinAudioBufferSize, sample_rate); if (requested_buffer_size > limits::kMaxAudioBufferSize) { // Mac OS is currently the only platform with a max buffer size less than // kMaxWebAudioBufferSize. Since Mac OS audio hardware can run at // kMaxAudioBufferSize (currently 4096) and it only makes sense for Web // Audio to run at multiples of the hardware buffer size, tell Web Audio to // just use web audio max (8192) if the user requests >4096. static_assert( limits::kMaxWebAudioBufferSize % limits::kMaxAudioBufferSize == 0, "Returning kMaxWebAudioBufferSize here assumes it's a multiple of the " "hardware buffer size."); return limits::kMaxWebAudioBufferSize; } #elif defined(USE_CRAS) const int minimum_buffer_size = limits::kMinAudioBufferSize; static_assert(limits::kMaxAudioBufferSize >= limits::kMaxWebAudioBufferSize, "Algorithm needs refactoring if kMaxAudioBufferSize for CRAS " "is lowered."); #else const int minimum_buffer_size = hardware_buffer_size; #endif // Round requested size up to next multiple of the minimum hardware size. The // minimum hardware size is one that we know is allowed by the platform audio // layer and may be smaller than its preferred buffer size (the // hardware_buffer_size). For platforms where this is supported we know that // using a buffer size that is a multiple of this minimum is safe. const int buffer_size = std::ceil(std::max(requested_buffer_size, 1) / static_cast(minimum_buffer_size)) * minimum_buffer_size; // The maximum must also be a multiple of the minimum hardware buffer size in // case the clamping below is required. const int maximum_buffer_size = (limits::kMaxWebAudioBufferSize / minimum_buffer_size) * minimum_buffer_size; return std::min(maximum_buffer_size, std::max(buffer_size, minimum_buffer_size)); } } // namespace media