// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_MIPS64 #include "src/code-stubs.h" #include "src/counters.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/frame-constants.h" #include "src/frames.h" #include "src/objects-inl.h" #include "src/runtime/runtime.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address, ExitFrameType exit_frame_type) { __ li(s2, Operand(ExternalReference(address, masm->isolate()))); if (exit_frame_type == BUILTIN_EXIT) { __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), RelocInfo::CODE_TARGET); } else { DCHECK(exit_frame_type == EXIT); __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame), RelocInfo::CODE_TARGET); } } namespace { void AdaptorWithExitFrameType(MacroAssembler* masm, Builtins::ExitFrameType exit_frame_type) { // ----------- S t a t e ------------- // -- a0 : number of arguments excluding receiver // -- a1 : target // -- a3 : new.target // -- s2 : entry point // -- sp[0] : last argument // -- ... // -- sp[8 * (argc - 1)] : first argument // -- sp[8 * agrc] : receiver // ----------------------------------- __ AssertFunction(a1); // Make sure we operate in the context of the called function (for example // ConstructStubs implemented in C++ will be run in the context of the caller // instead of the callee, due to the way that [[Construct]] is defined for // ordinary functions). __ Ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // CEntryStub expects a0 to contain the number of arguments including the // receiver and the extra arguments. __ Daddu(a0, a0, BuiltinExitFrameConstants::kNumExtraArgsWithReceiver); // Insert extra arguments. __ PushRoot(Heap::kTheHoleValueRootIndex); // Padding. __ SmiTag(a0); __ Push(a0, a1, a3); __ SmiUntag(a0); // Jump to the C entry runtime stub directly here instead of using // JumpToExternalReference. We have already loaded entry point to s2 // in Generate_adaptor. __ mov(a1, s2); CEntryStub stub(masm->isolate(), 1, kDontSaveFPRegs, kArgvOnStack, exit_frame_type == Builtins::BUILTIN_EXIT); __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg), PROTECT); } } // namespace void Builtins::Generate_AdaptorWithExitFrame(MacroAssembler* masm) { AdaptorWithExitFrameType(masm, EXIT); } void Builtins::Generate_AdaptorWithBuiltinExitFrame(MacroAssembler* masm) { AdaptorWithExitFrameType(masm, BUILTIN_EXIT); } void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code, one_or_more_arguments, two_or_more_arguments; if (FLAG_debug_code) { // Initial map for the builtin InternalArray functions should be maps. __ Ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); __ SmiTst(a2, a4); __ Assert(ne, AbortReason::kUnexpectedInitialMapForInternalArrayFunction, a4, Operand(zero_reg)); __ GetObjectType(a2, a3, a4); __ Assert(eq, AbortReason::kUnexpectedInitialMapForInternalArrayFunction, a4, Operand(MAP_TYPE)); } // Run the native code for the InternalArray function called as a normal // function. // Tail call a stub. __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); InternalArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_ArrayConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- a1 : array function // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code; if (FLAG_debug_code) { // Initial map for the builtin Array functions should be maps. __ Ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); __ SmiTst(a2, a4); __ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction1, a4, Operand(zero_reg)); __ GetObjectType(a2, t0, a4); __ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction2, a4, Operand(MAP_TYPE)); } // a2 is the AllocationSite - here undefined. __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); // If a3 (new target) is undefined, then this is the 'Call' case, so move // a1 (the constructor) to a3. Label call; __ Branch(&call, ne, a3, Operand(a2)); __ mov(a3, a1); // Run the native code for the Array function called as a normal function. __ bind(&call); ArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm, Runtime::FunctionId function_id) { // ----------- S t a t e ------------- // -- a0 : argument count (preserved for callee) // -- a1 : target function (preserved for callee) // -- a3 : new target (preserved for callee) // ----------------------------------- { FrameScope scope(masm, StackFrame::INTERNAL); // Push a copy of the function onto the stack. // Push a copy of the target function and the new target. __ SmiTag(a0); __ Push(a0, a1, a3, a1); __ CallRuntime(function_id, 1); // Restore target function and new target. __ Pop(a0, a1, a3); __ SmiUntag(a0); } static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); __ Daddu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(a2); } namespace { void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- a1 : constructor function // -- a3 : new target // -- cp : context // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); // Preserve the incoming parameters on the stack. __ SmiTag(a0); __ Push(cp, a0); __ SmiUntag(a0); // The receiver for the builtin/api call. __ PushRoot(Heap::kTheHoleValueRootIndex); // Set up pointer to last argument. __ Daddu(t2, fp, Operand(StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ mov(t3, a0); // ----------- S t a t e ------------- // -- a0: number of arguments (untagged) // -- a3: new target // -- t2: pointer to last argument // -- t3: counter // -- sp[0*kPointerSize]: the hole (receiver) // -- sp[1*kPointerSize]: number of arguments (tagged) // -- sp[2*kPointerSize]: context // ----------------------------------- __ jmp(&entry); __ bind(&loop); __ Dlsa(t0, t2, t3, kPointerSizeLog2); __ Ld(t1, MemOperand(t0)); __ push(t1); __ bind(&entry); __ Daddu(t3, t3, Operand(-1)); __ Branch(&loop, greater_equal, t3, Operand(zero_reg)); // Call the function. // a0: number of arguments (untagged) // a1: constructor function // a3: new target ParameterCount actual(a0); __ InvokeFunction(a1, a3, actual, CALL_FUNCTION); // Restore context from the frame. __ Ld(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); // Restore smi-tagged arguments count from the frame. __ Ld(a1, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. __ SmiScale(a4, a1, kPointerSizeLog2); __ Daddu(sp, sp, a4); __ Daddu(sp, sp, kPointerSize); __ Ret(); } // The construct stub for ES5 constructor functions and ES6 class constructors. void Generate_JSConstructStubGeneric(MacroAssembler* masm, bool restrict_constructor_return) { // ----------- S t a t e ------------- // -- a0: number of arguments (untagged) // -- a1: constructor function // -- a3: new target // -- cp: context // -- ra: return address // -- sp[...]: constructor arguments // ----------------------------------- // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); Label post_instantiation_deopt_entry, not_create_implicit_receiver; // Preserve the incoming parameters on the stack. __ SmiTag(a0); __ Push(cp, a0, a1); __ PushRoot(Heap::kTheHoleValueRootIndex); __ Push(a3); // ----------- S t a t e ------------- // -- sp[0*kPointerSize]: new target // -- sp[1*kPointerSize]: padding // -- a1 and sp[2*kPointerSize]: constructor function // -- sp[3*kPointerSize]: number of arguments (tagged) // -- sp[4*kPointerSize]: context // ----------------------------------- __ Ld(t2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ lwu(t2, FieldMemOperand(t2, SharedFunctionInfo::kFlagsOffset)); __ And(t2, t2, Operand(SharedFunctionInfo::IsDerivedConstructorBit::kMask)); __ Branch(¬_create_implicit_receiver, ne, t2, Operand(zero_reg)); // If not derived class constructor: Allocate the new receiver object. __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1, t2, t3); __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET); __ Branch(&post_instantiation_deopt_entry); // Else: use TheHoleValue as receiver for constructor call __ bind(¬_create_implicit_receiver); __ LoadRoot(v0, Heap::kTheHoleValueRootIndex); // ----------- S t a t e ------------- // -- v0: receiver // -- Slot 4 / sp[0*kPointerSize]: new target // -- Slot 3 / sp[1*kPointerSize]: padding // -- Slot 2 / sp[2*kPointerSize]: constructor function // -- Slot 1 / sp[3*kPointerSize]: number of arguments (tagged) // -- Slot 0 / sp[4*kPointerSize]: context // ----------------------------------- // Deoptimizer enters here. masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( masm->pc_offset()); __ bind(&post_instantiation_deopt_entry); // Restore new target. __ Pop(a3); // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ Push(v0, v0); // ----------- S t a t e ------------- // -- r3: new target // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: implicit receiver // -- sp[2*kPointerSize]: padding // -- sp[3*kPointerSize]: constructor function // -- sp[4*kPointerSize]: number of arguments (tagged) // -- sp[5*kPointerSize]: context // ----------------------------------- // Restore constructor function and argument count. __ Ld(a1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset)); __ Ld(a0, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); __ SmiUntag(a0); // Set up pointer to last argument. __ Daddu(t2, fp, Operand(StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ mov(t3, a0); // ----------- S t a t e ------------- // -- a0: number of arguments (untagged) // -- a3: new target // -- t2: pointer to last argument // -- t3: counter // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: implicit receiver // -- sp[2*kPointerSize]: padding // -- a1 and sp[3*kPointerSize]: constructor function // -- sp[4*kPointerSize]: number of arguments (tagged) // -- sp[5*kPointerSize]: context // ----------------------------------- __ jmp(&entry); __ bind(&loop); __ Dlsa(t0, t2, t3, kPointerSizeLog2); __ Ld(t1, MemOperand(t0)); __ push(t1); __ bind(&entry); __ Daddu(t3, t3, Operand(-1)); __ Branch(&loop, greater_equal, t3, Operand(zero_reg)); // Call the function. ParameterCount actual(a0); __ InvokeFunction(a1, a3, actual, CALL_FUNCTION); // ----------- S t a t e ------------- // -- v0: constructor result // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: padding // -- sp[2*kPointerSize]: constructor function // -- sp[3*kPointerSize]: number of arguments // -- sp[4*kPointerSize]: context // ----------------------------------- // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( masm->pc_offset()); // Restore the context from the frame. __ Ld(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, do_throw, other_result, leave_frame; // If the result is undefined, we jump out to using the implicit receiver. __ JumpIfRoot(v0, Heap::kUndefinedValueRootIndex, &use_receiver); // Otherwise we do a smi check and fall through to check if the return value // is a valid receiver. // If the result is a smi, it is *not* an object in the ECMA sense. __ JumpIfSmi(v0, &other_result); // If the type of the result (stored in its map) is less than // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. __ GetObjectType(v0, t2, t2); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ Branch(&leave_frame, greater_equal, t2, Operand(FIRST_JS_RECEIVER_TYPE)); // The result is now neither undefined nor an object. __ bind(&other_result); __ Ld(a1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset)); __ Ld(t2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ lwu(t2, FieldMemOperand(t2, SharedFunctionInfo::kFlagsOffset)); __ And(t2, t2, Operand(SharedFunctionInfo::IsClassConstructorBit::kMask)); if (restrict_constructor_return) { // Throw if constructor function is a class constructor __ Branch(&use_receiver, eq, t2, Operand(zero_reg)); } else { __ Branch(&use_receiver, ne, t2, Operand(zero_reg)); __ CallRuntime( Runtime::kIncrementUseCounterConstructorReturnNonUndefinedPrimitive); __ Branch(&use_receiver); } __ bind(&do_throw); __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ Ld(v0, MemOperand(sp, 0 * kPointerSize)); __ JumpIfRoot(v0, Heap::kTheHoleValueRootIndex, &do_throw); __ bind(&leave_frame); // Restore smi-tagged arguments count from the frame. __ Ld(a1, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. __ SmiScale(a4, a1, kPointerSizeLog2); __ Daddu(sp, sp, a4); __ Daddu(sp, sp, kPointerSize); __ Ret(); } } // namespace void Builtins::Generate_JSConstructStubGenericRestrictedReturn( MacroAssembler* masm) { Generate_JSConstructStubGeneric(masm, true); } void Builtins::Generate_JSConstructStubGenericUnrestrictedReturn( MacroAssembler* masm) { Generate_JSConstructStubGeneric(masm, false); } void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { Generate_JSBuiltinsConstructStubHelper(masm); } static void GetSharedFunctionInfoBytecode(MacroAssembler* masm, Register sfi_data, Register scratch1) { Label done; __ GetObjectType(sfi_data, scratch1, scratch1); __ Branch(&done, ne, scratch1, Operand(INTERPRETER_DATA_TYPE)); __ Ld(sfi_data, FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset)); __ bind(&done); } // static void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- v0 : the value to pass to the generator // -- a1 : the JSGeneratorObject to resume // -- ra : return address // ----------------------------------- __ AssertGeneratorObject(a1); // Store input value into generator object. __ Sd(v0, FieldMemOperand(a1, JSGeneratorObject::kInputOrDebugPosOffset)); __ RecordWriteField(a1, JSGeneratorObject::kInputOrDebugPosOffset, v0, a3, kRAHasNotBeenSaved, kDontSaveFPRegs); // Load suspended function and context. __ Ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); __ Ld(cp, FieldMemOperand(a4, JSFunction::kContextOffset)); // Flood function if we are stepping. Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; Label stepping_prepared; ExternalReference debug_hook = ExternalReference::debug_hook_on_function_call_address(masm->isolate()); __ li(a5, Operand(debug_hook)); __ Lb(a5, MemOperand(a5)); __ Branch(&prepare_step_in_if_stepping, ne, a5, Operand(zero_reg)); // Flood function if we need to continue stepping in the suspended generator. ExternalReference debug_suspended_generator = ExternalReference::debug_suspended_generator_address(masm->isolate()); __ li(a5, Operand(debug_suspended_generator)); __ Ld(a5, MemOperand(a5)); __ Branch(&prepare_step_in_suspended_generator, eq, a1, Operand(a5)); __ bind(&stepping_prepared); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label stack_overflow; __ LoadRoot(at, Heap::kRealStackLimitRootIndex); __ Branch(&stack_overflow, lo, sp, Operand(at)); // Push receiver. __ Ld(a5, FieldMemOperand(a1, JSGeneratorObject::kReceiverOffset)); __ Push(a5); // ----------- S t a t e ------------- // -- a1 : the JSGeneratorObject to resume // -- a4 : generator function // -- cp : generator context // -- ra : return address // -- sp[0] : generator receiver // ----------------------------------- // Push holes for arguments to generator function. Since the parser forced // context allocation for any variables in generators, the actual argument // values have already been copied into the context and these dummy values // will never be used. __ Ld(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset)); __ Lw(a3, FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset)); { Label done_loop, loop; __ bind(&loop); __ Dsubu(a3, a3, Operand(1)); __ Branch(&done_loop, lt, a3, Operand(zero_reg)); __ PushRoot(Heap::kTheHoleValueRootIndex); __ Branch(&loop); __ bind(&done_loop); } // Underlying function needs to have bytecode available. if (FLAG_debug_code) { __ Ld(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset)); __ Ld(a3, FieldMemOperand(a3, SharedFunctionInfo::kFunctionDataOffset)); GetSharedFunctionInfoBytecode(masm, a3, a0); __ GetObjectType(a3, a3, a3); __ Assert(eq, AbortReason::kMissingBytecodeArray, a3, Operand(BYTECODE_ARRAY_TYPE)); } // Resume (Ignition/TurboFan) generator object. { __ Ld(a0, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset)); __ Lw(a0, FieldMemOperand(a0, SharedFunctionInfo::kFormalParameterCountOffset)); // We abuse new.target both to indicate that this is a resume call and to // pass in the generator object. In ordinary calls, new.target is always // undefined because generator functions are non-constructable. __ Move(a3, a1); __ Move(a1, a4); static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); __ Ld(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); __ Daddu(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(a2); } __ bind(&prepare_step_in_if_stepping); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(a1, a4); __ CallRuntime(Runtime::kDebugOnFunctionCall); __ Pop(a1); } __ Branch(USE_DELAY_SLOT, &stepping_prepared); __ Ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); __ bind(&prepare_step_in_suspended_generator); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(a1); __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); __ Pop(a1); } __ Branch(USE_DELAY_SLOT, &stepping_prepared); __ Ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); __ bind(&stack_overflow); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ break_(0xCC); // This should be unreachable. } } void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(a1); __ CallRuntime(Runtime::kThrowConstructedNonConstructable); } // Clobbers a2; preserves all other registers. static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; __ LoadRoot(a2, Heap::kRealStackLimitRootIndex); // Make a2 the space we have left. The stack might already be overflowed // here which will cause r2 to become negative. __ dsubu(a2, sp, a2); // Check if the arguments will overflow the stack. __ dsll(a7, argc, kPointerSizeLog2); __ Branch(&okay, gt, a2, Operand(a7)); // Signed comparison. // Out of stack space. __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&okay); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Called from JSEntryStub::GenerateBody // ----------- S t a t e ------------- // -- a0: new.target // -- a1: function // -- a2: receiver_pointer // -- a3: argc // -- s0: argv // ----------------------------------- ProfileEntryHookStub::MaybeCallEntryHook(masm); // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address(IsolateAddressId::kContextAddress, masm->isolate()); __ li(cp, Operand(context_address)); __ Ld(cp, MemOperand(cp)); // Push the function and the receiver onto the stack. __ Push(a1, a2); // Check if we have enough stack space to push all arguments. // Clobbers a2. Generate_CheckStackOverflow(masm, a3); // Remember new.target. __ mov(a5, a0); // Copy arguments to the stack in a loop. // a3: argc // s0: argv, i.e. points to first arg Label loop, entry; __ Dlsa(a6, s0, a3, kPointerSizeLog2); __ b(&entry); __ nop(); // Branch delay slot nop. // a6 points past last arg. __ bind(&loop); __ Ld(a4, MemOperand(s0)); // Read next parameter. __ daddiu(s0, s0, kPointerSize); __ Ld(a4, MemOperand(a4)); // Dereference handle. __ push(a4); // Push parameter. __ bind(&entry); __ Branch(&loop, ne, s0, Operand(a6)); // Setup new.target and argc. __ mov(a0, a3); __ mov(a3, a5); // Initialize all JavaScript callee-saved registers, since they will be seen // by the garbage collector as part of handlers. __ LoadRoot(a4, Heap::kUndefinedValueRootIndex); __ mov(s1, a4); __ mov(s2, a4); __ mov(s3, a4); __ mov(s4, a4); __ mov(s5, a4); // s6 holds the root address. Do not clobber. // s7 is cp. Do not init. // Invoke the code. Handle builtin = is_construct ? BUILTIN_CODE(masm->isolate(), Construct) : masm->isolate()->builtins()->Call(); __ Call(builtin, RelocInfo::CODE_TARGET); // Leave internal frame. } __ Jump(ra); } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } static void ReplaceClosureCodeWithOptimizedCode( MacroAssembler* masm, Register optimized_code, Register closure, Register scratch1, Register scratch2, Register scratch3) { // Store code entry in the closure. __ Sd(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset)); __ mov(scratch1, optimized_code); // Write barrier clobbers scratch1 below. __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2, kRAHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) { Register args_count = scratch; // Get the arguments + receiver count. __ Ld(args_count, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ Lw(t0, FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset)); // Leave the frame (also dropping the register file). __ LeaveFrame(StackFrame::INTERPRETED); // Drop receiver + arguments. __ Daddu(sp, sp, args_count); } // Tail-call |function_id| if |smi_entry| == |marker| static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm, Register smi_entry, OptimizationMarker marker, Runtime::FunctionId function_id) { Label no_match; __ Branch(&no_match, ne, smi_entry, Operand(Smi::FromEnum(marker))); GenerateTailCallToReturnedCode(masm, function_id); __ bind(&no_match); } static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm, Register feedback_vector, Register scratch1, Register scratch2, Register scratch3) { // ----------- S t a t e ------------- // -- a0 : argument count (preserved for callee if needed, and caller) // -- a3 : new target (preserved for callee if needed, and caller) // -- a1 : target function (preserved for callee if needed, and caller) // -- feedback vector (preserved for caller if needed) // ----------------------------------- DCHECK( !AreAliased(feedback_vector, a0, a1, a3, scratch1, scratch2, scratch3)); Label optimized_code_slot_is_weak_ref, fallthrough; Register closure = a1; Register optimized_code_entry = scratch1; __ Ld(optimized_code_entry, FieldMemOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset)); // Check if the code entry is a Smi. If yes, we interpret it as an // optimisation marker. Otherwise, interpret it as a weak reference to a code // object. __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref); { // Optimized code slot is a Smi optimization marker. // Fall through if no optimization trigger. __ Branch(&fallthrough, eq, optimized_code_entry, Operand(Smi::FromEnum(OptimizationMarker::kNone))); TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, OptimizationMarker::kLogFirstExecution, Runtime::kFunctionFirstExecution); TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, OptimizationMarker::kCompileOptimized, Runtime::kCompileOptimized_NotConcurrent); TailCallRuntimeIfMarkerEquals( masm, optimized_code_entry, OptimizationMarker::kCompileOptimizedConcurrent, Runtime::kCompileOptimized_Concurrent); { // Otherwise, the marker is InOptimizationQueue, so fall through hoping // that an interrupt will eventually update the slot with optimized code. if (FLAG_debug_code) { __ Assert( eq, AbortReason::kExpectedOptimizationSentinel, optimized_code_entry, Operand(Smi::FromEnum(OptimizationMarker::kInOptimizationQueue))); } __ jmp(&fallthrough); } } { // Optimized code slot is a weak reference. __ bind(&optimized_code_slot_is_weak_ref); __ LoadWeakValue(optimized_code_entry, optimized_code_entry, &fallthrough); // Check if the optimized code is marked for deopt. If it is, call the // runtime to clear it. Label found_deoptimized_code; __ Ld(a5, FieldMemOperand(optimized_code_entry, Code::kCodeDataContainerOffset)); __ Lw(a5, FieldMemOperand(a5, CodeDataContainer::kKindSpecificFlagsOffset)); __ And(a5, a5, Operand(1 << Code::kMarkedForDeoptimizationBit)); __ Branch(&found_deoptimized_code, ne, a5, Operand(zero_reg)); // Optimized code is good, get it into the closure and link the closure into // the optimized functions list, then tail call the optimized code. // The feedback vector is no longer used, so re-use it as a scratch // register. ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure, scratch2, scratch3, feedback_vector); static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); __ Daddu(a2, optimized_code_entry, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(a2); // Optimized code slot contains deoptimized code, evict it and re-enter the // losure's code. __ bind(&found_deoptimized_code); GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot); } // Fall-through if the optimized code cell is clear and there is no // optimization marker. __ bind(&fallthrough); } // Advance the current bytecode offset. This simulates what all bytecode // handlers do upon completion of the underlying operation. Will bail out to a // label if the bytecode (without prefix) is a return bytecode. static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm, Register bytecode_array, Register bytecode_offset, Register bytecode, Register scratch1, Register scratch2, Label* if_return) { Register bytecode_size_table = scratch1; DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table, bytecode)); __ li( bytecode_size_table, Operand(ExternalReference::bytecode_size_table_address(masm->isolate()))); // Check if the bytecode is a Wide or ExtraWide prefix bytecode. Label process_bytecode, extra_wide; STATIC_ASSERT(0 == static_cast(interpreter::Bytecode::kWide)); STATIC_ASSERT(1 == static_cast(interpreter::Bytecode::kExtraWide)); STATIC_ASSERT(2 == static_cast(interpreter::Bytecode::kDebugBreakWide)); STATIC_ASSERT(3 == static_cast(interpreter::Bytecode::kDebugBreakExtraWide)); __ Branch(&process_bytecode, hi, bytecode, Operand(3)); __ And(scratch2, bytecode, Operand(1)); __ Branch(&extra_wide, ne, scratch2, Operand(zero_reg)); // Load the next bytecode and update table to the wide scaled table. __ Daddu(bytecode_offset, bytecode_offset, Operand(1)); __ Daddu(scratch2, bytecode_array, bytecode_offset); __ Lbu(bytecode, MemOperand(scratch2)); __ Daddu(bytecode_size_table, bytecode_size_table, Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount)); __ jmp(&process_bytecode); __ bind(&extra_wide); // Load the next bytecode and update table to the extra wide scaled table. __ Daddu(bytecode_offset, bytecode_offset, Operand(1)); __ Daddu(scratch2, bytecode_array, bytecode_offset); __ Lbu(bytecode, MemOperand(scratch2)); __ Daddu(bytecode_size_table, bytecode_size_table, Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount)); __ bind(&process_bytecode); // Bailout to the return label if this is a return bytecode. #define JUMP_IF_EQUAL(NAME) \ __ Branch(if_return, eq, bytecode, \ Operand(static_cast(interpreter::Bytecode::k##NAME))); RETURN_BYTECODE_LIST(JUMP_IF_EQUAL) #undef JUMP_IF_EQUAL // Otherwise, load the size of the current bytecode and advance the offset. __ Dlsa(scratch2, bytecode_size_table, bytecode, 2); __ Lw(scratch2, MemOperand(scratch2)); __ Daddu(bytecode_offset, bytecode_offset, scratch2); } // Generate code for entering a JS function with the interpreter. // On entry to the function the receiver and arguments have been pushed on the // stack left to right. The actual argument count matches the formal parameter // count expected by the function. // // The live registers are: // o a1: the JS function object being called. // o a3: the incoming new target or generator object // o cp: our context // o fp: the caller's frame pointer // o sp: stack pointer // o ra: return address // // The function builds an interpreter frame. See InterpreterFrameConstants in // frames.h for its layout. void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { ProfileEntryHookStub::MaybeCallEntryHook(masm); Register closure = a1; Register feedback_vector = a2; // Load the feedback vector from the closure. __ Ld(feedback_vector, FieldMemOperand(closure, JSFunction::kFeedbackCellOffset)); __ Ld(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset)); // Read off the optimized code slot in the feedback vector, and if there // is optimized code or an optimization marker, call that instead. MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, a4, t3, a5); // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm, StackFrame::MANUAL); __ PushStandardFrame(closure); // Get the bytecode array from the function object (or from the DebugInfo if // it is present) and load it into kInterpreterBytecodeArrayRegister. Label maybe_load_debug_bytecode_array, bytecode_array_loaded; __ Ld(a0, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); __ Ld(kInterpreterBytecodeArrayRegister, FieldMemOperand(a0, SharedFunctionInfo::kFunctionDataOffset)); GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, a4); __ Ld(a4, FieldMemOperand(a0, SharedFunctionInfo::kDebugInfoOffset)); __ JumpIfNotSmi(a4, &maybe_load_debug_bytecode_array); __ bind(&bytecode_array_loaded); // Increment invocation count for the function. __ Lw(a4, FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset)); __ Addu(a4, a4, Operand(1)); __ Sw(a4, FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset)); // Check function data field is actually a BytecodeArray object. if (FLAG_debug_code) { __ SmiTst(kInterpreterBytecodeArrayRegister, a4); __ Assert(ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a4, Operand(zero_reg)); __ GetObjectType(kInterpreterBytecodeArrayRegister, a4, a4); __ Assert(eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a4, Operand(BYTECODE_ARRAY_TYPE)); } // Reset code age. DCHECK_EQ(0, BytecodeArray::kNoAgeBytecodeAge); __ sb(zero_reg, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kBytecodeAgeOffset)); // Load initial bytecode offset. __ li(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); // Push bytecode array and Smi tagged bytecode array offset. __ SmiTag(a4, kInterpreterBytecodeOffsetRegister); __ Push(kInterpreterBytecodeArrayRegister, a4); // Allocate the local and temporary register file on the stack. { // Load frame size (word) from the BytecodeArray object. __ Lw(a4, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kFrameSizeOffset)); // Do a stack check to ensure we don't go over the limit. Label ok; __ Dsubu(a5, sp, Operand(a4)); __ LoadRoot(a2, Heap::kRealStackLimitRootIndex); __ Branch(&ok, hs, a5, Operand(a2)); __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&ok); // If ok, push undefined as the initial value for all register file entries. Label loop_header; Label loop_check; __ LoadRoot(a5, Heap::kUndefinedValueRootIndex); __ Branch(&loop_check); __ bind(&loop_header); // TODO(rmcilroy): Consider doing more than one push per loop iteration. __ push(a5); // Continue loop if not done. __ bind(&loop_check); __ Dsubu(a4, a4, Operand(kPointerSize)); __ Branch(&loop_header, ge, a4, Operand(zero_reg)); } // If the bytecode array has a valid incoming new target or generator object // register, initialize it with incoming value which was passed in r3. Label no_incoming_new_target_or_generator_register; __ Lw(a5, FieldMemOperand( kInterpreterBytecodeArrayRegister, BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); __ Branch(&no_incoming_new_target_or_generator_register, eq, a5, Operand(zero_reg)); __ Dlsa(a5, fp, a5, kPointerSizeLog2); __ Sd(a3, MemOperand(a5)); __ bind(&no_incoming_new_target_or_generator_register); // Load accumulator as undefined. __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex); // Load the dispatch table into a register and dispatch to the bytecode // handler at the current bytecode offset. Label do_dispatch; __ bind(&do_dispatch); __ li(kInterpreterDispatchTableRegister, Operand(ExternalReference::interpreter_dispatch_table_address( masm->isolate()))); __ Daddu(a0, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister); __ Lbu(a7, MemOperand(a0)); __ Dlsa(at, kInterpreterDispatchTableRegister, a7, kPointerSizeLog2); __ Ld(kJavaScriptCallCodeStartRegister, MemOperand(at)); __ Call(kJavaScriptCallCodeStartRegister); masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); // Any returns to the entry trampoline are either due to the return bytecode // or the interpreter tail calling a builtin and then a dispatch. // Get bytecode array and bytecode offset from the stack frame. __ Ld(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ Ld(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Either return, or advance to the next bytecode and dispatch. Label do_return; __ Daddu(a1, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister); __ Lbu(a1, MemOperand(a1)); AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, a1, a2, a3, &do_return); __ jmp(&do_dispatch); __ bind(&do_return); // The return value is in v0. LeaveInterpreterFrame(masm, t0); __ Jump(ra); // Load debug copy of the bytecode array if it exists. // kInterpreterBytecodeArrayRegister is already loaded with // SharedFunctionInfo::kFunctionDataOffset. __ bind(&maybe_load_debug_bytecode_array); __ Ld(a5, FieldMemOperand(a4, DebugInfo::kDebugBytecodeArrayOffset)); __ JumpIfRoot(a5, Heap::kUndefinedValueRootIndex, &bytecode_array_loaded); __ mov(kInterpreterBytecodeArrayRegister, a5); __ Ld(a5, FieldMemOperand(a4, DebugInfo::kFlagsOffset)); __ SmiUntag(a5); __ And(a5, a5, Operand(DebugInfo::kDebugExecutionMode)); ExternalReference debug_execution_mode = ExternalReference::debug_execution_mode_address(masm->isolate()); __ li(a4, Operand(debug_execution_mode)); __ Lb(a4, MemOperand(a4)); STATIC_ASSERT(static_cast(DebugInfo::kDebugExecutionMode) == static_cast(DebugInfo::kSideEffects)); __ Branch(&bytecode_array_loaded, eq, a4, Operand(a5)); __ push(closure); __ push(feedback_vector); __ push(kInterpreterBytecodeArrayRegister); __ push(closure); __ CallRuntime(Runtime::kDebugApplyInstrumentation); __ pop(kInterpreterBytecodeArrayRegister); __ pop(feedback_vector); __ pop(closure); __ Branch(&bytecode_array_loaded); } static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args, Register scratch1, Register scratch2, Label* stack_overflow) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. __ LoadRoot(scratch1, Heap::kRealStackLimitRootIndex); // Make scratch1 the space we have left. The stack might already be overflowed // here which will cause scratch1 to become negative. __ dsubu(scratch1, sp, scratch1); // Check if the arguments will overflow the stack. __ dsll(scratch2, num_args, kPointerSizeLog2); // Signed comparison. __ Branch(stack_overflow, le, scratch1, Operand(scratch2)); } static void Generate_InterpreterPushArgs(MacroAssembler* masm, Register num_args, Register index, Register scratch, Register scratch2) { // Find the address of the last argument. __ mov(scratch2, num_args); __ dsll(scratch2, scratch2, kPointerSizeLog2); __ Dsubu(scratch2, index, Operand(scratch2)); // Push the arguments. Label loop_header, loop_check; __ Branch(&loop_check); __ bind(&loop_header); __ Ld(scratch, MemOperand(index)); __ Daddu(index, index, Operand(-kPointerSize)); __ push(scratch); __ bind(&loop_check); __ Branch(&loop_header, gt, index, Operand(scratch2)); } // static void Builtins::Generate_InterpreterPushArgsThenCallImpl( MacroAssembler* masm, ConvertReceiverMode receiver_mode, InterpreterPushArgsMode mode) { DCHECK(mode != InterpreterPushArgsMode::kArrayFunction); // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a2 : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // -- a1 : the target to call (can be any Object). // ----------------------------------- Label stack_overflow; __ Daddu(a3, a0, Operand(1)); // Add one for receiver. // Push "undefined" as the receiver arg if we need to. if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { __ PushRoot(Heap::kUndefinedValueRootIndex); __ Dsubu(a3, a3, Operand(1)); // Subtract one for receiver. } Generate_StackOverflowCheck(masm, a3, a4, t0, &stack_overflow); // This function modifies a2, t0 and a4. Generate_InterpreterPushArgs(masm, a3, a2, a4, t0); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Pop(a2); // Pass the spread in a register __ Dsubu(a0, a0, Operand(1)); // Subtract one for spread } // Call the target. if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), RelocInfo::CODE_TARGET); } else { __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // Unreachable code. __ break_(0xCC); } } // static void Builtins::Generate_InterpreterPushArgsThenConstructImpl( MacroAssembler* masm, InterpreterPushArgsMode mode) { // ----------- S t a t e ------------- // -- a0 : argument count (not including receiver) // -- a3 : new target // -- a1 : constructor to call // -- a2 : allocation site feedback if available, undefined otherwise. // -- a4 : address of the first argument // ----------------------------------- Label stack_overflow; // Push a slot for the receiver. __ push(zero_reg); Generate_StackOverflowCheck(masm, a0, a5, t0, &stack_overflow); // This function modifies t0, a4 and a5. Generate_InterpreterPushArgs(masm, a0, a4, a5, t0); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Pop(a2); // Pass the spread in a register __ Dsubu(a0, a0, Operand(1)); // Subtract one for spread } else { __ AssertUndefinedOrAllocationSite(a2, t0); } if (mode == InterpreterPushArgsMode::kArrayFunction) { __ AssertFunction(a1); // Tail call to the function-specific construct stub (still in the caller // context at this point). ArrayConstructorStub array_constructor_stub(masm->isolate()); __ Jump(array_constructor_stub.GetCode(), RelocInfo::CODE_TARGET); } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // Call the constructor with a0, a1, and a3 unmodified. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), RelocInfo::CODE_TARGET); } else { DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); // Call the constructor with a0, a1, and a3 unmodified. __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // Unreachable code. __ break_(0xCC); } } static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { // Set the return address to the correct point in the interpreter entry // trampoline. Label builtin_trampoline, trampoline_loaded; Smi* interpreter_entry_return_pc_offset( masm->isolate()->heap()->interpreter_entry_return_pc_offset()); DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero); // If the SFI function_data is an InterpreterData, get the trampoline stored // in it, otherwise get the trampoline from the builtins list. __ Ld(t0, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); __ Ld(t0, FieldMemOperand(t0, JSFunction::kSharedFunctionInfoOffset)); __ Ld(t0, FieldMemOperand(t0, SharedFunctionInfo::kFunctionDataOffset)); __ GetObjectType(t0, kInterpreterDispatchTableRegister, kInterpreterDispatchTableRegister); __ Branch(&builtin_trampoline, ne, kInterpreterDispatchTableRegister, Operand(INTERPRETER_DATA_TYPE)); __ Ld(t0, FieldMemOperand(t0, InterpreterData::kInterpreterTrampolineOffset)); __ Branch(&trampoline_loaded); __ bind(&builtin_trampoline); __ li(t0, Operand(BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline))); __ bind(&trampoline_loaded); __ Daddu(ra, t0, Operand(interpreter_entry_return_pc_offset->value() + Code::kHeaderSize - kHeapObjectTag)); // Initialize the dispatch table register. __ li(kInterpreterDispatchTableRegister, Operand(ExternalReference::interpreter_dispatch_table_address( masm->isolate()))); // Get the bytecode array pointer from the frame. __ Ld(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); if (FLAG_debug_code) { // Check function data field is actually a BytecodeArray object. __ SmiTst(kInterpreterBytecodeArrayRegister, at); __ Assert(ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, at, Operand(zero_reg)); __ GetObjectType(kInterpreterBytecodeArrayRegister, a1, a1); __ Assert(eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a1, Operand(BYTECODE_ARRAY_TYPE)); } // Get the target bytecode offset from the frame. __ Lw( kInterpreterBytecodeOffsetRegister, UntagSmiMemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); // Dispatch to the target bytecode. __ Daddu(a1, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister); __ Lbu(a7, MemOperand(a1)); __ Dlsa(a1, kInterpreterDispatchTableRegister, a7, kPointerSizeLog2); __ Ld(kJavaScriptCallCodeStartRegister, MemOperand(a1)); __ Jump(kJavaScriptCallCodeStartRegister); } void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { // Advance the current bytecode offset stored within the given interpreter // stack frame. This simulates what all bytecode handlers do upon completion // of the underlying operation. __ Ld(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ Ld(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Load the current bytecode. __ Daddu(a1, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister); __ Lbu(a1, MemOperand(a1)); // Advance to the next bytecode. Label if_return; AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, a1, a2, a3, &if_return); // Convert new bytecode offset to a Smi and save in the stackframe. __ SmiTag(a2, kInterpreterBytecodeOffsetRegister); __ Sd(a2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); Generate_InterpreterEnterBytecode(masm); // We should never take the if_return path. __ bind(&if_return); __ Abort(AbortReason::kInvalidBytecodeAdvance); } void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { Generate_InterpreterEnterBytecode(masm); } void Builtins::Generate_CompileLazyDeoptimizedCode(MacroAssembler* masm) { // Set the code slot inside the JSFunction to CompileLazy. __ Move(a2, BUILTIN_CODE(masm->isolate(), CompileLazy)); __ Sd(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); __ RecordWriteField(a1, JSFunction::kCodeOffset, a2, a4, kRAHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); // Jump to compile lazy. Generate_CompileLazy(masm); } static void GetSharedFunctionInfoCode(MacroAssembler* masm, Register sfi_data, Register scratch1) { // Figure out the SFI's code object. Label done; Label check_is_bytecode_array; Label check_is_code; Label check_is_fixed_array; Label check_is_pre_parsed_scope_data; Label check_is_function_template_info; Label check_is_interpreter_data; Register data_type = scratch1; // IsSmi: Is builtin __ JumpIfNotSmi(sfi_data, &check_is_bytecode_array); __ li(scratch1, Operand(ExternalReference::builtins_address(masm->isolate()))); // Avoid untagging the Smi by merging the shift STATIC_ASSERT(kPointerSizeLog2 < kSmiShift); __ dsrl(sfi_data, sfi_data, kSmiShift - kPointerSizeLog2); __ Daddu(scratch1, scratch1, sfi_data); __ Ld(sfi_data, MemOperand(scratch1)); __ Branch(&done); // Get map for subsequent checks. __ bind(&check_is_bytecode_array); __ Ld(data_type, FieldMemOperand(sfi_data, HeapObject::kMapOffset)); __ Lhu(data_type, FieldMemOperand(data_type, Map::kInstanceTypeOffset)); // IsBytecodeArray: Interpret bytecode __ Branch(&check_is_code, ne, data_type, Operand(BYTECODE_ARRAY_TYPE)); __ Move(sfi_data, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline)); __ Branch(&done); // IsCode: Run code __ bind(&check_is_code); __ Branch(&done, eq, data_type, Operand(CODE_TYPE)); // IsFixedArray: Instantiate using AsmWasmData, __ bind(&check_is_fixed_array); __ Branch(&check_is_pre_parsed_scope_data, ne, data_type, Operand(FIXED_ARRAY_TYPE)); __ Move(sfi_data, BUILTIN_CODE(masm->isolate(), InstantiateAsmJs)); __ Branch(&done); // IsPreParsedScopeData: Compile lazy __ bind(&check_is_pre_parsed_scope_data); __ Branch(&check_is_function_template_info, ne, data_type, Operand(TUPLE2_TYPE)); __ Move(sfi_data, BUILTIN_CODE(masm->isolate(), CompileLazy)); __ Branch(&done); // IsFunctionTemplateInfo: API call __ bind(&check_is_function_template_info); __ Branch(&check_is_interpreter_data, ne, data_type, Operand(FUNCTION_TEMPLATE_INFO_TYPE)); __ Move(sfi_data, BUILTIN_CODE(masm->isolate(), HandleApiCall)); // IsInterpreterData: Interpret bytecode __ bind(&check_is_interpreter_data); if (FLAG_debug_code) { __ Assert(eq, AbortReason::kInvalidSharedFunctionInfoData, data_type, Operand(INTERPRETER_DATA_TYPE)); } __ Ld(sfi_data, FieldMemOperand( sfi_data, InterpreterData::kInterpreterTrampolineOffset)); __ bind(&done); } void Builtins::Generate_CompileLazy(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argument count (preserved for callee) // -- a3 : new target (preserved for callee) // -- a1 : target function (preserved for callee) // ----------------------------------- // First lookup code, maybe we don't need to compile! Label gotta_call_runtime; Register closure = a1; Register feedback_vector = a2; // Do we have a valid feedback vector? __ Ld(feedback_vector, FieldMemOperand(closure, JSFunction::kFeedbackCellOffset)); __ Ld(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset)); __ JumpIfRoot(feedback_vector, Heap::kUndefinedValueRootIndex, &gotta_call_runtime); // Is there an optimization marker or optimized code in the feedback vector? MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, a4, t3, a5); // We found no optimized code. Infer the code object needed for the SFI. Register entry = a4; __ Ld(entry, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); __ Ld(entry, FieldMemOperand(entry, SharedFunctionInfo::kFunctionDataOffset)); GetSharedFunctionInfoCode(masm, entry, t1); __ Move(t1, masm->CodeObject()); __ Branch(&gotta_call_runtime, eq, entry, Operand(t1)); // Install the SFI's code entry. __ Sd(entry, FieldMemOperand(closure, JSFunction::kCodeOffset)); __ mov(t3, entry); // Write barrier clobbers t3 below. __ RecordWriteField(closure, JSFunction::kCodeOffset, t3, a5, kRAHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ Daddu(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(entry); __ bind(&gotta_call_runtime); GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); } // Lazy deserialization design doc: http://goo.gl/dxkYDZ. void Builtins::Generate_DeserializeLazy(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argument count (preserved for callee) // -- a3 : new target (preserved for callee) // -- a1 : target function (preserved for callee) // ----------------------------------- Label deserialize_in_runtime; Register target = a1; // Must be preserved Register scratch0 = a2; Register scratch1 = t0; CHECK(scratch0 != a0 && scratch0 != a3 && scratch0 != a1); CHECK(scratch1 != a0 && scratch1 != a3 && scratch1 != a1); CHECK(scratch0 != scratch1); // Load the builtin id for lazy deserialization from SharedFunctionInfo. __ AssertFunction(target); __ Ld(scratch0, FieldMemOperand(target, JSFunction::kSharedFunctionInfoOffset)); __ Ld(scratch1, FieldMemOperand(scratch0, SharedFunctionInfo::kFunctionDataOffset)); __ AssertSmi(scratch1); // The builtin may already have been deserialized. If that is the case, it is // stored in the builtins table, and we can copy to correct code object to // both the shared function info and function without calling into runtime. // // Otherwise, we need to call into runtime to deserialize. { // Load the code object at builtins_table[builtin_id] into scratch1. __ SmiUntag(scratch1); __ li(scratch0, Operand(ExternalReference::builtins_address(masm->isolate()))); __ Dlsa(scratch1, scratch0, scratch1, kPointerSizeLog2); __ Ld(scratch1, MemOperand(scratch1)); // Check if the loaded code object has already been deserialized. This is // the case iff it does not equal DeserializeLazy. __ Move(scratch0, masm->CodeObject()); __ Branch(&deserialize_in_runtime, eq, scratch1, Operand(scratch0)); } { // If we've reached this spot, the target builtin has been deserialized and // we simply need to copy it over to the target function. Register target_builtin = scratch1; __ Sd(target_builtin, FieldMemOperand(target, JSFunction::kCodeOffset)); __ mov(t3, target_builtin); // Write barrier clobbers t3 below. __ RecordWriteField(target, JSFunction::kCodeOffset, t3, t1, kRAHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); // All copying is done. Jump to the deserialized code object. __ Daddu(target_builtin, target_builtin, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(target_builtin); } __ bind(&deserialize_in_runtime); GenerateTailCallToReturnedCode(masm, Runtime::kDeserializeLazy); } void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argument count (preserved for callee) // -- a1 : new target (preserved for callee) // -- a3 : target function (preserved for callee) // ----------------------------------- Label failed; { FrameScope scope(masm, StackFrame::INTERNAL); // Push a copy of the target function and the new target. // Push function as parameter to the runtime call. __ Move(t2, a0); __ SmiTag(a0); __ Push(a0, a1, a3, a1); // Copy arguments from caller (stdlib, foreign, heap). Label args_done; for (int j = 0; j < 4; ++j) { Label over; if (j < 3) { __ Branch(&over, ne, t2, Operand(j)); } for (int i = j - 1; i >= 0; --i) { __ Ld(t2, MemOperand(fp, StandardFrameConstants::kCallerSPOffset + i * kPointerSize)); __ push(t2); } for (int i = 0; i < 3 - j; ++i) { __ PushRoot(Heap::kUndefinedValueRootIndex); } if (j < 3) { __ jmp(&args_done); __ bind(&over); } } __ bind(&args_done); // Call runtime, on success unwind frame, and parent frame. __ CallRuntime(Runtime::kInstantiateAsmJs, 4); // A smi 0 is returned on failure, an object on success. __ JumpIfSmi(v0, &failed); __ Drop(2); __ pop(t2); __ SmiUntag(t2); scope.GenerateLeaveFrame(); __ Daddu(t2, t2, Operand(1)); __ Dlsa(sp, sp, t2, kPointerSizeLog2); __ Ret(); __ bind(&failed); // Restore target function and new target. __ Pop(a0, a1, a3); __ SmiUntag(a0); } // On failure, tail call back to regular js by re-calling the function // which has be reset to the compile lazy builtin. static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); __ Ld(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); __ Daddu(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(a2); } namespace { void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, bool java_script_builtin, bool with_result) { const RegisterConfiguration* config(RegisterConfiguration::Default()); int allocatable_register_count = config->num_allocatable_general_registers(); if (with_result) { // Overwrite the hole inserted by the deoptimizer with the return value from // the LAZY deopt point. __ Sd(v0, MemOperand( sp, config->num_allocatable_general_registers() * kPointerSize + BuiltinContinuationFrameConstants::kFixedFrameSize)); } for (int i = allocatable_register_count - 1; i >= 0; --i) { int code = config->GetAllocatableGeneralCode(i); __ Pop(Register::from_code(code)); if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { __ SmiUntag(Register::from_code(code)); } } __ Ld(fp, MemOperand( sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); __ Pop(t0); __ Daddu(sp, sp, Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); __ Pop(ra); __ Daddu(t0, t0, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(t0); } } // namespace void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, false); } void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, true); } void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, false); } void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, true); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kNotifyDeoptimized); } DCHECK_EQ(kInterpreterAccumulatorRegister.code(), v0.code()); __ Ld(v0, MemOperand(sp, 0 * kPointerSize)); __ Ret(USE_DELAY_SLOT); // Safe to fill delay slot Addu will emit one instruction. __ Daddu(sp, sp, Operand(1 * kPointerSize)); // Remove state. } static void Generate_OnStackReplacementHelper(MacroAssembler* masm, bool has_handler_frame) { // Lookup the function in the JavaScript frame. if (has_handler_frame) { __ Ld(a0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ Ld(a0, MemOperand(a0, JavaScriptFrameConstants::kFunctionOffset)); } else { __ Ld(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } { FrameScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ push(a0); __ CallRuntime(Runtime::kCompileForOnStackReplacement); } // If the code object is null, just return to the caller. __ Ret(eq, v0, Operand(Smi::kZero)); // Drop any potential handler frame that is be sitting on top of the actual // JavaScript frame. This is the case then OSR is triggered from bytecode. if (has_handler_frame) { __ LeaveFrame(StackFrame::STUB); } // Load deoptimization data from the code object. // = [#deoptimization_data_offset] __ Ld(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag)); // Load the OSR entrypoint offset from the deoptimization data. // = [#header_size + #osr_pc_offset] __ Lw(a1, UntagSmiMemOperand(a1, FixedArray::OffsetOfElementAt( DeoptimizationData::kOsrPcOffsetIndex) - kHeapObjectTag)); // Compute the target address = code_obj + header_size + osr_offset // = + #header_size + __ Daddu(v0, v0, a1); __ daddiu(ra, v0, Code::kHeaderSize - kHeapObjectTag); // And "return" to the OSR entry point of the function. __ Ret(); } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { Generate_OnStackReplacementHelper(masm, false); } void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { Generate_OnStackReplacementHelper(masm, true); } // static void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argc // -- sp[0] : argArray // -- sp[4] : thisArg // -- sp[8] : receiver // ----------------------------------- Register argc = a0; Register arg_array = a2; Register receiver = a1; Register this_arg = a5; Register undefined_value = a3; Register scratch = a4; __ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex); // 1. Load receiver into a1, argArray into a2 (if present), remove all // arguments from the stack (including the receiver), and push thisArg (if // present) instead. { // Claim (2 - argc) dummy arguments form the stack, to put the stack in a // consistent state for a simple pop operation. __ Dsubu(sp, sp, Operand(2 * kPointerSize)); __ Dlsa(sp, sp, argc, kPointerSizeLog2); __ mov(scratch, argc); __ Pop(this_arg, arg_array); // Overwrite argc __ Movz(arg_array, undefined_value, scratch); // if argc == 0 __ Movz(this_arg, undefined_value, scratch); // if argc == 0 __ Dsubu(scratch, scratch, Operand(1)); __ Movz(arg_array, undefined_value, scratch); // if argc == 1 __ Ld(receiver, MemOperand(sp)); __ Sd(this_arg, MemOperand(sp)); } // ----------- S t a t e ------------- // -- a2 : argArray // -- a1 : receiver // -- a3 : undefined root value // -- sp[0] : thisArg // ----------------------------------- // 2. We don't need to check explicitly for callable receiver here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Tail call with no arguments if argArray is null or undefined. Label no_arguments; __ JumpIfRoot(arg_array, Heap::kNullValueRootIndex, &no_arguments); __ Branch(&no_arguments, eq, arg_array, Operand(undefined_value)); // 4a. Apply the receiver to the given argArray. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); // 4b. The argArray is either null or undefined, so we tail call without any // arguments to the receiver. __ bind(&no_arguments); { __ mov(a0, zero_reg); DCHECK(receiver == a1); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } } // static void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { // 1. Make sure we have at least one argument. // a0: actual number of arguments { Label done; __ Branch(&done, ne, a0, Operand(zero_reg)); __ PushRoot(Heap::kUndefinedValueRootIndex); __ Daddu(a0, a0, Operand(1)); __ bind(&done); } // 2. Get the function to call (passed as receiver) from the stack. // a0: actual number of arguments __ Dlsa(at, sp, a0, kPointerSizeLog2); __ Ld(a1, MemOperand(at)); // 3. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. // a0: actual number of arguments // a1: function { Label loop; // Calculate the copy start address (destination). Copy end address is sp. __ Dlsa(a2, sp, a0, kPointerSizeLog2); __ bind(&loop); __ Ld(at, MemOperand(a2, -kPointerSize)); __ Sd(at, MemOperand(a2)); __ Dsubu(a2, a2, Operand(kPointerSize)); __ Branch(&loop, ne, a2, Operand(sp)); // Adjust the actual number of arguments and remove the top element // (which is a copy of the last argument). __ Dsubu(a0, a0, Operand(1)); __ Pop(); } // 4. Call the callable. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argc // -- sp[0] : argumentsList (if argc ==3) // -- sp[4] : thisArgument (if argc >=2) // -- sp[8] : target (if argc >=1) // -- sp[12] : receiver // ----------------------------------- Register argc = a0; Register arguments_list = a2; Register target = a1; Register this_argument = a5; Register undefined_value = a3; Register scratch = a4; __ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex); // 1. Load target into a1 (if present), argumentsList into a2 (if present), // remove all arguments from the stack (including the receiver), and push // thisArgument (if present) instead. { // Claim (3 - argc) dummy arguments form the stack, to put the stack in a // consistent state for a simple pop operation. __ Dsubu(sp, sp, Operand(3 * kPointerSize)); __ Dlsa(sp, sp, argc, kPointerSizeLog2); __ mov(scratch, argc); __ Pop(target, this_argument, arguments_list); __ Movz(arguments_list, undefined_value, scratch); // if argc == 0 __ Movz(this_argument, undefined_value, scratch); // if argc == 0 __ Movz(target, undefined_value, scratch); // if argc == 0 __ Dsubu(scratch, scratch, Operand(1)); __ Movz(arguments_list, undefined_value, scratch); // if argc == 1 __ Movz(this_argument, undefined_value, scratch); // if argc == 1 __ Dsubu(scratch, scratch, Operand(1)); __ Movz(arguments_list, undefined_value, scratch); // if argc == 2 __ Sd(this_argument, MemOperand(sp, 0)); // Overwrite receiver } // ----------- S t a t e ------------- // -- a2 : argumentsList // -- a1 : target // -- a3 : undefined root value // -- sp[0] : thisArgument // ----------------------------------- // 2. We don't need to check explicitly for callable target here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Apply the target to the given argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argc // -- sp[0] : new.target (optional) (dummy value if argc <= 2) // -- sp[4] : argumentsList (dummy value if argc <= 1) // -- sp[8] : target (dummy value if argc == 0) // -- sp[12] : receiver // ----------------------------------- Register argc = a0; Register arguments_list = a2; Register target = a1; Register new_target = a3; Register undefined_value = a4; Register scratch = a5; __ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex); // 1. Load target into a1 (if present), argumentsList into a2 (if present), // new.target into a3 (if present, otherwise use target), remove all // arguments from the stack (including the receiver), and push thisArgument // (if present) instead. { // Claim (3 - argc) dummy arguments form the stack, to put the stack in a // consistent state for a simple pop operation. __ Dsubu(sp, sp, Operand(3 * kPointerSize)); __ Dlsa(sp, sp, argc, kPointerSizeLog2); __ mov(scratch, argc); __ Pop(target, arguments_list, new_target); __ Movz(arguments_list, undefined_value, scratch); // if argc == 0 __ Movz(new_target, undefined_value, scratch); // if argc == 0 __ Movz(target, undefined_value, scratch); // if argc == 0 __ Dsubu(scratch, scratch, Operand(1)); __ Movz(arguments_list, undefined_value, scratch); // if argc == 1 __ Movz(new_target, target, scratch); // if argc == 1 __ Dsubu(scratch, scratch, Operand(1)); __ Movz(new_target, target, scratch); // if argc == 2 __ Sd(undefined_value, MemOperand(sp, 0)); // Overwrite receiver } // ----------- S t a t e ------------- // -- a2 : argumentsList // -- a1 : target // -- a3 : new.target // -- sp[0] : receiver (undefined) // ----------------------------------- // 2. We don't need to check explicitly for constructor target here, // since that's the first thing the Construct/ConstructWithArrayLike // builtins will do. // 3. We don't need to check explicitly for constructor new.target here, // since that's the second thing the Construct/ConstructWithArrayLike // builtins will do. // 4. Construct the target with the given new.target and argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), RelocInfo::CODE_TARGET); } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { // __ sll(a0, a0, kSmiTagSize); __ dsll32(a0, a0, 0); __ li(a4, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); __ MultiPush(a0.bit() | a1.bit() | a4.bit() | fp.bit() | ra.bit()); __ Push(Smi::kZero); // Padding. __ Daddu(fp, sp, Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp)); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- v0 : result being passed through // ----------------------------------- // Get the number of arguments passed (as a smi), tear down the frame and // then tear down the parameters. __ Ld(a1, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ mov(sp, fp); __ MultiPop(fp.bit() | ra.bit()); __ SmiScale(a4, a1, kPointerSizeLog2); __ Daddu(sp, sp, a4); // Adjust for the receiver. __ Daddu(sp, sp, Operand(kPointerSize)); } // static void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, Handle code) { // ----------- S t a t e ------------- // -- a1 : target // -- a0 : number of parameters on the stack (not including the receiver) // -- a2 : arguments list (a FixedArray) // -- a4 : len (number of elements to push from args) // -- a3 : new.target (for [[Construct]]) // ----------------------------------- __ AssertFixedArray(a2); Register args = a2; Register len = a4; // Check for stack overflow. { // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label done; __ LoadRoot(a5, Heap::kRealStackLimitRootIndex); // Make ip the space we have left. The stack might already be overflowed // here which will cause ip to become negative. __ Dsubu(a5, sp, a5); // Check if the arguments will overflow the stack. __ dsll(at, len, kPointerSizeLog2); __ Branch(&done, gt, a5, Operand(at)); // Signed comparison. __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&done); } // Push arguments onto the stack (thisArgument is already on the stack). { Label done, push, loop; Register src = a6; Register scratch = len; __ daddiu(src, args, FixedArray::kHeaderSize - kHeapObjectTag); __ Branch(&done, eq, len, Operand(zero_reg), i::USE_DELAY_SLOT); __ Daddu(a0, a0, len); // The 'len' argument for Call() or Construct(). __ dsll(scratch, len, kPointerSizeLog2); __ Dsubu(scratch, sp, Operand(scratch)); __ LoadRoot(t1, Heap::kTheHoleValueRootIndex); __ bind(&loop); __ Ld(a5, MemOperand(src)); __ Branch(&push, ne, a5, Operand(t1)); __ LoadRoot(a5, Heap::kUndefinedValueRootIndex); __ bind(&push); __ daddiu(src, src, kPointerSize); __ Push(a5); __ Branch(&loop, ne, scratch, Operand(sp)); __ bind(&done); } // Tail-call to the actual Call or Construct builtin. __ Jump(code, RelocInfo::CODE_TARGET); } // static void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, CallOrConstructMode mode, Handle code) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a3 : the new.target (for [[Construct]] calls) // -- a1 : the target to call (can be any Object) // -- a2 : start index (to support rest parameters) // ----------------------------------- // Check if new.target has a [[Construct]] internal method. if (mode == CallOrConstructMode::kConstruct) { Label new_target_constructor, new_target_not_constructor; __ JumpIfSmi(a3, &new_target_not_constructor); __ ld(t1, FieldMemOperand(a3, HeapObject::kMapOffset)); __ lbu(t1, FieldMemOperand(t1, Map::kBitFieldOffset)); __ And(t1, t1, Operand(Map::IsConstructorBit::kMask)); __ Branch(&new_target_constructor, ne, t1, Operand(zero_reg)); __ bind(&new_target_not_constructor); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ Push(a3); __ CallRuntime(Runtime::kThrowNotConstructor); } __ bind(&new_target_constructor); } // Check if we have an arguments adaptor frame below the function frame. Label arguments_adaptor, arguments_done; __ Ld(a6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ Ld(a7, MemOperand(a6, CommonFrameConstants::kContextOrFrameTypeOffset)); __ Branch(&arguments_adaptor, eq, a7, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); { __ Ld(a7, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ Ld(a7, FieldMemOperand(a7, JSFunction::kSharedFunctionInfoOffset)); __ Lw(a7, FieldMemOperand(a7, SharedFunctionInfo::kFormalParameterCountOffset)); __ mov(a6, fp); } __ Branch(&arguments_done); __ bind(&arguments_adaptor); { // Just get the length from the ArgumentsAdaptorFrame. __ Lw(a7, UntagSmiMemOperand( a6, ArgumentsAdaptorFrameConstants::kLengthOffset)); } __ bind(&arguments_done); Label stack_done, stack_overflow; __ Subu(a7, a7, a2); __ Branch(&stack_done, le, a7, Operand(zero_reg)); { // Check for stack overflow. Generate_StackOverflowCheck(masm, a7, a4, a5, &stack_overflow); // Forward the arguments from the caller frame. { Label loop; __ Daddu(a0, a0, a7); __ bind(&loop); { __ Dlsa(at, a6, a7, kPointerSizeLog2); __ Ld(at, MemOperand(at, 1 * kPointerSize)); __ push(at); __ Subu(a7, a7, Operand(1)); __ Branch(&loop, ne, a7, Operand(zero_reg)); } } } __ Branch(&stack_done); __ bind(&stack_overflow); __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&stack_done); // Tail-call to the {code} handler. __ Jump(code, RelocInfo::CODE_TARGET); } // static void Builtins::Generate_CallFunction(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(a1); // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) // Check that function is not a "classConstructor". Label class_constructor; __ Ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ Lwu(a3, FieldMemOperand(a2, SharedFunctionInfo::kFlagsOffset)); __ And(at, a3, Operand(SharedFunctionInfo::IsClassConstructorBit::kMask)); __ Branch(&class_constructor, ne, at, Operand(zero_reg)); // Enter the context of the function; ToObject has to run in the function // context, and we also need to take the global proxy from the function // context in case of conversion. __ Ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // We need to convert the receiver for non-native sloppy mode functions. Label done_convert; __ Lwu(a3, FieldMemOperand(a2, SharedFunctionInfo::kFlagsOffset)); __ And(at, a3, Operand(SharedFunctionInfo::IsNativeBit::kMask | SharedFunctionInfo::IsStrictBit::kMask)); __ Branch(&done_convert, ne, at, Operand(zero_reg)); { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSFunction) // -- a2 : the shared function info. // -- cp : the function context. // ----------------------------------- if (mode == ConvertReceiverMode::kNullOrUndefined) { // Patch receiver to global proxy. __ LoadGlobalProxy(a3); } else { Label convert_to_object, convert_receiver; __ Dlsa(at, sp, a0, kPointerSizeLog2); __ Ld(a3, MemOperand(at)); __ JumpIfSmi(a3, &convert_to_object); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ GetObjectType(a3, a4, a4); __ Branch(&done_convert, hs, a4, Operand(FIRST_JS_RECEIVER_TYPE)); if (mode != ConvertReceiverMode::kNotNullOrUndefined) { Label convert_global_proxy; __ JumpIfRoot(a3, Heap::kUndefinedValueRootIndex, &convert_global_proxy); __ JumpIfNotRoot(a3, Heap::kNullValueRootIndex, &convert_to_object); __ bind(&convert_global_proxy); { // Patch receiver to global proxy. __ LoadGlobalProxy(a3); } __ Branch(&convert_receiver); } __ bind(&convert_to_object); { // Convert receiver using ToObject. // TODO(bmeurer): Inline the allocation here to avoid building the frame // in the fast case? (fall back to AllocateInNewSpace?) FrameScope scope(masm, StackFrame::INTERNAL); __ SmiTag(a0); __ Push(a0, a1); __ mov(a0, a3); __ Push(cp); __ Call(BUILTIN_CODE(masm->isolate(), ToObject), RelocInfo::CODE_TARGET); __ Pop(cp); __ mov(a3, v0); __ Pop(a0, a1); __ SmiUntag(a0); } __ Ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ bind(&convert_receiver); } __ Dlsa(at, sp, a0, kPointerSizeLog2); __ Sd(a3, MemOperand(at)); } __ bind(&done_convert); // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSFunction) // -- a2 : the shared function info. // -- cp : the function context. // ----------------------------------- __ Lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kFormalParameterCountOffset)); ParameterCount actual(a0); ParameterCount expected(a2); __ InvokeFunctionCode(a1, no_reg, expected, actual, JUMP_FUNCTION); // The function is a "classConstructor", need to raise an exception. __ bind(&class_constructor); { FrameScope frame(masm, StackFrame::INTERNAL); __ Push(a1); __ CallRuntime(Runtime::kThrowConstructorNonCallableError); } } // static void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertBoundFunction(a1); // Patch the receiver to [[BoundThis]]. { __ Ld(at, FieldMemOperand(a1, JSBoundFunction::kBoundThisOffset)); __ Dlsa(a4, sp, a0, kPointerSizeLog2); __ Sd(at, MemOperand(a4)); } // Load [[BoundArguments]] into a2 and length of that into a4. __ Ld(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset)); __ Lw(a4, UntagSmiFieldMemOperand(a2, FixedArray::kLengthOffset)); // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSBoundFunction) // -- a2 : the [[BoundArguments]] (implemented as FixedArray) // -- a4 : the number of [[BoundArguments]] // ----------------------------------- // Reserve stack space for the [[BoundArguments]]. { Label done; __ dsll(a5, a4, kPointerSizeLog2); __ Dsubu(sp, sp, Operand(a5)); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". __ LoadRoot(at, Heap::kRealStackLimitRootIndex); __ Branch(&done, gt, sp, Operand(at)); // Signed comparison. // Restore the stack pointer. __ Daddu(sp, sp, Operand(a5)); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); } __ bind(&done); } // Relocate arguments down the stack. { Label loop, done_loop; __ mov(a5, zero_reg); __ bind(&loop); __ Branch(&done_loop, gt, a5, Operand(a0)); __ Dlsa(a6, sp, a4, kPointerSizeLog2); __ Ld(at, MemOperand(a6)); __ Dlsa(a6, sp, a5, kPointerSizeLog2); __ Sd(at, MemOperand(a6)); __ Daddu(a4, a4, Operand(1)); __ Daddu(a5, a5, Operand(1)); __ Branch(&loop); __ bind(&done_loop); } // Copy [[BoundArguments]] to the stack (below the arguments). { Label loop, done_loop; __ Lw(a4, UntagSmiFieldMemOperand(a2, FixedArray::kLengthOffset)); __ Daddu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ bind(&loop); __ Dsubu(a4, a4, Operand(1)); __ Branch(&done_loop, lt, a4, Operand(zero_reg)); __ Dlsa(a5, a2, a4, kPointerSizeLog2); __ Ld(at, MemOperand(a5)); __ Dlsa(a5, sp, a0, kPointerSizeLog2); __ Sd(at, MemOperand(a5)); __ Daddu(a0, a0, Operand(1)); __ Branch(&loop); __ bind(&done_loop); } // Call the [[BoundTargetFunction]] via the Call builtin. __ Ld(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the target to call (can be any Object). // ----------------------------------- Label non_callable, non_function, non_smi; __ JumpIfSmi(a1, &non_callable); __ bind(&non_smi); __ GetObjectType(a1, t1, t2); __ Jump(masm->isolate()->builtins()->CallFunction(mode), RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction), RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE)); // Check if target has a [[Call]] internal method. __ Lbu(t1, FieldMemOperand(t1, Map::kBitFieldOffset)); __ And(t1, t1, Operand(Map::IsCallableBit::kMask)); __ Branch(&non_callable, eq, t1, Operand(zero_reg)); __ Branch(&non_function, ne, t2, Operand(JS_PROXY_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET); // 2. Call to something else, which might have a [[Call]] internal method (if // not we raise an exception). __ bind(&non_function); // Overwrite the original receiver with the (original) target. __ Dlsa(at, sp, a0, kPointerSizeLog2); __ Sd(a1, MemOperand(at)); // Let the "call_as_function_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, a1); __ Jump(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); // 3. Call to something that is not callable. __ bind(&non_callable); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(a1); __ CallRuntime(Runtime::kThrowCalledNonCallable); } } void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the constructor to call (checked to be a JSFunction) // -- a3 : the new target (checked to be a constructor) // ----------------------------------- __ AssertConstructor(a1); __ AssertFunction(a1); // Calling convention for function specific ConstructStubs require // a2 to contain either an AllocationSite or undefined. __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); Label call_generic_stub; // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric. __ Ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ lwu(a4, FieldMemOperand(a4, SharedFunctionInfo::kFlagsOffset)); __ And(a4, a4, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); __ Branch(&call_generic_stub, eq, a4, Operand(zero_reg)); __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub), RelocInfo::CODE_TARGET); __ bind(&call_generic_stub); __ Jump(masm->isolate()->builtins()->JSConstructStubGeneric(), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSBoundFunction) // -- a3 : the new target (checked to be a constructor) // ----------------------------------- __ AssertConstructor(a1); __ AssertBoundFunction(a1); // Load [[BoundArguments]] into a2 and length of that into a4. __ Ld(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset)); __ Lw(a4, UntagSmiFieldMemOperand(a2, FixedArray::kLengthOffset)); // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the function to call (checked to be a JSBoundFunction) // -- a2 : the [[BoundArguments]] (implemented as FixedArray) // -- a3 : the new target (checked to be a constructor) // -- a4 : the number of [[BoundArguments]] // ----------------------------------- // Reserve stack space for the [[BoundArguments]]. { Label done; __ dsll(a5, a4, kPointerSizeLog2); __ Dsubu(sp, sp, Operand(a5)); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". __ LoadRoot(at, Heap::kRealStackLimitRootIndex); __ Branch(&done, gt, sp, Operand(at)); // Signed comparison. // Restore the stack pointer. __ Daddu(sp, sp, Operand(a5)); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); } __ bind(&done); } // Relocate arguments down the stack. { Label loop, done_loop; __ mov(a5, zero_reg); __ bind(&loop); __ Branch(&done_loop, ge, a5, Operand(a0)); __ Dlsa(a6, sp, a4, kPointerSizeLog2); __ Ld(at, MemOperand(a6)); __ Dlsa(a6, sp, a5, kPointerSizeLog2); __ Sd(at, MemOperand(a6)); __ Daddu(a4, a4, Operand(1)); __ Daddu(a5, a5, Operand(1)); __ Branch(&loop); __ bind(&done_loop); } // Copy [[BoundArguments]] to the stack (below the arguments). { Label loop, done_loop; __ Lw(a4, UntagSmiFieldMemOperand(a2, FixedArray::kLengthOffset)); __ Daddu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ bind(&loop); __ Dsubu(a4, a4, Operand(1)); __ Branch(&done_loop, lt, a4, Operand(zero_reg)); __ Dlsa(a5, a2, a4, kPointerSizeLog2); __ Ld(at, MemOperand(a5)); __ Dlsa(a5, sp, a0, kPointerSizeLog2); __ Sd(at, MemOperand(a5)); __ Daddu(a0, a0, Operand(1)); __ Branch(&loop); __ bind(&done_loop); } // Patch new.target to [[BoundTargetFunction]] if new.target equals target. { Label skip_load; __ Branch(&skip_load, ne, a1, Operand(a3)); __ Ld(a3, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset)); __ bind(&skip_load); } // Construct the [[BoundTargetFunction]] via the Construct builtin. __ Ld(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Construct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : the number of arguments (not including the receiver) // -- a1 : the constructor to call (can be any Object) // -- a3 : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- // Check if target is a Smi. Label non_constructor, non_proxy; __ JumpIfSmi(a1, &non_constructor); // Check if target has a [[Construct]] internal method. __ ld(t1, FieldMemOperand(a1, HeapObject::kMapOffset)); __ Lbu(t3, FieldMemOperand(t1, Map::kBitFieldOffset)); __ And(t3, t3, Operand(Map::IsConstructorBit::kMask)); __ Branch(&non_constructor, eq, t3, Operand(zero_reg)); // Dispatch based on instance type. __ Lhu(t2, FieldMemOperand(t1, Map::kInstanceTypeOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction), RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE)); // Only dispatch to bound functions after checking whether they are // constructors. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE)); // Only dispatch to proxies after checking whether they are constructors. __ Branch(&non_proxy, ne, t2, Operand(JS_PROXY_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), RelocInfo::CODE_TARGET); // Called Construct on an exotic Object with a [[Construct]] internal method. __ bind(&non_proxy); { // Overwrite the original receiver with the (original) target. __ Dlsa(at, sp, a0, kPointerSizeLog2); __ Sd(a1, MemOperand(at)); // Let the "call_as_constructor_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, a1); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); } // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_AllocateInNewSpace(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : requested object size (untagged) // -- ra : return address // ----------------------------------- __ SmiTag(a0); __ Push(a0); __ Move(cp, Smi::kZero); __ TailCallRuntime(Runtime::kAllocateInNewSpace); } // static void Builtins::Generate_AllocateInOldSpace(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : requested object size (untagged) // -- ra : return address // ----------------------------------- __ SmiTag(a0); __ Move(a1, Smi::FromInt(AllocateTargetSpace::encode(OLD_SPACE))); __ Push(a0, a1); __ Move(cp, Smi::kZero); __ TailCallRuntime(Runtime::kAllocateInTargetSpace); } // static void Builtins::Generate_Abort(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : message_id as Smi // -- ra : return address // ----------------------------------- __ Push(a0); __ Move(cp, Smi::kZero); __ TailCallRuntime(Runtime::kAbort); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // State setup as expected by MacroAssembler::InvokePrologue. // ----------- S t a t e ------------- // -- a0: actual arguments count // -- a1: function (passed through to callee) // -- a2: expected arguments count // -- a3: new target (passed through to callee) // ----------------------------------- Label invoke, dont_adapt_arguments, stack_overflow; Label enough, too_few; __ Branch(&dont_adapt_arguments, eq, a2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); // We use Uless as the number of argument should always be greater than 0. __ Branch(&too_few, Uless, a0, Operand(a2)); { // Enough parameters: actual >= expected. // a0: actual number of arguments as a smi // a1: function // a2: expected number of arguments // a3: new target (passed through to callee) __ bind(&enough); EnterArgumentsAdaptorFrame(masm); Generate_StackOverflowCheck(masm, a2, a5, at, &stack_overflow); // Calculate copy start address into a0 and copy end address into a4. __ SmiScale(a0, a0, kPointerSizeLog2); __ Daddu(a0, fp, a0); // Adjust for return address and receiver. __ Daddu(a0, a0, Operand(2 * kPointerSize)); // Compute copy end address. __ dsll(a4, a2, kPointerSizeLog2); __ dsubu(a4, a0, a4); // Copy the arguments (including the receiver) to the new stack frame. // a0: copy start address // a1: function // a2: expected number of arguments // a3: new target (passed through to callee) // a4: copy end address Label copy; __ bind(©); __ Ld(a5, MemOperand(a0)); __ push(a5); __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(a4)); __ daddiu(a0, a0, -kPointerSize); // In delay slot. __ jmp(&invoke); } { // Too few parameters: Actual < expected. __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); Generate_StackOverflowCheck(masm, a2, a5, at, &stack_overflow); // Calculate copy start address into a0 and copy end address into a7. // a0: actual number of arguments as a smi // a1: function // a2: expected number of arguments // a3: new target (passed through to callee) __ SmiScale(a0, a0, kPointerSizeLog2); __ Daddu(a0, fp, a0); // Adjust for return address and receiver. __ Daddu(a0, a0, Operand(2 * kPointerSize)); // Compute copy end address. Also adjust for return address. __ Daddu(a7, fp, kPointerSize); // Copy the arguments (including the receiver) to the new stack frame. // a0: copy start address // a1: function // a2: expected number of arguments // a3: new target (passed through to callee) // a7: copy end address Label copy; __ bind(©); __ Ld(a4, MemOperand(a0)); // Adjusted above for return addr and receiver. __ Dsubu(sp, sp, kPointerSize); __ Dsubu(a0, a0, kPointerSize); __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(a7)); __ Sd(a4, MemOperand(sp)); // In the delay slot. // Fill the remaining expected arguments with undefined. // a1: function // a2: expected number of arguments // a3: new target (passed through to callee) __ LoadRoot(a5, Heap::kUndefinedValueRootIndex); __ dsll(a6, a2, kPointerSizeLog2); __ Dsubu(a4, fp, Operand(a6)); // Adjust for frame. __ Dsubu(a4, a4, Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp + kPointerSize)); Label fill; __ bind(&fill); __ Dsubu(sp, sp, kPointerSize); __ Branch(USE_DELAY_SLOT, &fill, ne, sp, Operand(a4)); __ Sd(a5, MemOperand(sp)); } // Call the entry point. __ bind(&invoke); __ mov(a0, a2); // a0 : expected number of arguments // a1 : function (passed through to callee) // a3: new target (passed through to callee) static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); __ Ld(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); __ Daddu(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Call(a2); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Exit frame and return. LeaveArgumentsAdaptorFrame(masm); __ Ret(); // ------------------------------------------- // Don't adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); __ Ld(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); __ Daddu(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(a2); __ bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ break_(0xCC); } } void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { { FrameScope scope(masm, StackFrame::INTERNAL); auto wasm_instance_reg = a0; // TODO(titzer): put in a common place. // Save all parameter registers (see wasm-linkage.cc). They might be // overwritten in the runtime call below. We don't have any callee-saved // registers in wasm, so no need to store anything else. constexpr RegList gp_regs = Register::ListOf(); constexpr RegList fp_regs = DoubleRegister::ListOf(); __ MultiPush(gp_regs); __ MultiPushFPU(fp_regs); // Pass the WASM instance as an explicit argument to WasmCompileLazy. __ push(wasm_instance_reg); // Initialize the JavaScript context with 0. CEntryStub will use it to // set the current context on the isolate. __ Move(kContextRegister, Smi::kZero); __ CallRuntime(Runtime::kWasmCompileLazy); // The WASM instance is the second return value. __ mov(wasm_instance_reg, kReturnRegister1); // Restore registers. __ MultiPopFPU(fp_regs); __ MultiPop(gp_regs); } // Finally, jump to the entrypoint. __ Jump(v0); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_MIPS64