/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "skia/ext/convolver_neon.h" #include namespace skia { static SK_ALWAYS_INLINE int32x4_t AccumRemainder(const unsigned char* pixels_left, const ConvolutionFilter1D::Fixed* filter_values, int r) { int remainder[4] = {0, 0, 0, 0}; for (int i = 0; i < r; i++) { ConvolutionFilter1D::Fixed coeff = filter_values[i]; remainder[0] += coeff * pixels_left[i * 4 + 0]; remainder[1] += coeff * pixels_left[i * 4 + 1]; remainder[2] += coeff * pixels_left[i * 4 + 2]; remainder[3] += coeff * pixels_left[i * 4 + 3]; } return vld1q_s32(remainder); } // Convolves horizontally along a single row. The row data is given in // |src_data| and continues for the num_values() of the filter. void ConvolveHorizontally_Neon(const unsigned char* src_data, const ConvolutionFilter1D& filter, unsigned char* out_row, bool /*has_alpha*/) { // Loop over each pixel on this row in the output image. int num_values = filter.num_values(); for (int out_x = 0; out_x < num_values; out_x++) { // Get the filter that determines the current output pixel. int filter_offset, filter_length; const ConvolutionFilter1D::Fixed* filter_values = filter.FilterForValue(out_x, &filter_offset, &filter_length); // Compute the first pixel in this row that the filter affects. It will // touch |filter_length| pixels (4 bytes each) after this. const unsigned char* row_to_filter = &src_data[filter_offset * 4]; // Apply the filter to the row to get the destination pixel in |accum|. int32x4_t accum = vdupq_n_s32(0); for (int filter_x = 0; filter_x < (filter_length / 4); filter_x++) { // Load 4 coefficients. int16x4_t coeffs = vld1_s16(filter_values); // Load 4 pixels into a q-register. uint8x16_t pixels = vld1q_u8(row_to_filter); // Expand to 16-bit channels split across two q-registers. int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); // Scale each pixel (each d-register) by its filter coefficients, // accumulating into 32-bit. accum = vmlal_lane_s16(accum, vget_low_s16(p01_16), coeffs, 0); accum = vmlal_lane_s16(accum, vget_high_s16(p01_16), coeffs, 1); accum = vmlal_lane_s16(accum, vget_low_s16(p23_16), coeffs, 2); accum = vmlal_lane_s16(accum, vget_high_s16(p23_16), coeffs, 3); // Advance to next elements. row_to_filter += 16; filter_values += 4; } int remainder = filter_length & 3; if (remainder) { int remainder_offset = (filter_offset + filter_length - remainder) * 4; accum += AccumRemainder(src_data + remainder_offset, filter_values, remainder); } // Bring this value back in range. All of the filter scaling factors // are in fixed point with kShiftBits bits of fractional part. int16x4_t accum16 = vqshrn_n_s32(accum, ConvolutionFilter1D::kShiftBits); // Pack and store the new pixel. uint8x8_t accum8 = vqmovun_s16(vcombine_s16(accum16, accum16)); vst1_lane_u32(reinterpret_cast(out_row), vreinterpret_u32_u8(accum8), 0); out_row += 4; } } // Convolves horizontally along four rows. The row data is given in // |src_data| and continues for the num_values() of the filter. // The algorithm is almost same as |convolve_horizontally|. Please // refer to that function for detailed comments. void Convolve4RowsHorizontally_Neon(const unsigned char* src_data[4], const ConvolutionFilter1D& filter, unsigned char* out_row[4]) { // Output one pixel each iteration, calculating all channels (RGBA) together. int num_values = filter.num_values(); for (int out_x = 0; out_x < num_values; out_x++) { int filter_offset, filter_length; const ConvolutionFilter1D::Fixed* filter_values = filter.FilterForValue(out_x, &filter_offset, &filter_length); // Four pixels in a column per iteration. int32x4_t accum0 = vdupq_n_s32(0); int32x4_t accum1 = vdupq_n_s32(0); int32x4_t accum2 = vdupq_n_s32(0); int32x4_t accum3 = vdupq_n_s32(0); int start = filter_offset * 4; // Load and accumulate with four coefficients per iteration. for (int filter_x = 0; filter_x < (filter_length / 4); filter_x++) { // Load 4 coefficients. int16x4_t coeffs = vld1_s16(filter_values); auto iteration = [=](const uint8_t* src) { // c.f. ConvolveHorizontally_Neon() above. uint8x16_t pixels = vld1q_u8(src); int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); int32x4_t accum = vdupq_n_s32(0); accum = vmlal_lane_s16(accum, vget_low_s16(p01_16), coeffs, 0); accum = vmlal_lane_s16(accum, vget_high_s16(p01_16), coeffs, 1); accum = vmlal_lane_s16(accum, vget_low_s16(p23_16), coeffs, 2); accum = vmlal_lane_s16(accum, vget_high_s16(p23_16), coeffs, 3); return accum; }; accum0 += iteration(src_data[0] + start); accum1 += iteration(src_data[1] + start); accum2 += iteration(src_data[2] + start); accum3 += iteration(src_data[3] + start); start += 16; filter_values += 4; } int remainder = filter_length & 3; if (remainder) { int remainder_offset = (filter_offset + filter_length - remainder) * 4; accum0 += AccumRemainder(src_data[0] + remainder_offset, filter_values, remainder); accum1 += AccumRemainder(src_data[1] + remainder_offset, filter_values, remainder); accum2 += AccumRemainder(src_data[2] + remainder_offset, filter_values, remainder); accum3 += AccumRemainder(src_data[3] + remainder_offset, filter_values, remainder); } auto pack_result = [](int32x4_t accum) { int16x4_t accum16 = vqshrn_n_s32(accum, ConvolutionFilter1D::kShiftBits); return vqmovun_s16(vcombine_s16(accum16, accum16)); }; uint8x8_t res0 = pack_result(accum0); uint8x8_t res1 = pack_result(accum1); uint8x8_t res2 = pack_result(accum2); uint8x8_t res3 = pack_result(accum3); vst1_lane_u32(reinterpret_cast(out_row[0]), vreinterpret_u32_u8(res0), 0); vst1_lane_u32(reinterpret_cast(out_row[1]), vreinterpret_u32_u8(res1), 0); vst1_lane_u32(reinterpret_cast(out_row[2]), vreinterpret_u32_u8(res2), 0); vst1_lane_u32(reinterpret_cast(out_row[3]), vreinterpret_u32_u8(res3), 0); out_row[0] += 4; out_row[1] += 4; out_row[2] += 4; out_row[3] += 4; } } // Does vertical convolution to produce one output row. The filter values and // length are given in the first two parameters. These are applied to each // of the rows pointed to in the |source_data_rows| array, with each row // being |pixel_width| wide. // // The output must have room for |pixel_width * 4| bytes. void ConvolveVertically_Neon(const ConvolutionFilter1D::Fixed* filter_values, int filter_length, unsigned char* const* source_data_rows, int pixel_width, unsigned char* out_row, bool has_alpha) { int width = pixel_width & ~3; // Output four pixels per iteration (16 bytes). for (int out_x = 0; out_x < width; out_x += 4) { // Accumulated result for each pixel. 32 bits per RGBA channel. int32x4_t accum0 = vdupq_n_s32(0); int32x4_t accum1 = vdupq_n_s32(0); int32x4_t accum2 = vdupq_n_s32(0); int32x4_t accum3 = vdupq_n_s32(0); // Convolve with one filter coefficient per iteration. for (int filter_y = 0; filter_y < filter_length; filter_y++) { // Load four pixels (16 bytes) together. // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 uint8x16_t src8 = vld1q_u8(&source_data_rows[filter_y][out_x << 2]); int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); accum0 = vmlal_n_s16(accum0, vget_low_s16(src16_01), filter_values[filter_y]); accum1 = vmlal_n_s16(accum1, vget_high_s16(src16_01), filter_values[filter_y]); accum2 = vmlal_n_s16(accum2, vget_low_s16(src16_23), filter_values[filter_y]); accum3 = vmlal_n_s16(accum3, vget_high_s16(src16_23), filter_values[filter_y]); } // Shift right for fixed point implementation. // Packing 32 bits |accum| to 16 bits per channel (unsigned saturation). int16x4_t accum16_0 = vqshrn_n_s32(accum0, ConvolutionFilter1D::kShiftBits); int16x4_t accum16_1 = vqshrn_n_s32(accum1, ConvolutionFilter1D::kShiftBits); int16x4_t accum16_2 = vqshrn_n_s32(accum2, ConvolutionFilter1D::kShiftBits); int16x4_t accum16_3 = vqshrn_n_s32(accum3, ConvolutionFilter1D::kShiftBits); // [16] a1 b1 g1 r1 a0 b0 g0 r0 int16x8_t accum16_low = vcombine_s16(accum16_0, accum16_1); // [16] a3 b3 g3 r3 a2 b2 g2 r2 int16x8_t accum16_high = vcombine_s16(accum16_2, accum16_3); // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_low), vqmovun_s16(accum16_high)); if (has_alpha) { // Compute the max(ri, gi, bi) for each pixel. // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 b = vmaxq_u8(a, b); // Max of r and g and b. // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); // Make sure the value of alpha channel is always larger than maximum // value of color channels. accum8 = vmaxq_u8(b, accum8); } else { // Set value of alpha channels to 0xFF. accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); } // Store the convolution result (16 bytes) and advance the pixel pointers. vst1q_u8(out_row, accum8); out_row += 16; } // Process the leftovers when the width of the output is not divisible // by 4, that is at most 3 pixels. int remainder = pixel_width & 3; if (remainder) { int32x4_t accum0 = vdupq_n_s32(0); int32x4_t accum1 = vdupq_n_s32(0); int32x4_t accum2 = vdupq_n_s32(0); for (int filter_y = 0; filter_y < filter_length; ++filter_y) { // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 uint8x16_t src8 = vld1q_u8(&source_data_rows[filter_y][width * 4]); int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); accum0 = vmlal_n_s16(accum0, vget_low_s16(src16_01), filter_values[filter_y]); accum1 = vmlal_n_s16(accum1, vget_high_s16(src16_01), filter_values[filter_y]); accum2 = vmlal_n_s16(accum2, vget_low_s16(src16_23), filter_values[filter_y]); } int16x4_t accum16_0 = vqshrn_n_s32(accum0, ConvolutionFilter1D::kShiftBits); int16x4_t accum16_1 = vqshrn_n_s32(accum1, ConvolutionFilter1D::kShiftBits); int16x4_t accum16_2 = vqshrn_n_s32(accum2, ConvolutionFilter1D::kShiftBits); int16x8_t accum16_low = vcombine_s16(accum16_0, accum16_1); int16x8_t accum16_high = vcombine_s16(accum16_2, accum16_2); uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_low), vqmovun_s16(accum16_high)); if (has_alpha) { // Compute the max(ri, gi, bi) for each pixel. // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 b = vmaxq_u8(a, b); // Max of r and g and b. // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); // Make sure the value of alpha channel is always larger than maximum // value of color channels. accum8 = vmaxq_u8(b, accum8); } else { // Set value of alpha channels to 0xFF. accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); } switch (remainder) { case 1: vst1q_lane_u32(reinterpret_cast(out_row), vreinterpretq_u32_u8(accum8), 0); break; case 2: vst1_u32(reinterpret_cast(out_row), vreinterpret_u32_u8(vget_low_u8(accum8))); break; case 3: vst1_u32(reinterpret_cast(out_row), vreinterpret_u32_u8(vget_low_u8(accum8))); vst1q_lane_u32(reinterpret_cast(out_row + 8), vreinterpretq_u32_u8(accum8), 2); break; } } } } // namespace skia