// Copyright 2017 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "ui/gfx/geometry/quaternion.h" #include #include #include "base/numerics/math_constants.h" #include "base/numerics/ranges.h" #include "base/strings/stringprintf.h" #include "ui/gfx/geometry/vector3d_f.h" namespace gfx { namespace { const double kEpsilon = 1e-5; } // namespace Quaternion::Quaternion(const Vector3dF& axis, double theta) { // Rotation angle is the product of |angle| and the magnitude of |axis|. double length = axis.Length(); if (std::abs(length) < kEpsilon) return; Vector3dF normalized = axis; normalized.Scale(1.0 / length); theta *= 0.5; double s = sin(theta); x_ = normalized.x() * s; y_ = normalized.y() * s; z_ = normalized.z() * s; w_ = cos(theta); } Quaternion::Quaternion(const Vector3dF& from, const Vector3dF& to) { double dot = gfx::DotProduct(from, to); double norm = sqrt(from.LengthSquared() * to.LengthSquared()); double real = norm + dot; gfx::Vector3dF axis; if (real < kEpsilon * norm) { real = 0.0f; axis = std::abs(from.x()) > std::abs(from.z()) ? gfx::Vector3dF{-from.y(), from.x(), 0.0} : gfx::Vector3dF{0.0, -from.z(), from.y()}; } else { axis = gfx::CrossProduct(from, to); } x_ = axis.x(); y_ = axis.y(); z_ = axis.z(); w_ = real; *this = this->Normalized(); } Quaternion Quaternion::FromAxisAngle(double x, double y, double z, double angle) { double length = std::sqrt(x * x + y * y + z * z); if (std::abs(length) < kEpsilon) return Quaternion(0, 0, 0, 1); double scale = std::sin(0.5 * angle) / length; return Quaternion(scale * x, scale * y, scale * z, std::cos(0.5 * angle)); } // Adapted from https://www.euclideanspace.com/maths/algebra/realNormedAlgebra/ // quaternions/slerp/index.htm Quaternion Quaternion::Slerp(const Quaternion& to, double t) const { Quaternion from = *this; double cos_half_angle = from.x_ * to.x_ + from.y_ * to.y_ + from.z_ * to.z_ + from.w_ * to.w_; if (cos_half_angle < 0) { // Since the half angle is > 90 degrees, the full rotation angle would // exceed 180 degrees. The quaternions (x, y, z, w) and (-x, -y, -z, -w) // represent the same rotation. Flipping the orientation of either // quaternion ensures that the half angle is less than 90 and that we are // taking the shortest path. from = from.flip(); cos_half_angle = -cos_half_angle; } // Ensure that acos is well behaved at the boundary. if (cos_half_angle > 1) cos_half_angle = 1; double sin_half_angle = std::sqrt(1.0 - cos_half_angle * cos_half_angle); if (sin_half_angle < kEpsilon) { // Quaternions share common axis and angle. return *this; } double half_angle = std::acos(cos_half_angle); double scaleA = std::sin((1 - t) * half_angle) / sin_half_angle; double scaleB = std::sin(t * half_angle) / sin_half_angle; return (scaleA * from) + (scaleB * to); } Quaternion Quaternion::Lerp(const Quaternion& q, double t) const { return (((1.0 - t) * *this) + (t * q)).Normalized(); } double Quaternion::Length() const { return x_ * x_ + y_ * y_ + z_ * z_ + w_ * w_; } Quaternion Quaternion::Normalized() const { double length = Length(); if (length < kEpsilon) return *this; return *this / sqrt(length); } std::string Quaternion::ToString() const { // q = (con(abs(v_theta)/2), v_theta/abs(v_theta) * sin(abs(v_theta)/2)) float abs_theta = acos(w_) * 2; float scale = 1. / sin(abs_theta * .5); gfx::Vector3dF v(x_, y_, z_); v.Scale(scale); return base::StringPrintf("[%f %f %f %f], v:", x_, y_, z_, w_) + v.ToString() + base::StringPrintf(", θ:%fπ", abs_theta / base::kPiFloat); } } // namespace gfx