// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "ui/latency/latency_info.h" #include #include #include #include #include "base/json/json_writer.h" #include "base/lazy_instance.h" #include "base/macros.h" #include "base/strings/stringprintf.h" #include "base/trace_event/trace_event.h" namespace { const size_t kMaxLatencyInfoNumber = 100; const char* GetComponentName(ui::LatencyComponentType type) { #define CASE_TYPE(t) case ui::t: return #t switch (type) { CASE_TYPE(INPUT_EVENT_LATENCY_BEGIN_RWH_COMPONENT); CASE_TYPE(LATENCY_BEGIN_SCROLL_LISTENER_UPDATE_MAIN_COMPONENT); CASE_TYPE(LATENCY_BEGIN_FRAME_RENDERER_MAIN_COMPONENT); CASE_TYPE(LATENCY_BEGIN_FRAME_RENDERER_INVALIDATE_COMPONENT); CASE_TYPE(LATENCY_BEGIN_FRAME_RENDERER_COMPOSITOR_COMPONENT); CASE_TYPE(LATENCY_BEGIN_FRAME_UI_MAIN_COMPONENT); CASE_TYPE(LATENCY_BEGIN_FRAME_UI_COMPOSITOR_COMPONENT); CASE_TYPE(LATENCY_BEGIN_FRAME_DISPLAY_COMPOSITOR_COMPONENT); CASE_TYPE(INPUT_EVENT_LATENCY_SCROLL_UPDATE_ORIGINAL_COMPONENT); CASE_TYPE(INPUT_EVENT_LATENCY_FIRST_SCROLL_UPDATE_ORIGINAL_COMPONENT); CASE_TYPE(INPUT_EVENT_LATENCY_ORIGINAL_COMPONENT); CASE_TYPE(INPUT_EVENT_LATENCY_UI_COMPONENT); CASE_TYPE(INPUT_EVENT_LATENCY_RENDERING_SCHEDULED_MAIN_COMPONENT); CASE_TYPE(INPUT_EVENT_LATENCY_RENDERING_SCHEDULED_IMPL_COMPONENT); CASE_TYPE(INPUT_EVENT_LATENCY_FORWARD_SCROLL_UPDATE_TO_MAIN_COMPONENT); CASE_TYPE(INPUT_EVENT_LATENCY_ACK_RWH_COMPONENT); CASE_TYPE(BROWSER_SNAPSHOT_FRAME_NUMBER_COMPONENT); CASE_TYPE(TAB_SHOW_COMPONENT); CASE_TYPE(INPUT_EVENT_LATENCY_RENDERER_MAIN_COMPONENT); CASE_TYPE(INPUT_EVENT_LATENCY_RENDERER_SWAP_COMPONENT); CASE_TYPE(DISPLAY_COMPOSITOR_RECEIVED_FRAME_COMPONENT); CASE_TYPE(INPUT_EVENT_GPU_SWAP_BUFFER_COMPONENT); CASE_TYPE(INPUT_EVENT_LATENCY_GENERATE_SCROLL_UPDATE_FROM_MOUSE_WHEEL); CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_NO_SWAP_COMPONENT); CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_FRAME_SWAP_COMPONENT); CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_COMMIT_FAILED_COMPONENT); CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_COMMIT_NO_UPDATE_COMPONENT); CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_SWAP_FAILED_COMPONENT); default: DLOG(WARNING) << "Unhandled LatencyComponentType.\n"; break; } #undef CASE_TYPE return "unknown"; } bool IsInputLatencyBeginComponent(ui::LatencyComponentType type) { return type == ui::INPUT_EVENT_LATENCY_BEGIN_RWH_COMPONENT; } bool IsTraceBeginComponent(ui::LatencyComponentType type) { return (IsInputLatencyBeginComponent(type) || type == ui::LATENCY_BEGIN_SCROLL_LISTENER_UPDATE_MAIN_COMPONENT); } bool IsTraceEndComponent(ui::LatencyComponentType type) { switch (type) { case ui::INPUT_EVENT_LATENCY_TERMINATED_NO_SWAP_COMPONENT: case ui::INPUT_EVENT_LATENCY_TERMINATED_FRAME_SWAP_COMPONENT: case ui::INPUT_EVENT_LATENCY_TERMINATED_COMMIT_FAILED_COMPONENT: case ui::INPUT_EVENT_LATENCY_TERMINATED_COMMIT_NO_UPDATE_COMPONENT: case ui::INPUT_EVENT_LATENCY_TERMINATED_SWAP_FAILED_COMPONENT: return true; default: return false; } } // This class is for converting latency info to trace buffer friendly format. class LatencyInfoTracedValue : public base::trace_event::ConvertableToTraceFormat { public: static std::unique_ptr FromValue( std::unique_ptr value); void AppendAsTraceFormat(std::string* out) const override; private: explicit LatencyInfoTracedValue(base::Value* value); ~LatencyInfoTracedValue() override; std::unique_ptr value_; DISALLOW_COPY_AND_ASSIGN(LatencyInfoTracedValue); }; std::unique_ptr LatencyInfoTracedValue::FromValue(std::unique_ptr value) { return std::unique_ptr( new LatencyInfoTracedValue(value.release())); } LatencyInfoTracedValue::~LatencyInfoTracedValue() { } void LatencyInfoTracedValue::AppendAsTraceFormat(std::string* out) const { std::string tmp; base::JSONWriter::Write(*value_, &tmp); *out += tmp; } LatencyInfoTracedValue::LatencyInfoTracedValue(base::Value* value) : value_(value) { } const char kTraceCategoriesForAsyncEvents[] = "benchmark,latencyInfo,rail"; struct LatencyInfoEnabledInitializer { LatencyInfoEnabledInitializer() : latency_info_enabled(TRACE_EVENT_API_GET_CATEGORY_GROUP_ENABLED( kTraceCategoriesForAsyncEvents)) { } const unsigned char* latency_info_enabled; }; static base::LazyInstance::Leaky g_latency_info_enabled = LAZY_INSTANCE_INITIALIZER; } // namespace namespace ui { LatencyInfo::LatencyInfo() : LatencyInfo(SourceEventType::UNKNOWN) {} LatencyInfo::LatencyInfo(SourceEventType type) : trace_id_(-1), ukm_source_id_(ukm::kInvalidSourceId), coalesced_(false), began_(false), terminated_(false), source_event_type_(type) {} LatencyInfo::LatencyInfo(const LatencyInfo& other) = default; LatencyInfo::~LatencyInfo() {} LatencyInfo::LatencyInfo(int64_t trace_id, bool terminated) : trace_id_(trace_id), ukm_source_id_(ukm::kInvalidSourceId), coalesced_(false), began_(false), terminated_(terminated), source_event_type_(SourceEventType::UNKNOWN) {} bool LatencyInfo::Verify(const std::vector& latency_info, const char* referring_msg) { if (latency_info.size() > kMaxLatencyInfoNumber) { LOG(ERROR) << referring_msg << ", LatencyInfo vector size " << latency_info.size() << " is too big."; TRACE_EVENT_INSTANT1("input,benchmark", "LatencyInfo::Verify Fails", TRACE_EVENT_SCOPE_GLOBAL, "size", latency_info.size()); return false; } return true; } void LatencyInfo::TraceIntermediateFlowEvents( const std::vector& latency_info, const char* event_name) { for (auto& latency : latency_info) { if (latency.trace_id() == -1) continue; TRACE_EVENT_WITH_FLOW1("input,benchmark", "LatencyInfo.Flow", TRACE_ID_DONT_MANGLE(latency.trace_id()), TRACE_EVENT_FLAG_FLOW_IN | TRACE_EVENT_FLAG_FLOW_OUT, "step", event_name); } } void LatencyInfo::CopyLatencyFrom(const LatencyInfo& other, LatencyComponentType type) { // Don't clobber an existing trace_id_ or ukm_source_id_. if (trace_id_ == -1) { DCHECK_EQ(ukm_source_id_, ukm::kInvalidSourceId); DCHECK(latency_components().empty()); trace_id_ = other.trace_id(); ukm_source_id_ = other.ukm_source_id(); } else { DCHECK_NE(ukm_source_id_, ukm::kInvalidSourceId); } for (const auto& lc : other.latency_components()) { if (lc.first.first == type) { AddLatencyNumberWithTimestamp(lc.first.first, lc.first.second, lc.second.sequence_number, lc.second.event_time, lc.second.event_count); } } expected_queueing_time_on_dispatch_ = other.expected_queueing_time_on_dispatch_; coalesced_ = other.coalesced(); // TODO(tdresser): Ideally we'd copy |began_| here as well, but |began_| // isn't very intuitive, and we can actually begin multiple times across // copied events. terminated_ = other.terminated(); } void LatencyInfo::AddNewLatencyFrom(const LatencyInfo& other) { // Don't clobber an existing trace_id_ or ukm_source_id_. if (trace_id_ == -1) { trace_id_ = other.trace_id(); } if (ukm_source_id_ == ukm::kInvalidSourceId) { ukm_source_id_ = other.ukm_source_id(); } for (const auto& lc : other.latency_components()) { if (!FindLatency(lc.first.first, lc.first.second, NULL)) { AddLatencyNumberWithTimestamp(lc.first.first, lc.first.second, lc.second.sequence_number, lc.second.event_time, lc.second.event_count); } } expected_queueing_time_on_dispatch_ = other.expected_queueing_time_on_dispatch_; coalesced_ = other.coalesced(); // TODO(tdresser): Ideally we'd copy |began_| here as well, but |began_| isn't // very intuitive, and we can actually begin multiple times across copied // events. terminated_ = other.terminated(); } void LatencyInfo::AddLatencyNumber(LatencyComponentType component, int64_t id, int64_t component_sequence_number) { AddLatencyNumberWithTimestampImpl(component, id, component_sequence_number, base::TimeTicks::Now(), 1, nullptr); } void LatencyInfo::AddLatencyNumberWithTraceName( LatencyComponentType component, int64_t id, int64_t component_sequence_number, const char* trace_name_str) { AddLatencyNumberWithTimestampImpl(component, id, component_sequence_number, base::TimeTicks::Now(), 1, trace_name_str); } void LatencyInfo::AddLatencyNumberWithTimestamp( LatencyComponentType component, int64_t id, int64_t component_sequence_number, base::TimeTicks time, uint32_t event_count) { AddLatencyNumberWithTimestampImpl(component, id, component_sequence_number, time, event_count, nullptr); } void LatencyInfo::AddLatencyNumberWithTimestampImpl( LatencyComponentType component, int64_t id, int64_t component_sequence_number, base::TimeTicks time, uint32_t event_count, const char* trace_name_str) { const unsigned char* latency_info_enabled = g_latency_info_enabled.Get().latency_info_enabled; if (IsTraceBeginComponent(component)) { // Should only ever add begin component once. CHECK(!began_); began_ = true; // We should have a trace ID assigned by now. DCHECK(trace_id_ != -1); if (*latency_info_enabled) { // The timestamp for ASYNC_BEGIN trace event is used for drawing the // beginning of the trace event in trace viewer. For better visualization, // for an input event, we want to draw the beginning as when the event is // originally created, e.g. the timestamp of its ORIGINAL/UI_COMPONENT, // not when we actually issue the ASYNC_BEGIN trace event. LatencyComponent begin_component; base::TimeTicks ts; if (FindLatency(INPUT_EVENT_LATENCY_ORIGINAL_COMPONENT, 0, &begin_component) || FindLatency(INPUT_EVENT_LATENCY_UI_COMPONENT, 0, &begin_component)) { ts = begin_component.event_time; } else { ts = base::TimeTicks::Now(); } if (trace_name_str) { if (IsInputLatencyBeginComponent(component)) trace_name_ = std::string("InputLatency::") + trace_name_str; else trace_name_ = std::string("Latency::") + trace_name_str; } TRACE_EVENT_COPY_ASYNC_BEGIN_WITH_TIMESTAMP0( kTraceCategoriesForAsyncEvents, trace_name_.c_str(), TRACE_ID_DONT_MANGLE(trace_id_), ts); } TRACE_EVENT_WITH_FLOW1("input,benchmark", "LatencyInfo.Flow", TRACE_ID_DONT_MANGLE(trace_id_), TRACE_EVENT_FLAG_FLOW_OUT, "trace_id", trace_id_); } LatencyMap::key_type key = std::make_pair(component, id); LatencyMap::iterator it = latency_components_.find(key); if (it == latency_components_.end()) { LatencyComponent info = {component_sequence_number, time, event_count, time, time}; latency_components_[key] = info; } else { it->second.sequence_number = std::max(component_sequence_number, it->second.sequence_number); uint32_t new_count = event_count + it->second.event_count; if (event_count > 0 && new_count != 0) { // Do a weighted average, so that the new event_time is the average of // the times of events currently in this structure with the time passed // into this method. it->second.event_time += (time - it->second.event_time) * event_count / new_count; it->second.event_count = new_count; it->second.last_event_time = std::max(it->second.last_event_time, time); } } if (IsTraceEndComponent(component) && began_) { // Should only ever add terminal component once. CHECK(!terminated_); terminated_ = true; if (*latency_info_enabled) { TRACE_EVENT_COPY_ASYNC_END1( kTraceCategoriesForAsyncEvents, trace_name_.c_str(), TRACE_ID_DONT_MANGLE(trace_id_), "data", AsTraceableData()); } TRACE_EVENT_WITH_FLOW0("input,benchmark", "LatencyInfo.Flow", TRACE_ID_DONT_MANGLE(trace_id_), TRACE_EVENT_FLAG_FLOW_IN); } } std::unique_ptr LatencyInfo::AsTraceableData() { std::unique_ptr record_data( new base::DictionaryValue()); for (const auto& lc : latency_components_) { std::unique_ptr component_info( new base::DictionaryValue()); component_info->SetDouble("comp_id", static_cast(lc.first.second)); component_info->SetDouble( "time", static_cast( lc.second.event_time.since_origin().InMicroseconds())); component_info->SetDouble("count", lc.second.event_count); component_info->SetDouble("sequence_number", lc.second.sequence_number); record_data->Set(GetComponentName(lc.first.first), std::move(component_info)); } record_data->SetDouble("trace_id", static_cast(trace_id_)); return LatencyInfoTracedValue::FromValue(std::move(record_data)); } bool LatencyInfo::FindLatency(LatencyComponentType type, int64_t id, LatencyComponent* output) const { LatencyMap::const_iterator it = latency_components_.find( std::make_pair(type, id)); if (it == latency_components_.end()) return false; if (output) *output = it->second; return true; } bool LatencyInfo::FindLatency(LatencyComponentType type, LatencyComponent* output) const { LatencyMap::const_iterator it = latency_components_.begin(); while (it != latency_components_.end()) { if (it->first.first == type) { if (output) *output = it->second; return true; } ++it; } return false; } void LatencyInfo::RemoveLatency(LatencyComponentType type) { LatencyMap::iterator it = latency_components_.begin(); while (it != latency_components_.end()) { if (it->first.first == type) it = latency_components_.erase(it); else it++; } } } // namespace ui