// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "ui/gfx/codec/png_codec.h" #include #include "base/logging.h" #include "base/macros.h" #include "base/strings/string_util.h" #include "third_party/libpng/png.h" #include "third_party/skia/include/core/SkBitmap.h" #include "third_party/skia/include/core/SkColorPriv.h" #include "third_party/skia/include/core/SkUnPreMultiply.h" #include "third_party/skia/include/encode/SkPngEncoder.h" #include "third_party/zlib/zlib.h" #include "ui/gfx/codec/vector_wstream.h" #include "ui/gfx/geometry/size.h" #include "ui/gfx/skia_util.h" namespace gfx { // Decoder -------------------------------------------------------------------- // // This code is based on WebKit libpng interface (PNGImageDecoder), which is // in turn based on the Mozilla png decoder. namespace { // Gamma constants: We assume we're on Windows which uses a gamma of 2.2. const double kMaxGamma = 21474.83; // Maximum gamma accepted by png library. const double kDefaultGamma = 2.2; const double kInverseGamma = 1.0 / kDefaultGamma; class PngDecoderState { public: // Output is a vector. PngDecoderState(PNGCodec::ColorFormat ofmt, std::vector* o) : output_format(ofmt), output_channels(0), bitmap(NULL), is_opaque(true), output(o), width(0), height(0), done(false) { } // Output is an SkBitmap. explicit PngDecoderState(SkBitmap* skbitmap) : output_format(PNGCodec::FORMAT_SkBitmap), output_channels(0), bitmap(skbitmap), is_opaque(true), output(NULL), width(0), height(0), done(false) { } PNGCodec::ColorFormat output_format; int output_channels; // An incoming SkBitmap to write to. If NULL, we write to output instead. SkBitmap* bitmap; // Used during the reading of an SkBitmap. Defaults to true until we see a // pixel with anything other than an alpha of 255. bool is_opaque; // The other way to decode output, where we write into an intermediary buffer // instead of directly to an SkBitmap. std::vector* output; // Size of the image, set in the info callback. int width; int height; // Set to true when we've found the end of the data. bool done; private: DISALLOW_COPY_AND_ASSIGN(PngDecoderState); }; // User transform (passed to libpng) which converts a row decoded by libpng to // Skia format. Expects the row to have 4 channels, otherwise there won't be // enough room in |data|. void ConvertRGBARowToSkia(png_structp png_ptr, png_row_infop row_info, png_bytep data) { const int channels = row_info->channels; DCHECK_EQ(channels, 4); PngDecoderState* state = static_cast(png_get_user_transform_ptr(png_ptr)); DCHECK(state) << "LibPNG user transform pointer is NULL"; unsigned char* const end = data + row_info->rowbytes; for (unsigned char* p = data; p < end; p += channels) { uint32_t* sk_pixel = reinterpret_cast(p); const unsigned char alpha = p[channels - 1]; if (alpha != 255) { state->is_opaque = false; *sk_pixel = SkPreMultiplyARGB(alpha, p[0], p[1], p[2]); } else { *sk_pixel = SkPackARGB32(alpha, p[0], p[1], p[2]); } } } // Called when the png header has been read. This code is based on the WebKit // PNGImageDecoder void DecodeInfoCallback(png_struct* png_ptr, png_info* info_ptr) { PngDecoderState* state = static_cast( png_get_progressive_ptr(png_ptr)); int bit_depth, color_type, interlace_type, compression_type; int filter_type; png_uint_32 w, h; png_get_IHDR(png_ptr, info_ptr, &w, &h, &bit_depth, &color_type, &interlace_type, &compression_type, &filter_type); // Bounds check. When the image is unreasonably big, we'll error out and // end up back at the setjmp call when we set up decoding. "Unreasonably big" // means "big enough that w * h * 32bpp might overflow an int"; we choose this // threshold to match WebKit and because a number of places in code assume // that an image's size (in bytes) fits in a (signed) int. unsigned long long total_size = static_cast(w) * static_cast(h); if (total_size > ((1 << 29) - 1)) longjmp(png_jmpbuf(png_ptr), 1); state->width = static_cast(w); state->height = static_cast(h); // The following png_set_* calls have to be done in the order dictated by // the libpng docs. Please take care if you have to move any of them. This // is also why certain things are done outside of the switch, even though // they look like they belong there. // Expand to ensure we use 24-bit for RGB and 32-bit for RGBA. if (color_type == PNG_COLOR_TYPE_PALETTE || (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8)) png_set_expand(png_ptr); // The '!= 0' is for silencing a Windows compiler warning. bool input_has_alpha = ((color_type & PNG_COLOR_MASK_ALPHA) != 0); // Transparency for paletted images. if (png_get_valid(png_ptr, info_ptr, PNG_INFO_tRNS)) { png_set_expand(png_ptr); input_has_alpha = true; } // Convert 16-bit to 8-bit. if (bit_depth == 16) png_set_strip_16(png_ptr); // Pick our row format converter necessary for this data. if (!input_has_alpha) { switch (state->output_format) { case PNGCodec::FORMAT_RGBA: state->output_channels = 4; png_set_add_alpha(png_ptr, 0xFF, PNG_FILLER_AFTER); break; case PNGCodec::FORMAT_BGRA: state->output_channels = 4; png_set_bgr(png_ptr); png_set_add_alpha(png_ptr, 0xFF, PNG_FILLER_AFTER); break; case PNGCodec::FORMAT_SkBitmap: state->output_channels = 4; png_set_add_alpha(png_ptr, 0xFF, PNG_FILLER_AFTER); break; } } else { switch (state->output_format) { case PNGCodec::FORMAT_RGBA: state->output_channels = 4; break; case PNGCodec::FORMAT_BGRA: state->output_channels = 4; png_set_bgr(png_ptr); break; case PNGCodec::FORMAT_SkBitmap: state->output_channels = 4; break; } } // Expand grayscale to RGB. if (color_type == PNG_COLOR_TYPE_GRAY || color_type == PNG_COLOR_TYPE_GRAY_ALPHA) png_set_gray_to_rgb(png_ptr); // Deal with gamma and keep it under our control. double gamma; if (png_get_gAMA(png_ptr, info_ptr, &gamma)) { if (gamma <= 0.0 || gamma > kMaxGamma) { gamma = kInverseGamma; png_set_gAMA(png_ptr, info_ptr, gamma); } png_set_gamma(png_ptr, kDefaultGamma, gamma); } else { png_set_gamma(png_ptr, kDefaultGamma, kInverseGamma); } // Setting the user transforms here (as opposed to inside the switch above) // because all png_set_* calls need to be done in the specific order // mandated by libpng. if (state->output_format == PNGCodec::FORMAT_SkBitmap) { png_set_read_user_transform_fn(png_ptr, ConvertRGBARowToSkia); png_set_user_transform_info(png_ptr, state, 0, 0); } // Tell libpng to send us rows for interlaced pngs. if (interlace_type == PNG_INTERLACE_ADAM7) png_set_interlace_handling(png_ptr); png_read_update_info(png_ptr, info_ptr); if (state->bitmap) { state->bitmap->allocN32Pixels(state->width, state->height); } else if (state->output) { state->output->resize( state->width * state->output_channels * state->height); } } void DecodeRowCallback(png_struct* png_ptr, png_byte* new_row, png_uint_32 row_num, int pass) { if (!new_row) return; // Interlaced image; row didn't change this pass. PngDecoderState* state = static_cast( png_get_progressive_ptr(png_ptr)); if (static_cast(row_num) > state->height) { NOTREACHED() << "Invalid row"; return; } unsigned char* base = NULL; if (state->bitmap) base = reinterpret_cast(state->bitmap->getAddr32(0, 0)); else if (state->output) base = &state->output->front(); unsigned char* dest = &base[state->width * state->output_channels * row_num]; png_progressive_combine_row(png_ptr, dest, new_row); } void DecodeEndCallback(png_struct* png_ptr, png_info* info) { PngDecoderState* state = static_cast( png_get_progressive_ptr(png_ptr)); // Mark the image as complete, this will tell the Decode function that we // have successfully found the end of the data. state->done = true; } // Holds png struct and info ensuring the proper destruction. class PngReadStructInfo { public: PngReadStructInfo(): png_ptr_(nullptr), info_ptr_(nullptr) { } ~PngReadStructInfo() { png_destroy_read_struct(&png_ptr_, &info_ptr_, NULL); } bool Build(const unsigned char* input, size_t input_size) { if (input_size < 8) return false; // Input data too small to be a png // Have libpng check the signature, it likes the first 8 bytes. if (png_sig_cmp(const_cast(input), 0, 8) != 0) return false; png_ptr_ = png_create_read_struct( PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); if (!png_ptr_) return false; info_ptr_ = png_create_info_struct(png_ptr_); if (!info_ptr_) { return false; } return true; } png_struct* png_ptr_; png_info* info_ptr_; private: DISALLOW_COPY_AND_ASSIGN(PngReadStructInfo); }; // Holds png struct and info ensuring the proper destruction. class PngWriteStructInfo { public: PngWriteStructInfo() : png_ptr_(nullptr), info_ptr_(nullptr) { } ~PngWriteStructInfo() { png_destroy_write_struct(&png_ptr_, &info_ptr_); } png_struct* png_ptr_; png_info* info_ptr_; private: DISALLOW_COPY_AND_ASSIGN(PngWriteStructInfo); }; // Libpng user error and warning functions which allows us to print libpng // errors and warnings using Chrome's logging facilities instead of stderr. void LogLibPNGDecodeError(png_structp png_ptr, png_const_charp error_msg) { DLOG(ERROR) << "libpng decode error: " << error_msg; longjmp(png_jmpbuf(png_ptr), 1); } void LogLibPNGDecodeWarning(png_structp png_ptr, png_const_charp warning_msg) { DLOG(ERROR) << "libpng decode warning: " << warning_msg; } } // namespace // static bool PNGCodec::Decode(const unsigned char* input, size_t input_size, ColorFormat format, std::vector* output, int* w, int* h) { PngReadStructInfo si; if (!si.Build(input, input_size)) return false; if (setjmp(png_jmpbuf(si.png_ptr_))) { // The destroyer will ensure that the structures are cleaned up in this // case, even though we may get here as a jump from random parts of the // PNG library called below. return false; } PngDecoderState state(format, output); png_set_error_fn(si.png_ptr_, NULL, LogLibPNGDecodeError, LogLibPNGDecodeWarning); png_set_progressive_read_fn(si.png_ptr_, &state, &DecodeInfoCallback, &DecodeRowCallback, &DecodeEndCallback); png_process_data(si.png_ptr_, si.info_ptr_, const_cast(input), input_size); if (!state.done) { // Fed it all the data but the library didn't think we got all the data, so // this file must be truncated. output->clear(); return false; } *w = state.width; *h = state.height; return true; } // static bool PNGCodec::Decode(const unsigned char* input, size_t input_size, SkBitmap* bitmap) { DCHECK(bitmap); PngReadStructInfo si; if (!si.Build(input, input_size)) return false; if (setjmp(png_jmpbuf(si.png_ptr_))) { // The destroyer will ensure that the structures are cleaned up in this // case, even though we may get here as a jump from random parts of the // PNG library called below. return false; } PngDecoderState state(bitmap); png_set_progressive_read_fn(si.png_ptr_, &state, &DecodeInfoCallback, &DecodeRowCallback, &DecodeEndCallback); png_process_data(si.png_ptr_, si.info_ptr_, const_cast(input), input_size); if (!state.done) { return false; } // Set the bitmap's opaqueness based on what we saw. bitmap->setAlphaType(state.is_opaque ? kOpaque_SkAlphaType : kPremul_SkAlphaType); return true; } // Encoder -------------------------------------------------------------------- namespace { static void AddComments(SkPngEncoder::Options& options, const std::vector& comments) { std::vector comment_pointers; std::vector comment_sizes; for (const auto& comment : comments) { comment_pointers.push_back(comment.key.c_str()); comment_pointers.push_back(comment.text.c_str()); comment_sizes.push_back(comment.key.length() + 1); comment_sizes.push_back(comment.text.length() + 1); } options.fComments = SkDataTable::MakeCopyArrays( (void const* const*)comment_pointers.data(), comment_sizes.data(), static_cast(comment_pointers.size())); } } // namespace static bool EncodeSkPixmap(const SkPixmap& src, const std::vector& comments, std::vector* output, int zlib_level) { output->clear(); VectorWStream dst(output); SkPngEncoder::Options options; AddComments(options, comments); options.fZLibLevel = zlib_level; return SkPngEncoder::Encode(&dst, src, options); } static bool EncodeSkPixmap(const SkPixmap& src, bool discard_transparency, const std::vector& comments, std::vector* output, int zlib_level) { if (discard_transparency) { SkImageInfo opaque_info = src.info().makeAlphaType(kOpaque_SkAlphaType); SkBitmap copy; if (!copy.tryAllocPixels(opaque_info)) { return false; } SkPixmap opaque_pixmap; bool success = copy.peekPixels(&opaque_pixmap); DCHECK(success); // The following step does the unpremul as we set the dst alpha type to be // kUnpremul_SkAlphaType. Later, because opaque_pixmap has // kOpaque_SkAlphaType, we'll discard the transparency as required. success = src.readPixels(opaque_info.makeAlphaType(kUnpremul_SkAlphaType), opaque_pixmap.writable_addr(), opaque_pixmap.rowBytes()); DCHECK(success); return EncodeSkPixmap(opaque_pixmap, comments, output, zlib_level); } return EncodeSkPixmap(src, comments, output, zlib_level); } // static bool PNGCodec::Encode(const unsigned char* input, ColorFormat format, const Size& size, int row_byte_width, bool discard_transparency, const std::vector& comments, std::vector* output) { // Initialization required for Windows although the switch covers all cases. SkColorType colorType = kN32_SkColorType; switch (format) { case FORMAT_RGBA: colorType = kRGBA_8888_SkColorType; break; case FORMAT_BGRA: colorType = kBGRA_8888_SkColorType; break; case FORMAT_SkBitmap: colorType = kN32_SkColorType; break; } auto alphaType = format == FORMAT_SkBitmap ? kPremul_SkAlphaType : kUnpremul_SkAlphaType; SkImageInfo info = SkImageInfo::Make(size.width(), size.height(), colorType, alphaType); SkPixmap src(info, input, row_byte_width); return EncodeSkPixmap(src, discard_transparency, comments, output, DEFAULT_ZLIB_COMPRESSION); } static bool EncodeSkBitmap(const SkBitmap& input, bool discard_transparency, std::vector* output, int zlib_level) { SkPixmap src; if (!input.peekPixels(&src)) { return false; } return EncodeSkPixmap(src, discard_transparency, std::vector(), output, zlib_level); } // static bool PNGCodec::EncodeBGRASkBitmap(const SkBitmap& input, bool discard_transparency, std::vector* output) { return EncodeSkBitmap(input, discard_transparency, output, DEFAULT_ZLIB_COMPRESSION); } // static bool PNGCodec::EncodeA8SkBitmap(const SkBitmap& input, std::vector* output) { DCHECK_EQ(input.colorType(), kAlpha_8_SkColorType); auto info = input.info() .makeColorType(kGray_8_SkColorType) .makeAlphaType(kOpaque_SkAlphaType); SkPixmap src(info, input.getAddr(0, 0), input.rowBytes()); return EncodeSkPixmap(src, std::vector(), output, DEFAULT_ZLIB_COMPRESSION); } // static bool PNGCodec::FastEncodeBGRASkBitmap(const SkBitmap& input, bool discard_transparency, std::vector* output) { return EncodeSkBitmap(input, discard_transparency, output, Z_BEST_SPEED); } PNGCodec::Comment::Comment(const std::string& k, const std::string& t) : key(k), text(t) { } PNGCodec::Comment::~Comment() { } } // namespace gfx