// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "accessors.h" #include "api.h" #include "bootstrapper.h" #include "codegen.h" #include "compilation-cache.h" #include "cpu-profiler.h" #include "debug.h" #include "deoptimizer.h" #include "global-handles.h" #include "heap-profiler.h" #include "incremental-marking.h" #include "isolate-inl.h" #include "mark-compact.h" #include "natives.h" #include "objects-visiting.h" #include "objects-visiting-inl.h" #include "once.h" #include "runtime-profiler.h" #include "scopeinfo.h" #include "snapshot.h" #include "store-buffer.h" #include "utils/random-number-generator.h" #include "v8threads.h" #include "v8utils.h" #include "vm-state-inl.h" #if V8_TARGET_ARCH_ARM && !V8_INTERPRETED_REGEXP #include "regexp-macro-assembler.h" #include "arm/regexp-macro-assembler-arm.h" #endif #if V8_TARGET_ARCH_MIPS && !V8_INTERPRETED_REGEXP #include "regexp-macro-assembler.h" #include "mips/regexp-macro-assembler-mips.h" #endif namespace v8 { namespace internal { Heap::Heap() : isolate_(NULL), code_range_size_(kIs64BitArch ? 512 * MB : 0), // semispace_size_ should be a power of 2 and old_generation_size_ should be // a multiple of Page::kPageSize. reserved_semispace_size_(8 * (kPointerSize / 4) * MB), max_semispace_size_(8 * (kPointerSize / 4) * MB), initial_semispace_size_(Page::kPageSize), max_old_generation_size_(700ul * (kPointerSize / 4) * MB), max_executable_size_(256ul * (kPointerSize / 4) * MB), // Variables set based on semispace_size_ and old_generation_size_ in // ConfigureHeap (survived_since_last_expansion_, external_allocation_limit_) // Will be 4 * reserved_semispace_size_ to ensure that young // generation can be aligned to its size. maximum_committed_(0), survived_since_last_expansion_(0), sweep_generation_(0), always_allocate_scope_depth_(0), linear_allocation_scope_depth_(0), contexts_disposed_(0), global_ic_age_(0), flush_monomorphic_ics_(false), scan_on_scavenge_pages_(0), new_space_(this), old_pointer_space_(NULL), old_data_space_(NULL), code_space_(NULL), map_space_(NULL), cell_space_(NULL), property_cell_space_(NULL), lo_space_(NULL), gc_state_(NOT_IN_GC), gc_post_processing_depth_(0), ms_count_(0), gc_count_(0), remembered_unmapped_pages_index_(0), unflattened_strings_length_(0), #ifdef DEBUG allocation_timeout_(0), disallow_allocation_failure_(false), #endif // DEBUG new_space_high_promotion_mode_active_(false), old_generation_allocation_limit_(kMinimumOldGenerationAllocationLimit), size_of_old_gen_at_last_old_space_gc_(0), external_allocation_limit_(0), amount_of_external_allocated_memory_(0), amount_of_external_allocated_memory_at_last_global_gc_(0), old_gen_exhausted_(false), inline_allocation_disabled_(false), store_buffer_rebuilder_(store_buffer()), hidden_string_(NULL), gc_safe_size_of_old_object_(NULL), total_regexp_code_generated_(0), tracer_(NULL), young_survivors_after_last_gc_(0), high_survival_rate_period_length_(0), low_survival_rate_period_length_(0), survival_rate_(0), previous_survival_rate_trend_(Heap::STABLE), survival_rate_trend_(Heap::STABLE), max_gc_pause_(0.0), total_gc_time_ms_(0.0), max_alive_after_gc_(0), min_in_mutator_(kMaxInt), alive_after_last_gc_(0), last_gc_end_timestamp_(0.0), marking_time_(0.0), sweeping_time_(0.0), store_buffer_(this), marking_(this), incremental_marking_(this), number_idle_notifications_(0), last_idle_notification_gc_count_(0), last_idle_notification_gc_count_init_(false), mark_sweeps_since_idle_round_started_(0), gc_count_at_last_idle_gc_(0), scavenges_since_last_idle_round_(kIdleScavengeThreshold), full_codegen_bytes_generated_(0), crankshaft_codegen_bytes_generated_(0), gcs_since_last_deopt_(0), #ifdef VERIFY_HEAP no_weak_object_verification_scope_depth_(0), #endif promotion_queue_(this), configured_(false), chunks_queued_for_free_(NULL), relocation_mutex_(NULL) { // Allow build-time customization of the max semispace size. Building // V8 with snapshots and a non-default max semispace size is much // easier if you can define it as part of the build environment. #if defined(V8_MAX_SEMISPACE_SIZE) max_semispace_size_ = reserved_semispace_size_ = V8_MAX_SEMISPACE_SIZE; #endif // Ensure old_generation_size_ is a multiple of kPageSize. ASSERT(MB >= Page::kPageSize); intptr_t max_virtual = OS::MaxVirtualMemory(); if (max_virtual > 0) { if (code_range_size_ > 0) { // Reserve no more than 1/8 of the memory for the code range. code_range_size_ = Min(code_range_size_, max_virtual >> 3); } } memset(roots_, 0, sizeof(roots_[0]) * kRootListLength); native_contexts_list_ = NULL; array_buffers_list_ = Smi::FromInt(0); allocation_sites_list_ = Smi::FromInt(0); mark_compact_collector_.heap_ = this; external_string_table_.heap_ = this; // Put a dummy entry in the remembered pages so we can find the list the // minidump even if there are no real unmapped pages. RememberUnmappedPage(NULL, false); ClearObjectStats(true); } intptr_t Heap::Capacity() { if (!HasBeenSetUp()) return 0; return new_space_.Capacity() + old_pointer_space_->Capacity() + old_data_space_->Capacity() + code_space_->Capacity() + map_space_->Capacity() + cell_space_->Capacity() + property_cell_space_->Capacity(); } intptr_t Heap::CommittedMemory() { if (!HasBeenSetUp()) return 0; return new_space_.CommittedMemory() + old_pointer_space_->CommittedMemory() + old_data_space_->CommittedMemory() + code_space_->CommittedMemory() + map_space_->CommittedMemory() + cell_space_->CommittedMemory() + property_cell_space_->CommittedMemory() + lo_space_->Size(); } size_t Heap::CommittedPhysicalMemory() { if (!HasBeenSetUp()) return 0; return new_space_.CommittedPhysicalMemory() + old_pointer_space_->CommittedPhysicalMemory() + old_data_space_->CommittedPhysicalMemory() + code_space_->CommittedPhysicalMemory() + map_space_->CommittedPhysicalMemory() + cell_space_->CommittedPhysicalMemory() + property_cell_space_->CommittedPhysicalMemory() + lo_space_->CommittedPhysicalMemory(); } intptr_t Heap::CommittedMemoryExecutable() { if (!HasBeenSetUp()) return 0; return isolate()->memory_allocator()->SizeExecutable(); } void Heap::UpdateMaximumCommitted() { if (!HasBeenSetUp()) return; intptr_t current_committed_memory = CommittedMemory(); if (current_committed_memory > maximum_committed_) { maximum_committed_ = current_committed_memory; } } intptr_t Heap::Available() { if (!HasBeenSetUp()) return 0; return new_space_.Available() + old_pointer_space_->Available() + old_data_space_->Available() + code_space_->Available() + map_space_->Available() + cell_space_->Available() + property_cell_space_->Available(); } bool Heap::HasBeenSetUp() { return old_pointer_space_ != NULL && old_data_space_ != NULL && code_space_ != NULL && map_space_ != NULL && cell_space_ != NULL && property_cell_space_ != NULL && lo_space_ != NULL; } int Heap::GcSafeSizeOfOldObject(HeapObject* object) { if (IntrusiveMarking::IsMarked(object)) { return IntrusiveMarking::SizeOfMarkedObject(object); } return object->SizeFromMap(object->map()); } GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space, const char** reason) { // Is global GC requested? if (space != NEW_SPACE) { isolate_->counters()->gc_compactor_caused_by_request()->Increment(); *reason = "GC in old space requested"; return MARK_COMPACTOR; } if (FLAG_gc_global || (FLAG_stress_compaction && (gc_count_ & 1) != 0)) { *reason = "GC in old space forced by flags"; return MARK_COMPACTOR; } // Is enough data promoted to justify a global GC? if (OldGenerationAllocationLimitReached()) { isolate_->counters()->gc_compactor_caused_by_promoted_data()->Increment(); *reason = "promotion limit reached"; return MARK_COMPACTOR; } // Have allocation in OLD and LO failed? if (old_gen_exhausted_) { isolate_->counters()-> gc_compactor_caused_by_oldspace_exhaustion()->Increment(); *reason = "old generations exhausted"; return MARK_COMPACTOR; } // Is there enough space left in OLD to guarantee that a scavenge can // succeed? // // Note that MemoryAllocator->MaxAvailable() undercounts the memory available // for object promotion. It counts only the bytes that the memory // allocator has not yet allocated from the OS and assigned to any space, // and does not count available bytes already in the old space or code // space. Undercounting is safe---we may get an unrequested full GC when // a scavenge would have succeeded. if (isolate_->memory_allocator()->MaxAvailable() <= new_space_.Size()) { isolate_->counters()-> gc_compactor_caused_by_oldspace_exhaustion()->Increment(); *reason = "scavenge might not succeed"; return MARK_COMPACTOR; } // Default *reason = NULL; return SCAVENGER; } // TODO(1238405): Combine the infrastructure for --heap-stats and // --log-gc to avoid the complicated preprocessor and flag testing. void Heap::ReportStatisticsBeforeGC() { // Heap::ReportHeapStatistics will also log NewSpace statistics when // compiled --log-gc is set. The following logic is used to avoid // double logging. #ifdef DEBUG if (FLAG_heap_stats || FLAG_log_gc) new_space_.CollectStatistics(); if (FLAG_heap_stats) { ReportHeapStatistics("Before GC"); } else if (FLAG_log_gc) { new_space_.ReportStatistics(); } if (FLAG_heap_stats || FLAG_log_gc) new_space_.ClearHistograms(); #else if (FLAG_log_gc) { new_space_.CollectStatistics(); new_space_.ReportStatistics(); new_space_.ClearHistograms(); } #endif // DEBUG } void Heap::PrintShortHeapStatistics() { if (!FLAG_trace_gc_verbose) return; PrintPID("Memory allocator, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB\n", isolate_->memory_allocator()->Size() / KB, isolate_->memory_allocator()->Available() / KB); PrintPID("New space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", new_space_.Size() / KB, new_space_.Available() / KB, new_space_.CommittedMemory() / KB); PrintPID("Old pointers, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", old_pointer_space_->SizeOfObjects() / KB, old_pointer_space_->Available() / KB, old_pointer_space_->CommittedMemory() / KB); PrintPID("Old data space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", old_data_space_->SizeOfObjects() / KB, old_data_space_->Available() / KB, old_data_space_->CommittedMemory() / KB); PrintPID("Code space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", code_space_->SizeOfObjects() / KB, code_space_->Available() / KB, code_space_->CommittedMemory() / KB); PrintPID("Map space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", map_space_->SizeOfObjects() / KB, map_space_->Available() / KB, map_space_->CommittedMemory() / KB); PrintPID("Cell space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", cell_space_->SizeOfObjects() / KB, cell_space_->Available() / KB, cell_space_->CommittedMemory() / KB); PrintPID("PropertyCell space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", property_cell_space_->SizeOfObjects() / KB, property_cell_space_->Available() / KB, property_cell_space_->CommittedMemory() / KB); PrintPID("Large object space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", lo_space_->SizeOfObjects() / KB, lo_space_->Available() / KB, lo_space_->CommittedMemory() / KB); PrintPID("All spaces, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", this->SizeOfObjects() / KB, this->Available() / KB, this->CommittedMemory() / KB); PrintPID("External memory reported: %6" V8_PTR_PREFIX "d KB\n", static_cast(amount_of_external_allocated_memory_ / KB)); PrintPID("Total time spent in GC : %.1f ms\n", total_gc_time_ms_); } // TODO(1238405): Combine the infrastructure for --heap-stats and // --log-gc to avoid the complicated preprocessor and flag testing. void Heap::ReportStatisticsAfterGC() { // Similar to the before GC, we use some complicated logic to ensure that // NewSpace statistics are logged exactly once when --log-gc is turned on. #if defined(DEBUG) if (FLAG_heap_stats) { new_space_.CollectStatistics(); ReportHeapStatistics("After GC"); } else if (FLAG_log_gc) { new_space_.ReportStatistics(); } #else if (FLAG_log_gc) new_space_.ReportStatistics(); #endif // DEBUG } void Heap::GarbageCollectionPrologue() { { AllowHeapAllocation for_the_first_part_of_prologue; isolate_->transcendental_cache()->Clear(); ClearJSFunctionResultCaches(); gc_count_++; unflattened_strings_length_ = 0; if (FLAG_flush_code && FLAG_flush_code_incrementally) { mark_compact_collector()->EnableCodeFlushing(true); } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif } UpdateMaximumCommitted(); #ifdef DEBUG ASSERT(!AllowHeapAllocation::IsAllowed() && gc_state_ == NOT_IN_GC); if (FLAG_gc_verbose) Print(); ReportStatisticsBeforeGC(); #endif // DEBUG store_buffer()->GCPrologue(); if (isolate()->concurrent_osr_enabled()) { isolate()->optimizing_compiler_thread()->AgeBufferedOsrJobs(); } } intptr_t Heap::SizeOfObjects() { intptr_t total = 0; AllSpaces spaces(this); for (Space* space = spaces.next(); space != NULL; space = spaces.next()) { total += space->SizeOfObjects(); } return total; } void Heap::ClearAllICsByKind(Code::Kind kind) { HeapObjectIterator it(code_space()); for (Object* object = it.Next(); object != NULL; object = it.Next()) { Code* code = Code::cast(object); Code::Kind current_kind = code->kind(); if (current_kind == Code::FUNCTION || current_kind == Code::OPTIMIZED_FUNCTION) { code->ClearInlineCaches(kind); } } } void Heap::RepairFreeListsAfterBoot() { PagedSpaces spaces(this); for (PagedSpace* space = spaces.next(); space != NULL; space = spaces.next()) { space->RepairFreeListsAfterBoot(); } } void Heap::GarbageCollectionEpilogue() { if (FLAG_allocation_site_pretenuring) { int tenure_decisions = 0; int dont_tenure_decisions = 0; int allocation_mementos_found = 0; Object* cur = allocation_sites_list(); while (cur->IsAllocationSite()) { AllocationSite* casted = AllocationSite::cast(cur); allocation_mementos_found += casted->memento_found_count()->value(); if (casted->DigestPretenuringFeedback()) { if (casted->GetPretenureMode() == TENURED) { tenure_decisions++; } else { dont_tenure_decisions++; } } cur = casted->weak_next(); } // TODO(mvstanton): Pretenure decisions are only made once for an allocation // site. Find a sane way to decide about revisiting the decision later. if (FLAG_trace_track_allocation_sites && (allocation_mementos_found > 0 || tenure_decisions > 0 || dont_tenure_decisions > 0)) { PrintF("GC: (#mementos, #tenure decisions, #donttenure decisions) " "(%d, %d, %d)\n", allocation_mementos_found, tenure_decisions, dont_tenure_decisions); } } store_buffer()->GCEpilogue(); // In release mode, we only zap the from space under heap verification. if (Heap::ShouldZapGarbage()) { ZapFromSpace(); } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif AllowHeapAllocation for_the_rest_of_the_epilogue; #ifdef DEBUG if (FLAG_print_global_handles) isolate_->global_handles()->Print(); if (FLAG_print_handles) PrintHandles(); if (FLAG_gc_verbose) Print(); if (FLAG_code_stats) ReportCodeStatistics("After GC"); #endif if (FLAG_deopt_every_n_garbage_collections > 0) { // TODO(jkummerow/ulan/jarin): This is not safe! We can't assume that // the topmost optimized frame can be deoptimized safely, because it // might not have a lazy bailout point right after its current PC. if (++gcs_since_last_deopt_ == FLAG_deopt_every_n_garbage_collections) { Deoptimizer::DeoptimizeAll(isolate()); gcs_since_last_deopt_ = 0; } } UpdateMaximumCommitted(); isolate_->counters()->alive_after_last_gc()->Set( static_cast(SizeOfObjects())); isolate_->counters()->string_table_capacity()->Set( string_table()->Capacity()); isolate_->counters()->number_of_symbols()->Set( string_table()->NumberOfElements()); if (full_codegen_bytes_generated_ + crankshaft_codegen_bytes_generated_ > 0) { isolate_->counters()->codegen_fraction_crankshaft()->AddSample( static_cast((crankshaft_codegen_bytes_generated_ * 100.0) / (crankshaft_codegen_bytes_generated_ + full_codegen_bytes_generated_))); } if (CommittedMemory() > 0) { isolate_->counters()->external_fragmentation_total()->AddSample( static_cast(100 - (SizeOfObjects() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_new_space()-> AddSample(static_cast( (new_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_old_pointer_space()->AddSample( static_cast( (old_pointer_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_old_data_space()->AddSample( static_cast( (old_data_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_code_space()-> AddSample(static_cast( (code_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_map_space()->AddSample( static_cast( (map_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_cell_space()->AddSample( static_cast( (cell_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_property_cell_space()-> AddSample(static_cast( (property_cell_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_lo_space()-> AddSample(static_cast( (lo_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_sample_total_committed()->AddSample( static_cast(CommittedMemory() / KB)); isolate_->counters()->heap_sample_total_used()->AddSample( static_cast(SizeOfObjects() / KB)); isolate_->counters()->heap_sample_map_space_committed()->AddSample( static_cast(map_space()->CommittedMemory() / KB)); isolate_->counters()->heap_sample_cell_space_committed()->AddSample( static_cast(cell_space()->CommittedMemory() / KB)); isolate_->counters()-> heap_sample_property_cell_space_committed()-> AddSample(static_cast( property_cell_space()->CommittedMemory() / KB)); isolate_->counters()->heap_sample_code_space_committed()->AddSample( static_cast(code_space()->CommittedMemory() / KB)); isolate_->counters()->heap_sample_maximum_committed()->AddSample( static_cast(MaximumCommittedMemory() / KB)); } #define UPDATE_COUNTERS_FOR_SPACE(space) \ isolate_->counters()->space##_bytes_available()->Set( \ static_cast(space()->Available())); \ isolate_->counters()->space##_bytes_committed()->Set( \ static_cast(space()->CommittedMemory())); \ isolate_->counters()->space##_bytes_used()->Set( \ static_cast(space()->SizeOfObjects())); #define UPDATE_FRAGMENTATION_FOR_SPACE(space) \ if (space()->CommittedMemory() > 0) { \ isolate_->counters()->external_fragmentation_##space()->AddSample( \ static_cast(100 - \ (space()->SizeOfObjects() * 100.0) / space()->CommittedMemory())); \ } #define UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(space) \ UPDATE_COUNTERS_FOR_SPACE(space) \ UPDATE_FRAGMENTATION_FOR_SPACE(space) UPDATE_COUNTERS_FOR_SPACE(new_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(old_pointer_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(old_data_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(code_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(map_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(cell_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(property_cell_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(lo_space) #undef UPDATE_COUNTERS_FOR_SPACE #undef UPDATE_FRAGMENTATION_FOR_SPACE #undef UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE #if defined(DEBUG) ReportStatisticsAfterGC(); #endif // DEBUG #ifdef ENABLE_DEBUGGER_SUPPORT isolate_->debug()->AfterGarbageCollection(); #endif // ENABLE_DEBUGGER_SUPPORT } void Heap::CollectAllGarbage(int flags, const char* gc_reason) { // Since we are ignoring the return value, the exact choice of space does // not matter, so long as we do not specify NEW_SPACE, which would not // cause a full GC. mark_compact_collector_.SetFlags(flags); CollectGarbage(OLD_POINTER_SPACE, gc_reason); mark_compact_collector_.SetFlags(kNoGCFlags); } void Heap::CollectAllAvailableGarbage(const char* gc_reason) { // Since we are ignoring the return value, the exact choice of space does // not matter, so long as we do not specify NEW_SPACE, which would not // cause a full GC. // Major GC would invoke weak handle callbacks on weakly reachable // handles, but won't collect weakly reachable objects until next // major GC. Therefore if we collect aggressively and weak handle callback // has been invoked, we rerun major GC to release objects which become // garbage. // Note: as weak callbacks can execute arbitrary code, we cannot // hope that eventually there will be no weak callbacks invocations. // Therefore stop recollecting after several attempts. if (isolate()->concurrent_recompilation_enabled()) { // The optimizing compiler may be unnecessarily holding on to memory. DisallowHeapAllocation no_recursive_gc; isolate()->optimizing_compiler_thread()->Flush(); } mark_compact_collector()->SetFlags(kMakeHeapIterableMask | kReduceMemoryFootprintMask); isolate_->compilation_cache()->Clear(); const int kMaxNumberOfAttempts = 7; const int kMinNumberOfAttempts = 2; for (int attempt = 0; attempt < kMaxNumberOfAttempts; attempt++) { if (!CollectGarbage(OLD_POINTER_SPACE, MARK_COMPACTOR, gc_reason, NULL) && attempt + 1 >= kMinNumberOfAttempts) { break; } } mark_compact_collector()->SetFlags(kNoGCFlags); new_space_.Shrink(); UncommitFromSpace(); incremental_marking()->UncommitMarkingDeque(); } bool Heap::CollectGarbage(AllocationSpace space, GarbageCollector collector, const char* gc_reason, const char* collector_reason) { // The VM is in the GC state until exiting this function. VMState state(isolate_); #ifdef DEBUG // Reset the allocation timeout to the GC interval, but make sure to // allow at least a few allocations after a collection. The reason // for this is that we have a lot of allocation sequences and we // assume that a garbage collection will allow the subsequent // allocation attempts to go through. allocation_timeout_ = Max(6, FLAG_gc_interval); #endif if (collector == SCAVENGER && !incremental_marking()->IsStopped()) { if (FLAG_trace_incremental_marking) { PrintF("[IncrementalMarking] Scavenge during marking.\n"); } } if (collector == MARK_COMPACTOR && !mark_compact_collector()->abort_incremental_marking() && !incremental_marking()->IsStopped() && !incremental_marking()->should_hurry() && FLAG_incremental_marking_steps) { // Make progress in incremental marking. const intptr_t kStepSizeWhenDelayedByScavenge = 1 * MB; incremental_marking()->Step(kStepSizeWhenDelayedByScavenge, IncrementalMarking::NO_GC_VIA_STACK_GUARD); if (!incremental_marking()->IsComplete()) { if (FLAG_trace_incremental_marking) { PrintF("[IncrementalMarking] Delaying MarkSweep.\n"); } collector = SCAVENGER; collector_reason = "incremental marking delaying mark-sweep"; } } bool next_gc_likely_to_collect_more = false; { GCTracer tracer(this, gc_reason, collector_reason); ASSERT(AllowHeapAllocation::IsAllowed()); DisallowHeapAllocation no_allocation_during_gc; GarbageCollectionPrologue(); // The GC count was incremented in the prologue. Tell the tracer about // it. tracer.set_gc_count(gc_count_); // Tell the tracer which collector we've selected. tracer.set_collector(collector); { HistogramTimerScope histogram_timer_scope( (collector == SCAVENGER) ? isolate_->counters()->gc_scavenger() : isolate_->counters()->gc_compactor()); next_gc_likely_to_collect_more = PerformGarbageCollection(collector, &tracer); } GarbageCollectionEpilogue(); } // Start incremental marking for the next cycle. The heap snapshot // generator needs incremental marking to stay off after it aborted. if (!mark_compact_collector()->abort_incremental_marking() && incremental_marking()->IsStopped() && incremental_marking()->WorthActivating() && NextGCIsLikelyToBeFull()) { incremental_marking()->Start(); } return next_gc_likely_to_collect_more; } int Heap::NotifyContextDisposed() { if (isolate()->concurrent_recompilation_enabled()) { // Flush the queued recompilation tasks. isolate()->optimizing_compiler_thread()->Flush(); } flush_monomorphic_ics_ = true; AgeInlineCaches(); return ++contexts_disposed_; } void Heap::PerformScavenge() { GCTracer tracer(this, NULL, NULL); if (incremental_marking()->IsStopped()) { PerformGarbageCollection(SCAVENGER, &tracer); } else { PerformGarbageCollection(MARK_COMPACTOR, &tracer); } } void Heap::MoveElements(FixedArray* array, int dst_index, int src_index, int len) { if (len == 0) return; ASSERT(array->map() != fixed_cow_array_map()); Object** dst_objects = array->data_start() + dst_index; OS::MemMove(dst_objects, array->data_start() + src_index, len * kPointerSize); if (!InNewSpace(array)) { for (int i = 0; i < len; i++) { // TODO(hpayer): check store buffer for entries if (InNewSpace(dst_objects[i])) { RecordWrite(array->address(), array->OffsetOfElementAt(dst_index + i)); } } } incremental_marking()->RecordWrites(array); } #ifdef VERIFY_HEAP // Helper class for verifying the string table. class StringTableVerifier : public ObjectVisitor { public: void VisitPointers(Object** start, Object** end) { // Visit all HeapObject pointers in [start, end). for (Object** p = start; p < end; p++) { if ((*p)->IsHeapObject()) { // Check that the string is actually internalized. CHECK((*p)->IsTheHole() || (*p)->IsUndefined() || (*p)->IsInternalizedString()); } } } }; static void VerifyStringTable(Heap* heap) { StringTableVerifier verifier; heap->string_table()->IterateElements(&verifier); } #endif // VERIFY_HEAP static bool AbortIncrementalMarkingAndCollectGarbage( Heap* heap, AllocationSpace space, const char* gc_reason = NULL) { heap->mark_compact_collector()->SetFlags(Heap::kAbortIncrementalMarkingMask); bool result = heap->CollectGarbage(space, gc_reason); heap->mark_compact_collector()->SetFlags(Heap::kNoGCFlags); return result; } void Heap::ReserveSpace(int *sizes, Address *locations_out) { bool gc_performed = true; int counter = 0; static const int kThreshold = 20; while (gc_performed && counter++ < kThreshold) { gc_performed = false; ASSERT(NEW_SPACE == FIRST_PAGED_SPACE - 1); for (int space = NEW_SPACE; space <= LAST_PAGED_SPACE; space++) { if (sizes[space] != 0) { MaybeObject* allocation; if (space == NEW_SPACE) { allocation = new_space()->AllocateRaw(sizes[space]); } else { allocation = paged_space(space)->AllocateRaw(sizes[space]); } FreeListNode* node; if (!allocation->To(&node)) { if (space == NEW_SPACE) { Heap::CollectGarbage(NEW_SPACE, "failed to reserve space in the new space"); } else { AbortIncrementalMarkingAndCollectGarbage( this, static_cast(space), "failed to reserve space in paged space"); } gc_performed = true; break; } else { // Mark with a free list node, in case we have a GC before // deserializing. node->set_size(this, sizes[space]); locations_out[space] = node->address(); } } } } if (gc_performed) { // Failed to reserve the space after several attempts. V8::FatalProcessOutOfMemory("Heap::ReserveSpace"); } } void Heap::EnsureFromSpaceIsCommitted() { if (new_space_.CommitFromSpaceIfNeeded()) return; // Committing memory to from space failed. // Memory is exhausted and we will die. V8::FatalProcessOutOfMemory("Committing semi space failed."); } void Heap::ClearJSFunctionResultCaches() { if (isolate_->bootstrapper()->IsActive()) return; Object* context = native_contexts_list_; while (!context->IsUndefined()) { // Get the caches for this context. GC can happen when the context // is not fully initialized, so the caches can be undefined. Object* caches_or_undefined = Context::cast(context)->get(Context::JSFUNCTION_RESULT_CACHES_INDEX); if (!caches_or_undefined->IsUndefined()) { FixedArray* caches = FixedArray::cast(caches_or_undefined); // Clear the caches: int length = caches->length(); for (int i = 0; i < length; i++) { JSFunctionResultCache::cast(caches->get(i))->Clear(); } } // Get the next context: context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK); } } void Heap::ClearNormalizedMapCaches() { if (isolate_->bootstrapper()->IsActive() && !incremental_marking()->IsMarking()) { return; } Object* context = native_contexts_list_; while (!context->IsUndefined()) { // GC can happen when the context is not fully initialized, // so the cache can be undefined. Object* cache = Context::cast(context)->get(Context::NORMALIZED_MAP_CACHE_INDEX); if (!cache->IsUndefined()) { NormalizedMapCache::cast(cache)->Clear(); } context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK); } } void Heap::UpdateSurvivalRateTrend(int start_new_space_size) { if (start_new_space_size == 0) return; double survival_rate = (static_cast(young_survivors_after_last_gc_) * 100) / start_new_space_size; if (survival_rate > kYoungSurvivalRateHighThreshold) { high_survival_rate_period_length_++; } else { high_survival_rate_period_length_ = 0; } if (survival_rate < kYoungSurvivalRateLowThreshold) { low_survival_rate_period_length_++; } else { low_survival_rate_period_length_ = 0; } double survival_rate_diff = survival_rate_ - survival_rate; if (survival_rate_diff > kYoungSurvivalRateAllowedDeviation) { set_survival_rate_trend(DECREASING); } else if (survival_rate_diff < -kYoungSurvivalRateAllowedDeviation) { set_survival_rate_trend(INCREASING); } else { set_survival_rate_trend(STABLE); } survival_rate_ = survival_rate; } bool Heap::PerformGarbageCollection(GarbageCollector collector, GCTracer* tracer) { bool next_gc_likely_to_collect_more = false; if (collector != SCAVENGER) { PROFILE(isolate_, CodeMovingGCEvent()); } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { VerifyStringTable(this); } #endif GCType gc_type = collector == MARK_COMPACTOR ? kGCTypeMarkSweepCompact : kGCTypeScavenge; { GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL); VMState state(isolate_); HandleScope handle_scope(isolate_); CallGCPrologueCallbacks(gc_type, kNoGCCallbackFlags); } EnsureFromSpaceIsCommitted(); int start_new_space_size = Heap::new_space()->SizeAsInt(); if (IsHighSurvivalRate()) { // We speed up the incremental marker if it is running so that it // does not fall behind the rate of promotion, which would cause a // constantly growing old space. incremental_marking()->NotifyOfHighPromotionRate(); } if (collector == MARK_COMPACTOR) { // Perform mark-sweep with optional compaction. MarkCompact(tracer); sweep_generation_++; UpdateSurvivalRateTrend(start_new_space_size); size_of_old_gen_at_last_old_space_gc_ = PromotedSpaceSizeOfObjects(); old_generation_allocation_limit_ = OldGenerationAllocationLimit(size_of_old_gen_at_last_old_space_gc_); old_gen_exhausted_ = false; } else { tracer_ = tracer; Scavenge(); tracer_ = NULL; UpdateSurvivalRateTrend(start_new_space_size); } if (!new_space_high_promotion_mode_active_ && new_space_.Capacity() == new_space_.MaximumCapacity() && IsStableOrIncreasingSurvivalTrend() && IsHighSurvivalRate()) { // Stable high survival rates even though young generation is at // maximum capacity indicates that most objects will be promoted. // To decrease scavenger pauses and final mark-sweep pauses, we // have to limit maximal capacity of the young generation. SetNewSpaceHighPromotionModeActive(true); if (FLAG_trace_gc) { PrintPID("Limited new space size due to high promotion rate: %d MB\n", new_space_.InitialCapacity() / MB); } // Support for global pre-tenuring uses the high promotion mode as a // heuristic indicator of whether to pretenure or not, we trigger // deoptimization here to take advantage of pre-tenuring as soon as // possible. if (FLAG_pretenuring) { isolate_->stack_guard()->FullDeopt(); } } else if (new_space_high_promotion_mode_active_ && IsStableOrDecreasingSurvivalTrend() && IsLowSurvivalRate()) { // Decreasing low survival rates might indicate that the above high // promotion mode is over and we should allow the young generation // to grow again. SetNewSpaceHighPromotionModeActive(false); if (FLAG_trace_gc) { PrintPID("Unlimited new space size due to low promotion rate: %d MB\n", new_space_.MaximumCapacity() / MB); } // Trigger deoptimization here to turn off pre-tenuring as soon as // possible. if (FLAG_pretenuring) { isolate_->stack_guard()->FullDeopt(); } } if (new_space_high_promotion_mode_active_ && new_space_.Capacity() > new_space_.InitialCapacity()) { new_space_.Shrink(); } isolate_->counters()->objs_since_last_young()->Set(0); // Callbacks that fire after this point might trigger nested GCs and // restart incremental marking, the assertion can't be moved down. ASSERT(collector == SCAVENGER || incremental_marking()->IsStopped()); gc_post_processing_depth_++; { AllowHeapAllocation allow_allocation; GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL); next_gc_likely_to_collect_more = isolate_->global_handles()->PostGarbageCollectionProcessing( collector, tracer); } gc_post_processing_depth_--; isolate_->eternal_handles()->PostGarbageCollectionProcessing(this); // Update relocatables. Relocatable::PostGarbageCollectionProcessing(isolate_); if (collector == MARK_COMPACTOR) { // Register the amount of external allocated memory. amount_of_external_allocated_memory_at_last_global_gc_ = amount_of_external_allocated_memory_; } { GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL); VMState state(isolate_); HandleScope handle_scope(isolate_); CallGCEpilogueCallbacks(gc_type); } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { VerifyStringTable(this); } #endif return next_gc_likely_to_collect_more; } void Heap::CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags) { for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) { if (gc_type & gc_prologue_callbacks_[i].gc_type) { if (!gc_prologue_callbacks_[i].pass_isolate_) { v8::GCPrologueCallback callback = reinterpret_cast( gc_prologue_callbacks_[i].callback); callback(gc_type, flags); } else { v8::Isolate* isolate = reinterpret_cast(this->isolate()); gc_prologue_callbacks_[i].callback(isolate, gc_type, flags); } } } } void Heap::CallGCEpilogueCallbacks(GCType gc_type) { for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) { if (gc_type & gc_epilogue_callbacks_[i].gc_type) { if (!gc_epilogue_callbacks_[i].pass_isolate_) { v8::GCPrologueCallback callback = reinterpret_cast( gc_epilogue_callbacks_[i].callback); callback(gc_type, kNoGCCallbackFlags); } else { v8::Isolate* isolate = reinterpret_cast(this->isolate()); gc_epilogue_callbacks_[i].callback( isolate, gc_type, kNoGCCallbackFlags); } } } } void Heap::MarkCompact(GCTracer* tracer) { gc_state_ = MARK_COMPACT; LOG(isolate_, ResourceEvent("markcompact", "begin")); mark_compact_collector_.Prepare(tracer); ms_count_++; tracer->set_full_gc_count(ms_count_); MarkCompactPrologue(); mark_compact_collector_.CollectGarbage(); LOG(isolate_, ResourceEvent("markcompact", "end")); gc_state_ = NOT_IN_GC; isolate_->counters()->objs_since_last_full()->Set(0); flush_monomorphic_ics_ = false; } void Heap::MarkCompactPrologue() { // At any old GC clear the keyed lookup cache to enable collection of unused // maps. isolate_->keyed_lookup_cache()->Clear(); isolate_->context_slot_cache()->Clear(); isolate_->descriptor_lookup_cache()->Clear(); RegExpResultsCache::Clear(string_split_cache()); RegExpResultsCache::Clear(regexp_multiple_cache()); isolate_->compilation_cache()->MarkCompactPrologue(); CompletelyClearInstanceofCache(); FlushNumberStringCache(); if (FLAG_cleanup_code_caches_at_gc) { polymorphic_code_cache()->set_cache(undefined_value()); } ClearNormalizedMapCaches(); } // Helper class for copying HeapObjects class ScavengeVisitor: public ObjectVisitor { public: explicit ScavengeVisitor(Heap* heap) : heap_(heap) {} void VisitPointer(Object** p) { ScavengePointer(p); } void VisitPointers(Object** start, Object** end) { // Copy all HeapObject pointers in [start, end) for (Object** p = start; p < end; p++) ScavengePointer(p); } private: void ScavengePointer(Object** p) { Object* object = *p; if (!heap_->InNewSpace(object)) return; Heap::ScavengeObject(reinterpret_cast(p), reinterpret_cast(object)); } Heap* heap_; }; #ifdef VERIFY_HEAP // Visitor class to verify pointers in code or data space do not point into // new space. class VerifyNonPointerSpacePointersVisitor: public ObjectVisitor { public: explicit VerifyNonPointerSpacePointersVisitor(Heap* heap) : heap_(heap) {} void VisitPointers(Object** start, Object**end) { for (Object** current = start; current < end; current++) { if ((*current)->IsHeapObject()) { CHECK(!heap_->InNewSpace(HeapObject::cast(*current))); } } } private: Heap* heap_; }; static void VerifyNonPointerSpacePointers(Heap* heap) { // Verify that there are no pointers to new space in spaces where we // do not expect them. VerifyNonPointerSpacePointersVisitor v(heap); HeapObjectIterator code_it(heap->code_space()); for (HeapObject* object = code_it.Next(); object != NULL; object = code_it.Next()) object->Iterate(&v); // The old data space was normally swept conservatively so that the iterator // doesn't work, so we normally skip the next bit. if (!heap->old_data_space()->was_swept_conservatively()) { HeapObjectIterator data_it(heap->old_data_space()); for (HeapObject* object = data_it.Next(); object != NULL; object = data_it.Next()) object->Iterate(&v); } } #endif // VERIFY_HEAP void Heap::CheckNewSpaceExpansionCriteria() { if (new_space_.Capacity() < new_space_.MaximumCapacity() && survived_since_last_expansion_ > new_space_.Capacity() && !new_space_high_promotion_mode_active_) { // Grow the size of new space if there is room to grow, enough data // has survived scavenge since the last expansion and we are not in // high promotion mode. new_space_.Grow(); survived_since_last_expansion_ = 0; } } static bool IsUnscavengedHeapObject(Heap* heap, Object** p) { return heap->InNewSpace(*p) && !HeapObject::cast(*p)->map_word().IsForwardingAddress(); } void Heap::ScavengeStoreBufferCallback( Heap* heap, MemoryChunk* page, StoreBufferEvent event) { heap->store_buffer_rebuilder_.Callback(page, event); } void StoreBufferRebuilder::Callback(MemoryChunk* page, StoreBufferEvent event) { if (event == kStoreBufferStartScanningPagesEvent) { start_of_current_page_ = NULL; current_page_ = NULL; } else if (event == kStoreBufferScanningPageEvent) { if (current_page_ != NULL) { // If this page already overflowed the store buffer during this iteration. if (current_page_->scan_on_scavenge()) { // Then we should wipe out the entries that have been added for it. store_buffer_->SetTop(start_of_current_page_); } else if (store_buffer_->Top() - start_of_current_page_ >= (store_buffer_->Limit() - store_buffer_->Top()) >> 2) { // Did we find too many pointers in the previous page? The heuristic is // that no page can take more then 1/5 the remaining slots in the store // buffer. current_page_->set_scan_on_scavenge(true); store_buffer_->SetTop(start_of_current_page_); } else { // In this case the page we scanned took a reasonable number of slots in // the store buffer. It has now been rehabilitated and is no longer // marked scan_on_scavenge. ASSERT(!current_page_->scan_on_scavenge()); } } start_of_current_page_ = store_buffer_->Top(); current_page_ = page; } else if (event == kStoreBufferFullEvent) { // The current page overflowed the store buffer again. Wipe out its entries // in the store buffer and mark it scan-on-scavenge again. This may happen // several times while scanning. if (current_page_ == NULL) { // Store Buffer overflowed while scanning promoted objects. These are not // in any particular page, though they are likely to be clustered by the // allocation routines. store_buffer_->EnsureSpace(StoreBuffer::kStoreBufferSize / 2); } else { // Store Buffer overflowed while scanning a particular old space page for // pointers to new space. ASSERT(current_page_ == page); ASSERT(page != NULL); current_page_->set_scan_on_scavenge(true); ASSERT(start_of_current_page_ != store_buffer_->Top()); store_buffer_->SetTop(start_of_current_page_); } } else { UNREACHABLE(); } } void PromotionQueue::Initialize() { // Assumes that a NewSpacePage exactly fits a number of promotion queue // entries (where each is a pair of intptr_t). This allows us to simplify // the test fpr when to switch pages. ASSERT((Page::kPageSize - MemoryChunk::kBodyOffset) % (2 * kPointerSize) == 0); limit_ = reinterpret_cast(heap_->new_space()->ToSpaceStart()); front_ = rear_ = reinterpret_cast(heap_->new_space()->ToSpaceEnd()); emergency_stack_ = NULL; guard_ = false; } void PromotionQueue::RelocateQueueHead() { ASSERT(emergency_stack_ == NULL); Page* p = Page::FromAllocationTop(reinterpret_cast
(rear_)); intptr_t* head_start = rear_; intptr_t* head_end = Min(front_, reinterpret_cast(p->area_end())); int entries_count = static_cast(head_end - head_start) / kEntrySizeInWords; emergency_stack_ = new List(2 * entries_count); while (head_start != head_end) { int size = static_cast(*(head_start++)); HeapObject* obj = reinterpret_cast(*(head_start++)); emergency_stack_->Add(Entry(obj, size)); } rear_ = head_end; } class ScavengeWeakObjectRetainer : public WeakObjectRetainer { public: explicit ScavengeWeakObjectRetainer(Heap* heap) : heap_(heap) { } virtual Object* RetainAs(Object* object) { if (!heap_->InFromSpace(object)) { return object; } MapWord map_word = HeapObject::cast(object)->map_word(); if (map_word.IsForwardingAddress()) { return map_word.ToForwardingAddress(); } return NULL; } private: Heap* heap_; }; void Heap::Scavenge() { RelocationLock relocation_lock(this); #ifdef VERIFY_HEAP if (FLAG_verify_heap) VerifyNonPointerSpacePointers(this); #endif gc_state_ = SCAVENGE; // Implements Cheney's copying algorithm LOG(isolate_, ResourceEvent("scavenge", "begin")); // Clear descriptor cache. isolate_->descriptor_lookup_cache()->Clear(); // Used for updating survived_since_last_expansion_ at function end. intptr_t survived_watermark = PromotedSpaceSizeOfObjects(); CheckNewSpaceExpansionCriteria(); SelectScavengingVisitorsTable(); incremental_marking()->PrepareForScavenge(); paged_space(OLD_DATA_SPACE)->EnsureSweeperProgress(new_space_.Size()); paged_space(OLD_POINTER_SPACE)->EnsureSweeperProgress(new_space_.Size()); // Flip the semispaces. After flipping, to space is empty, from space has // live objects. new_space_.Flip(); new_space_.ResetAllocationInfo(); // We need to sweep newly copied objects which can be either in the // to space or promoted to the old generation. For to-space // objects, we treat the bottom of the to space as a queue. Newly // copied and unswept objects lie between a 'front' mark and the // allocation pointer. // // Promoted objects can go into various old-generation spaces, and // can be allocated internally in the spaces (from the free list). // We treat the top of the to space as a queue of addresses of // promoted objects. The addresses of newly promoted and unswept // objects lie between a 'front' mark and a 'rear' mark that is // updated as a side effect of promoting an object. // // There is guaranteed to be enough room at the top of the to space // for the addresses of promoted objects: every object promoted // frees up its size in bytes from the top of the new space, and // objects are at least one pointer in size. Address new_space_front = new_space_.ToSpaceStart(); promotion_queue_.Initialize(); #ifdef DEBUG store_buffer()->Clean(); #endif ScavengeVisitor scavenge_visitor(this); // Copy roots. IterateRoots(&scavenge_visitor, VISIT_ALL_IN_SCAVENGE); // Copy objects reachable from the old generation. { StoreBufferRebuildScope scope(this, store_buffer(), &ScavengeStoreBufferCallback); store_buffer()->IteratePointersToNewSpace(&ScavengeObject); } // Copy objects reachable from simple cells by scavenging cell values // directly. HeapObjectIterator cell_iterator(cell_space_); for (HeapObject* heap_object = cell_iterator.Next(); heap_object != NULL; heap_object = cell_iterator.Next()) { if (heap_object->IsCell()) { Cell* cell = Cell::cast(heap_object); Address value_address = cell->ValueAddress(); scavenge_visitor.VisitPointer(reinterpret_cast(value_address)); } } // Copy objects reachable from global property cells by scavenging global // property cell values directly. HeapObjectIterator js_global_property_cell_iterator(property_cell_space_); for (HeapObject* heap_object = js_global_property_cell_iterator.Next(); heap_object != NULL; heap_object = js_global_property_cell_iterator.Next()) { if (heap_object->IsPropertyCell()) { PropertyCell* cell = PropertyCell::cast(heap_object); Address value_address = cell->ValueAddress(); scavenge_visitor.VisitPointer(reinterpret_cast(value_address)); Address type_address = cell->TypeAddress(); scavenge_visitor.VisitPointer(reinterpret_cast(type_address)); } } // Copy objects reachable from the code flushing candidates list. MarkCompactCollector* collector = mark_compact_collector(); if (collector->is_code_flushing_enabled()) { collector->code_flusher()->IteratePointersToFromSpace(&scavenge_visitor); } // Scavenge object reachable from the native contexts list directly. scavenge_visitor.VisitPointer(BitCast(&native_contexts_list_)); new_space_front = DoScavenge(&scavenge_visitor, new_space_front); while (isolate()->global_handles()->IterateObjectGroups( &scavenge_visitor, &IsUnscavengedHeapObject)) { new_space_front = DoScavenge(&scavenge_visitor, new_space_front); } isolate()->global_handles()->RemoveObjectGroups(); isolate()->global_handles()->RemoveImplicitRefGroups(); isolate_->global_handles()->IdentifyNewSpaceWeakIndependentHandles( &IsUnscavengedHeapObject); isolate_->global_handles()->IterateNewSpaceWeakIndependentRoots( &scavenge_visitor); new_space_front = DoScavenge(&scavenge_visitor, new_space_front); UpdateNewSpaceReferencesInExternalStringTable( &UpdateNewSpaceReferenceInExternalStringTableEntry); promotion_queue_.Destroy(); if (!FLAG_watch_ic_patching) { isolate()->runtime_profiler()->UpdateSamplesAfterScavenge(); } incremental_marking()->UpdateMarkingDequeAfterScavenge(); ScavengeWeakObjectRetainer weak_object_retainer(this); ProcessWeakReferences(&weak_object_retainer); ASSERT(new_space_front == new_space_.top()); // Set age mark. new_space_.set_age_mark(new_space_.top()); new_space_.LowerInlineAllocationLimit( new_space_.inline_allocation_limit_step()); // Update how much has survived scavenge. IncrementYoungSurvivorsCounter(static_cast( (PromotedSpaceSizeOfObjects() - survived_watermark) + new_space_.Size())); LOG(isolate_, ResourceEvent("scavenge", "end")); gc_state_ = NOT_IN_GC; scavenges_since_last_idle_round_++; } String* Heap::UpdateNewSpaceReferenceInExternalStringTableEntry(Heap* heap, Object** p) { MapWord first_word = HeapObject::cast(*p)->map_word(); if (!first_word.IsForwardingAddress()) { // Unreachable external string can be finalized. heap->FinalizeExternalString(String::cast(*p)); return NULL; } // String is still reachable. return String::cast(first_word.ToForwardingAddress()); } void Heap::UpdateNewSpaceReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func) { #ifdef VERIFY_HEAP if (FLAG_verify_heap) { external_string_table_.Verify(); } #endif if (external_string_table_.new_space_strings_.is_empty()) return; Object** start = &external_string_table_.new_space_strings_[0]; Object** end = start + external_string_table_.new_space_strings_.length(); Object** last = start; for (Object** p = start; p < end; ++p) { ASSERT(InFromSpace(*p)); String* target = updater_func(this, p); if (target == NULL) continue; ASSERT(target->IsExternalString()); if (InNewSpace(target)) { // String is still in new space. Update the table entry. *last = target; ++last; } else { // String got promoted. Move it to the old string list. external_string_table_.AddOldString(target); } } ASSERT(last <= end); external_string_table_.ShrinkNewStrings(static_cast(last - start)); } void Heap::UpdateReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func) { // Update old space string references. if (external_string_table_.old_space_strings_.length() > 0) { Object** start = &external_string_table_.old_space_strings_[0]; Object** end = start + external_string_table_.old_space_strings_.length(); for (Object** p = start; p < end; ++p) *p = updater_func(this, p); } UpdateNewSpaceReferencesInExternalStringTable(updater_func); } template struct WeakListVisitor; template static Object* VisitWeakList(Heap* heap, Object* list, WeakObjectRetainer* retainer, bool record_slots) { Object* undefined = heap->undefined_value(); Object* head = undefined; T* tail = NULL; MarkCompactCollector* collector = heap->mark_compact_collector(); while (list != undefined) { // Check whether to keep the candidate in the list. T* candidate = reinterpret_cast(list); Object* retained = retainer->RetainAs(list); if (retained != NULL) { if (head == undefined) { // First element in the list. head = retained; } else { // Subsequent elements in the list. ASSERT(tail != NULL); WeakListVisitor::SetWeakNext(tail, retained); if (record_slots) { Object** next_slot = HeapObject::RawField(tail, WeakListVisitor::WeakNextOffset()); collector->RecordSlot(next_slot, next_slot, retained); } } // Retained object is new tail. ASSERT(!retained->IsUndefined()); candidate = reinterpret_cast(retained); tail = candidate; // tail is a live object, visit it. WeakListVisitor::VisitLiveObject( heap, tail, retainer, record_slots); } else { WeakListVisitor::VisitPhantomObject(heap, candidate); } // Move to next element in the list. list = WeakListVisitor::WeakNext(candidate); } // Terminate the list if there is one or more elements. if (tail != NULL) { WeakListVisitor::SetWeakNext(tail, undefined); } return head; } template<> struct WeakListVisitor { static void SetWeakNext(JSFunction* function, Object* next) { function->set_next_function_link(next); } static Object* WeakNext(JSFunction* function) { return function->next_function_link(); } static int WeakNextOffset() { return JSFunction::kNextFunctionLinkOffset; } static void VisitLiveObject(Heap*, JSFunction*, WeakObjectRetainer*, bool) { } static void VisitPhantomObject(Heap*, JSFunction*) { } }; template<> struct WeakListVisitor { static void SetWeakNext(Code* code, Object* next) { code->set_next_code_link(next); } static Object* WeakNext(Code* code) { return code->next_code_link(); } static int WeakNextOffset() { return Code::kNextCodeLinkOffset; } static void VisitLiveObject(Heap*, Code*, WeakObjectRetainer*, bool) { } static void VisitPhantomObject(Heap*, Code*) { } }; template<> struct WeakListVisitor { static void SetWeakNext(Context* context, Object* next) { context->set(Context::NEXT_CONTEXT_LINK, next, UPDATE_WRITE_BARRIER); } static Object* WeakNext(Context* context) { return context->get(Context::NEXT_CONTEXT_LINK); } static void VisitLiveObject(Heap* heap, Context* context, WeakObjectRetainer* retainer, bool record_slots) { // Process the three weak lists linked off the context. DoWeakList(heap, context, retainer, record_slots, Context::OPTIMIZED_FUNCTIONS_LIST); DoWeakList(heap, context, retainer, record_slots, Context::OPTIMIZED_CODE_LIST); DoWeakList(heap, context, retainer, record_slots, Context::DEOPTIMIZED_CODE_LIST); } template static void DoWeakList(Heap* heap, Context* context, WeakObjectRetainer* retainer, bool record_slots, int index) { // Visit the weak list, removing dead intermediate elements. Object* list_head = VisitWeakList(heap, context->get(index), retainer, record_slots); // Update the list head. context->set(index, list_head, UPDATE_WRITE_BARRIER); if (record_slots) { // Record the updated slot if necessary. Object** head_slot = HeapObject::RawField( context, FixedArray::SizeFor(index)); heap->mark_compact_collector()->RecordSlot( head_slot, head_slot, list_head); } } static void VisitPhantomObject(Heap*, Context*) { } static int WeakNextOffset() { return FixedArray::SizeFor(Context::NEXT_CONTEXT_LINK); } }; void Heap::ProcessWeakReferences(WeakObjectRetainer* retainer) { // We don't record weak slots during marking or scavenges. // Instead we do it once when we complete mark-compact cycle. // Note that write barrier has no effect if we are already in the middle of // compacting mark-sweep cycle and we have to record slots manually. bool record_slots = gc_state() == MARK_COMPACT && mark_compact_collector()->is_compacting(); ProcessArrayBuffers(retainer, record_slots); ProcessNativeContexts(retainer, record_slots); // TODO(mvstanton): AllocationSites only need to be processed during // MARK_COMPACT, as they live in old space. Verify and address. ProcessAllocationSites(retainer, record_slots); } void Heap::ProcessNativeContexts(WeakObjectRetainer* retainer, bool record_slots) { Object* head = VisitWeakList( this, native_contexts_list(), retainer, record_slots); // Update the head of the list of contexts. native_contexts_list_ = head; } template<> struct WeakListVisitor { static void SetWeakNext(JSArrayBufferView* obj, Object* next) { obj->set_weak_next(next); } static Object* WeakNext(JSArrayBufferView* obj) { return obj->weak_next(); } static void VisitLiveObject(Heap*, JSArrayBufferView* obj, WeakObjectRetainer* retainer, bool record_slots) {} static void VisitPhantomObject(Heap*, JSArrayBufferView*) {} static int WeakNextOffset() { return JSArrayBufferView::kWeakNextOffset; } }; template<> struct WeakListVisitor { static void SetWeakNext(JSArrayBuffer* obj, Object* next) { obj->set_weak_next(next); } static Object* WeakNext(JSArrayBuffer* obj) { return obj->weak_next(); } static void VisitLiveObject(Heap* heap, JSArrayBuffer* array_buffer, WeakObjectRetainer* retainer, bool record_slots) { Object* typed_array_obj = VisitWeakList( heap, array_buffer->weak_first_view(), retainer, record_slots); array_buffer->set_weak_first_view(typed_array_obj); if (typed_array_obj != heap->undefined_value() && record_slots) { Object** slot = HeapObject::RawField( array_buffer, JSArrayBuffer::kWeakFirstViewOffset); heap->mark_compact_collector()->RecordSlot(slot, slot, typed_array_obj); } } static void VisitPhantomObject(Heap* heap, JSArrayBuffer* phantom) { Runtime::FreeArrayBuffer(heap->isolate(), phantom); } static int WeakNextOffset() { return JSArrayBuffer::kWeakNextOffset; } }; void Heap::ProcessArrayBuffers(WeakObjectRetainer* retainer, bool record_slots) { Object* array_buffer_obj = VisitWeakList(this, array_buffers_list(), retainer, record_slots); set_array_buffers_list(array_buffer_obj); } void Heap::TearDownArrayBuffers() { Object* undefined = undefined_value(); for (Object* o = array_buffers_list(); o != undefined;) { JSArrayBuffer* buffer = JSArrayBuffer::cast(o); Runtime::FreeArrayBuffer(isolate(), buffer); o = buffer->weak_next(); } array_buffers_list_ = undefined; } template<> struct WeakListVisitor { static void SetWeakNext(AllocationSite* obj, Object* next) { obj->set_weak_next(next); } static Object* WeakNext(AllocationSite* obj) { return obj->weak_next(); } static void VisitLiveObject(Heap* heap, AllocationSite* site, WeakObjectRetainer* retainer, bool record_slots) {} static void VisitPhantomObject(Heap* heap, AllocationSite* phantom) {} static int WeakNextOffset() { return AllocationSite::kWeakNextOffset; } }; void Heap::ProcessAllocationSites(WeakObjectRetainer* retainer, bool record_slots) { Object* allocation_site_obj = VisitWeakList(this, allocation_sites_list(), retainer, record_slots); set_allocation_sites_list(allocation_site_obj); } void Heap::VisitExternalResources(v8::ExternalResourceVisitor* visitor) { DisallowHeapAllocation no_allocation; // Both the external string table and the string table may contain // external strings, but neither lists them exhaustively, nor is the // intersection set empty. Therefore we iterate over the external string // table first, ignoring internalized strings, and then over the // internalized string table. class ExternalStringTableVisitorAdapter : public ObjectVisitor { public: explicit ExternalStringTableVisitorAdapter( v8::ExternalResourceVisitor* visitor) : visitor_(visitor) {} virtual void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) { // Visit non-internalized external strings, // since internalized strings are listed in the string table. if (!(*p)->IsInternalizedString()) { ASSERT((*p)->IsExternalString()); visitor_->VisitExternalString(Utils::ToLocal( Handle(String::cast(*p)))); } } } private: v8::ExternalResourceVisitor* visitor_; } external_string_table_visitor(visitor); external_string_table_.Iterate(&external_string_table_visitor); class StringTableVisitorAdapter : public ObjectVisitor { public: explicit StringTableVisitorAdapter( v8::ExternalResourceVisitor* visitor) : visitor_(visitor) {} virtual void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) { if ((*p)->IsExternalString()) { ASSERT((*p)->IsInternalizedString()); visitor_->VisitExternalString(Utils::ToLocal( Handle(String::cast(*p)))); } } } private: v8::ExternalResourceVisitor* visitor_; } string_table_visitor(visitor); string_table()->IterateElements(&string_table_visitor); } class NewSpaceScavenger : public StaticNewSpaceVisitor { public: static inline void VisitPointer(Heap* heap, Object** p) { Object* object = *p; if (!heap->InNewSpace(object)) return; Heap::ScavengeObject(reinterpret_cast(p), reinterpret_cast(object)); } }; Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front) { do { SemiSpace::AssertValidRange(new_space_front, new_space_.top()); // The addresses new_space_front and new_space_.top() define a // queue of unprocessed copied objects. Process them until the // queue is empty. while (new_space_front != new_space_.top()) { if (!NewSpacePage::IsAtEnd(new_space_front)) { HeapObject* object = HeapObject::FromAddress(new_space_front); new_space_front += NewSpaceScavenger::IterateBody(object->map(), object); } else { new_space_front = NewSpacePage::FromLimit(new_space_front)->next_page()->area_start(); } } // Promote and process all the to-be-promoted objects. { StoreBufferRebuildScope scope(this, store_buffer(), &ScavengeStoreBufferCallback); while (!promotion_queue()->is_empty()) { HeapObject* target; int size; promotion_queue()->remove(&target, &size); // Promoted object might be already partially visited // during old space pointer iteration. Thus we search specificly // for pointers to from semispace instead of looking for pointers // to new space. ASSERT(!target->IsMap()); IterateAndMarkPointersToFromSpace(target->address(), target->address() + size, &ScavengeObject); } } // Take another spin if there are now unswept objects in new space // (there are currently no more unswept promoted objects). } while (new_space_front != new_space_.top()); return new_space_front; } STATIC_ASSERT((FixedDoubleArray::kHeaderSize & kDoubleAlignmentMask) == 0); STATIC_ASSERT((ConstantPoolArray::kHeaderSize & kDoubleAlignmentMask) == 0); INLINE(static HeapObject* EnsureDoubleAligned(Heap* heap, HeapObject* object, int size)); static HeapObject* EnsureDoubleAligned(Heap* heap, HeapObject* object, int size) { if ((OffsetFrom(object->address()) & kDoubleAlignmentMask) != 0) { heap->CreateFillerObjectAt(object->address(), kPointerSize); return HeapObject::FromAddress(object->address() + kPointerSize); } else { heap->CreateFillerObjectAt(object->address() + size - kPointerSize, kPointerSize); return object; } } enum LoggingAndProfiling { LOGGING_AND_PROFILING_ENABLED, LOGGING_AND_PROFILING_DISABLED }; enum MarksHandling { TRANSFER_MARKS, IGNORE_MARKS }; template class ScavengingVisitor : public StaticVisitorBase { public: static void Initialize() { table_.Register(kVisitSeqOneByteString, &EvacuateSeqOneByteString); table_.Register(kVisitSeqTwoByteString, &EvacuateSeqTwoByteString); table_.Register(kVisitShortcutCandidate, &EvacuateShortcutCandidate); table_.Register(kVisitByteArray, &EvacuateByteArray); table_.Register(kVisitFixedArray, &EvacuateFixedArray); table_.Register(kVisitFixedDoubleArray, &EvacuateFixedDoubleArray); table_.Register(kVisitNativeContext, &ObjectEvacuationStrategy:: template VisitSpecialized); table_.Register(kVisitConsString, &ObjectEvacuationStrategy:: template VisitSpecialized); table_.Register(kVisitSlicedString, &ObjectEvacuationStrategy:: template VisitSpecialized); table_.Register(kVisitSymbol, &ObjectEvacuationStrategy:: template VisitSpecialized); table_.Register(kVisitSharedFunctionInfo, &ObjectEvacuationStrategy:: template VisitSpecialized); table_.Register(kVisitJSWeakMap, &ObjectEvacuationStrategy:: Visit); table_.Register(kVisitJSWeakSet, &ObjectEvacuationStrategy:: Visit); table_.Register(kVisitJSArrayBuffer, &ObjectEvacuationStrategy:: Visit); table_.Register(kVisitJSTypedArray, &ObjectEvacuationStrategy:: Visit); table_.Register(kVisitJSDataView, &ObjectEvacuationStrategy:: Visit); table_.Register(kVisitJSRegExp, &ObjectEvacuationStrategy:: Visit); if (marks_handling == IGNORE_MARKS) { table_.Register(kVisitJSFunction, &ObjectEvacuationStrategy:: template VisitSpecialized); } else { table_.Register(kVisitJSFunction, &EvacuateJSFunction); } table_.RegisterSpecializations, kVisitDataObject, kVisitDataObjectGeneric>(); table_.RegisterSpecializations, kVisitJSObject, kVisitJSObjectGeneric>(); table_.RegisterSpecializations, kVisitStruct, kVisitStructGeneric>(); } static VisitorDispatchTable* GetTable() { return &table_; } private: enum ObjectContents { DATA_OBJECT, POINTER_OBJECT }; static void RecordCopiedObject(Heap* heap, HeapObject* obj) { bool should_record = false; #ifdef DEBUG should_record = FLAG_heap_stats; #endif should_record = should_record || FLAG_log_gc; if (should_record) { if (heap->new_space()->Contains(obj)) { heap->new_space()->RecordAllocation(obj); } else { heap->new_space()->RecordPromotion(obj); } } } // Helper function used by CopyObject to copy a source object to an // allocated target object and update the forwarding pointer in the source // object. Returns the target object. INLINE(static void MigrateObject(Heap* heap, HeapObject* source, HeapObject* target, int size)) { // Copy the content of source to target. heap->CopyBlock(target->address(), source->address(), size); // Set the forwarding address. source->set_map_word(MapWord::FromForwardingAddress(target)); if (logging_and_profiling_mode == LOGGING_AND_PROFILING_ENABLED) { // Update NewSpace stats if necessary. RecordCopiedObject(heap, target); Isolate* isolate = heap->isolate(); HeapProfiler* heap_profiler = isolate->heap_profiler(); if (heap_profiler->is_tracking_object_moves()) { heap_profiler->ObjectMoveEvent(source->address(), target->address(), size); } if (isolate->logger()->is_logging_code_events() || isolate->cpu_profiler()->is_profiling()) { if (target->IsSharedFunctionInfo()) { PROFILE(isolate, SharedFunctionInfoMoveEvent( source->address(), target->address())); } } } if (marks_handling == TRANSFER_MARKS) { if (Marking::TransferColor(source, target)) { MemoryChunk::IncrementLiveBytesFromGC(target->address(), size); } } } template static inline void EvacuateObject(Map* map, HeapObject** slot, HeapObject* object, int object_size) { SLOW_ASSERT(object_size <= Page::kMaxNonCodeHeapObjectSize); SLOW_ASSERT(object->Size() == object_size); int allocation_size = object_size; if (alignment != kObjectAlignment) { ASSERT(alignment == kDoubleAlignment); allocation_size += kPointerSize; } Heap* heap = map->GetHeap(); if (heap->ShouldBePromoted(object->address(), object_size)) { MaybeObject* maybe_result; if (object_contents == DATA_OBJECT) { ASSERT(heap->AllowedToBeMigrated(object, OLD_DATA_SPACE)); maybe_result = heap->old_data_space()->AllocateRaw(allocation_size); } else { ASSERT(heap->AllowedToBeMigrated(object, OLD_POINTER_SPACE)); maybe_result = heap->old_pointer_space()->AllocateRaw(allocation_size); } Object* result = NULL; // Initialization to please compiler. if (maybe_result->ToObject(&result)) { HeapObject* target = HeapObject::cast(result); if (alignment != kObjectAlignment) { target = EnsureDoubleAligned(heap, target, allocation_size); } // Order is important: slot might be inside of the target if target // was allocated over a dead object and slot comes from the store // buffer. *slot = target; MigrateObject(heap, object, target, object_size); if (object_contents == POINTER_OBJECT) { if (map->instance_type() == JS_FUNCTION_TYPE) { heap->promotion_queue()->insert( target, JSFunction::kNonWeakFieldsEndOffset); } else { heap->promotion_queue()->insert(target, object_size); } } heap->tracer()->increment_promoted_objects_size(object_size); return; } } ASSERT(heap->AllowedToBeMigrated(object, NEW_SPACE)); MaybeObject* allocation = heap->new_space()->AllocateRaw(allocation_size); heap->promotion_queue()->SetNewLimit(heap->new_space()->top()); Object* result = allocation->ToObjectUnchecked(); HeapObject* target = HeapObject::cast(result); if (alignment != kObjectAlignment) { target = EnsureDoubleAligned(heap, target, allocation_size); } // Order is important: slot might be inside of the target if target // was allocated over a dead object and slot comes from the store // buffer. *slot = target; MigrateObject(heap, object, target, object_size); return; } static inline void EvacuateJSFunction(Map* map, HeapObject** slot, HeapObject* object) { ObjectEvacuationStrategy:: template VisitSpecialized(map, slot, object); HeapObject* target = *slot; MarkBit mark_bit = Marking::MarkBitFrom(target); if (Marking::IsBlack(mark_bit)) { // This object is black and it might not be rescanned by marker. // We should explicitly record code entry slot for compaction because // promotion queue processing (IterateAndMarkPointersToFromSpace) will // miss it as it is not HeapObject-tagged. Address code_entry_slot = target->address() + JSFunction::kCodeEntryOffset; Code* code = Code::cast(Code::GetObjectFromEntryAddress(code_entry_slot)); map->GetHeap()->mark_compact_collector()-> RecordCodeEntrySlot(code_entry_slot, code); } } static inline void EvacuateFixedArray(Map* map, HeapObject** slot, HeapObject* object) { int object_size = FixedArray::BodyDescriptor::SizeOf(map, object); EvacuateObject( map, slot, object, object_size); } static inline void EvacuateFixedDoubleArray(Map* map, HeapObject** slot, HeapObject* object) { int length = reinterpret_cast(object)->length(); int object_size = FixedDoubleArray::SizeFor(length); EvacuateObject( map, slot, object, object_size); } static inline void EvacuateByteArray(Map* map, HeapObject** slot, HeapObject* object) { int object_size = reinterpret_cast(object)->ByteArraySize(); EvacuateObject( map, slot, object, object_size); } static inline void EvacuateSeqOneByteString(Map* map, HeapObject** slot, HeapObject* object) { int object_size = SeqOneByteString::cast(object)-> SeqOneByteStringSize(map->instance_type()); EvacuateObject( map, slot, object, object_size); } static inline void EvacuateSeqTwoByteString(Map* map, HeapObject** slot, HeapObject* object) { int object_size = SeqTwoByteString::cast(object)-> SeqTwoByteStringSize(map->instance_type()); EvacuateObject( map, slot, object, object_size); } static inline bool IsShortcutCandidate(int type) { return ((type & kShortcutTypeMask) == kShortcutTypeTag); } static inline void EvacuateShortcutCandidate(Map* map, HeapObject** slot, HeapObject* object) { ASSERT(IsShortcutCandidate(map->instance_type())); Heap* heap = map->GetHeap(); if (marks_handling == IGNORE_MARKS && ConsString::cast(object)->unchecked_second() == heap->empty_string()) { HeapObject* first = HeapObject::cast(ConsString::cast(object)->unchecked_first()); *slot = first; if (!heap->InNewSpace(first)) { object->set_map_word(MapWord::FromForwardingAddress(first)); return; } MapWord first_word = first->map_word(); if (first_word.IsForwardingAddress()) { HeapObject* target = first_word.ToForwardingAddress(); *slot = target; object->set_map_word(MapWord::FromForwardingAddress(target)); return; } heap->DoScavengeObject(first->map(), slot, first); object->set_map_word(MapWord::FromForwardingAddress(*slot)); return; } int object_size = ConsString::kSize; EvacuateObject( map, slot, object, object_size); } template class ObjectEvacuationStrategy { public: template static inline void VisitSpecialized(Map* map, HeapObject** slot, HeapObject* object) { EvacuateObject( map, slot, object, object_size); } static inline void Visit(Map* map, HeapObject** slot, HeapObject* object) { int object_size = map->instance_size(); EvacuateObject( map, slot, object, object_size); } }; static VisitorDispatchTable table_; }; template VisitorDispatchTable ScavengingVisitor::table_; static void InitializeScavengingVisitorsTables() { ScavengingVisitor::Initialize(); ScavengingVisitor::Initialize(); ScavengingVisitor::Initialize(); ScavengingVisitor::Initialize(); } void Heap::SelectScavengingVisitorsTable() { bool logging_and_profiling = isolate()->logger()->is_logging() || isolate()->cpu_profiler()->is_profiling() || (isolate()->heap_profiler() != NULL && isolate()->heap_profiler()->is_tracking_object_moves()); if (!incremental_marking()->IsMarking()) { if (!logging_and_profiling) { scavenging_visitors_table_.CopyFrom( ScavengingVisitor::GetTable()); } else { scavenging_visitors_table_.CopyFrom( ScavengingVisitor::GetTable()); } } else { if (!logging_and_profiling) { scavenging_visitors_table_.CopyFrom( ScavengingVisitor::GetTable()); } else { scavenging_visitors_table_.CopyFrom( ScavengingVisitor::GetTable()); } if (incremental_marking()->IsCompacting()) { // When compacting forbid short-circuiting of cons-strings. // Scavenging code relies on the fact that new space object // can't be evacuated into evacuation candidate but // short-circuiting violates this assumption. scavenging_visitors_table_.Register( StaticVisitorBase::kVisitShortcutCandidate, scavenging_visitors_table_.GetVisitorById( StaticVisitorBase::kVisitConsString)); } } } void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) { SLOW_ASSERT(object->GetIsolate()->heap()->InFromSpace(object)); MapWord first_word = object->map_word(); SLOW_ASSERT(!first_word.IsForwardingAddress()); Map* map = first_word.ToMap(); map->GetHeap()->DoScavengeObject(map, p, object); } MaybeObject* Heap::AllocatePartialMap(InstanceType instance_type, int instance_size) { Object* result; MaybeObject* maybe_result = AllocateRaw(Map::kSize, MAP_SPACE, MAP_SPACE); if (!maybe_result->ToObject(&result)) return maybe_result; // Map::cast cannot be used due to uninitialized map field. reinterpret_cast(result)->set_map(raw_unchecked_meta_map()); reinterpret_cast(result)->set_instance_type(instance_type); reinterpret_cast(result)->set_instance_size(instance_size); reinterpret_cast(result)->set_visitor_id( StaticVisitorBase::GetVisitorId(instance_type, instance_size)); reinterpret_cast(result)->set_inobject_properties(0); reinterpret_cast(result)->set_pre_allocated_property_fields(0); reinterpret_cast(result)->set_unused_property_fields(0); reinterpret_cast(result)->set_bit_field(0); reinterpret_cast(result)->set_bit_field2(0); int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) | Map::OwnsDescriptors::encode(true); reinterpret_cast(result)->set_bit_field3(bit_field3); return result; } MaybeObject* Heap::AllocateMap(InstanceType instance_type, int instance_size, ElementsKind elements_kind) { Object* result; MaybeObject* maybe_result = AllocateRaw(Map::kSize, MAP_SPACE, MAP_SPACE); if (!maybe_result->To(&result)) return maybe_result; Map* map = reinterpret_cast(result); map->set_map_no_write_barrier(meta_map()); map->set_instance_type(instance_type); map->set_visitor_id( StaticVisitorBase::GetVisitorId(instance_type, instance_size)); map->set_prototype(null_value(), SKIP_WRITE_BARRIER); map->set_constructor(null_value(), SKIP_WRITE_BARRIER); map->set_instance_size(instance_size); map->set_inobject_properties(0); map->set_pre_allocated_property_fields(0); map->set_code_cache(empty_fixed_array(), SKIP_WRITE_BARRIER); map->set_dependent_code(DependentCode::cast(empty_fixed_array()), SKIP_WRITE_BARRIER); map->init_back_pointer(undefined_value()); map->set_unused_property_fields(0); map->set_instance_descriptors(empty_descriptor_array()); map->set_bit_field(0); map->set_bit_field2(1 << Map::kIsExtensible); int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) | Map::OwnsDescriptors::encode(true); map->set_bit_field3(bit_field3); map->set_elements_kind(elements_kind); return map; } MaybeObject* Heap::AllocateCodeCache() { CodeCache* code_cache; { MaybeObject* maybe_code_cache = AllocateStruct(CODE_CACHE_TYPE); if (!maybe_code_cache->To(&code_cache)) return maybe_code_cache; } code_cache->set_default_cache(empty_fixed_array(), SKIP_WRITE_BARRIER); code_cache->set_normal_type_cache(undefined_value(), SKIP_WRITE_BARRIER); return code_cache; } MaybeObject* Heap::AllocatePolymorphicCodeCache() { return AllocateStruct(POLYMORPHIC_CODE_CACHE_TYPE); } MaybeObject* Heap::AllocateAccessorPair() { AccessorPair* accessors; { MaybeObject* maybe_accessors = AllocateStruct(ACCESSOR_PAIR_TYPE); if (!maybe_accessors->To(&accessors)) return maybe_accessors; } accessors->set_getter(the_hole_value(), SKIP_WRITE_BARRIER); accessors->set_setter(the_hole_value(), SKIP_WRITE_BARRIER); accessors->set_access_flags(Smi::FromInt(0), SKIP_WRITE_BARRIER); return accessors; } MaybeObject* Heap::AllocateTypeFeedbackInfo() { TypeFeedbackInfo* info; { MaybeObject* maybe_info = AllocateStruct(TYPE_FEEDBACK_INFO_TYPE); if (!maybe_info->To(&info)) return maybe_info; } info->initialize_storage(); info->set_type_feedback_cells(TypeFeedbackCells::cast(empty_fixed_array()), SKIP_WRITE_BARRIER); return info; } MaybeObject* Heap::AllocateAliasedArgumentsEntry(int aliased_context_slot) { AliasedArgumentsEntry* entry; { MaybeObject* maybe_entry = AllocateStruct(ALIASED_ARGUMENTS_ENTRY_TYPE); if (!maybe_entry->To(&entry)) return maybe_entry; } entry->set_aliased_context_slot(aliased_context_slot); return entry; } const Heap::StringTypeTable Heap::string_type_table[] = { #define STRING_TYPE_ELEMENT(type, size, name, camel_name) \ {type, size, k##camel_name##MapRootIndex}, STRING_TYPE_LIST(STRING_TYPE_ELEMENT) #undef STRING_TYPE_ELEMENT }; const Heap::ConstantStringTable Heap::constant_string_table[] = { #define CONSTANT_STRING_ELEMENT(name, contents) \ {contents, k##name##RootIndex}, INTERNALIZED_STRING_LIST(CONSTANT_STRING_ELEMENT) #undef CONSTANT_STRING_ELEMENT }; const Heap::StructTable Heap::struct_table[] = { #define STRUCT_TABLE_ELEMENT(NAME, Name, name) \ { NAME##_TYPE, Name::kSize, k##Name##MapRootIndex }, STRUCT_LIST(STRUCT_TABLE_ELEMENT) #undef STRUCT_TABLE_ELEMENT }; bool Heap::CreateInitialMaps() { Object* obj; { MaybeObject* maybe_obj = AllocatePartialMap(MAP_TYPE, Map::kSize); if (!maybe_obj->ToObject(&obj)) return false; } // Map::cast cannot be used due to uninitialized map field. Map* new_meta_map = reinterpret_cast(obj); set_meta_map(new_meta_map); new_meta_map->set_map(new_meta_map); { MaybeObject* maybe_obj = AllocatePartialMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel); if (!maybe_obj->ToObject(&obj)) return false; } set_fixed_array_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocatePartialMap(ODDBALL_TYPE, Oddball::kSize); if (!maybe_obj->ToObject(&obj)) return false; } set_oddball_map(Map::cast(obj)); // Allocate the empty array. { MaybeObject* maybe_obj = AllocateEmptyFixedArray(); if (!maybe_obj->ToObject(&obj)) return false; } set_empty_fixed_array(FixedArray::cast(obj)); { MaybeObject* maybe_obj = Allocate(oddball_map(), OLD_POINTER_SPACE); if (!maybe_obj->ToObject(&obj)) return false; } set_null_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kNull); { MaybeObject* maybe_obj = Allocate(oddball_map(), OLD_POINTER_SPACE); if (!maybe_obj->ToObject(&obj)) return false; } set_undefined_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kUndefined); ASSERT(!InNewSpace(undefined_value())); // Allocate the empty descriptor array. { MaybeObject* maybe_obj = AllocateEmptyFixedArray(); if (!maybe_obj->ToObject(&obj)) return false; } set_empty_descriptor_array(DescriptorArray::cast(obj)); // Fix the instance_descriptors for the existing maps. meta_map()->set_code_cache(empty_fixed_array()); meta_map()->set_dependent_code(DependentCode::cast(empty_fixed_array())); meta_map()->init_back_pointer(undefined_value()); meta_map()->set_instance_descriptors(empty_descriptor_array()); fixed_array_map()->set_code_cache(empty_fixed_array()); fixed_array_map()->set_dependent_code( DependentCode::cast(empty_fixed_array())); fixed_array_map()->init_back_pointer(undefined_value()); fixed_array_map()->set_instance_descriptors(empty_descriptor_array()); oddball_map()->set_code_cache(empty_fixed_array()); oddball_map()->set_dependent_code(DependentCode::cast(empty_fixed_array())); oddball_map()->init_back_pointer(undefined_value()); oddball_map()->set_instance_descriptors(empty_descriptor_array()); // Fix prototype object for existing maps. meta_map()->set_prototype(null_value()); meta_map()->set_constructor(null_value()); fixed_array_map()->set_prototype(null_value()); fixed_array_map()->set_constructor(null_value()); oddball_map()->set_prototype(null_value()); oddball_map()->set_constructor(null_value()); { MaybeObject* maybe_obj = AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel); if (!maybe_obj->ToObject(&obj)) return false; } set_fixed_cow_array_map(Map::cast(obj)); ASSERT(fixed_array_map() != fixed_cow_array_map()); { MaybeObject* maybe_obj = AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel); if (!maybe_obj->ToObject(&obj)) return false; } set_scope_info_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(HEAP_NUMBER_TYPE, HeapNumber::kSize); if (!maybe_obj->ToObject(&obj)) return false; } set_heap_number_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(SYMBOL_TYPE, Symbol::kSize); if (!maybe_obj->ToObject(&obj)) return false; } set_symbol_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(FOREIGN_TYPE, Foreign::kSize); if (!maybe_obj->ToObject(&obj)) return false; } set_foreign_map(Map::cast(obj)); for (unsigned i = 0; i < ARRAY_SIZE(string_type_table); i++) { const StringTypeTable& entry = string_type_table[i]; { MaybeObject* maybe_obj = AllocateMap(entry.type, entry.size); if (!maybe_obj->ToObject(&obj)) return false; } roots_[entry.index] = Map::cast(obj); } { MaybeObject* maybe_obj = AllocateMap(STRING_TYPE, kVariableSizeSentinel); if (!maybe_obj->ToObject(&obj)) return false; } set_undetectable_string_map(Map::cast(obj)); Map::cast(obj)->set_is_undetectable(); { MaybeObject* maybe_obj = AllocateMap(ASCII_STRING_TYPE, kVariableSizeSentinel); if (!maybe_obj->ToObject(&obj)) return false; } set_undetectable_ascii_string_map(Map::cast(obj)); Map::cast(obj)->set_is_undetectable(); { MaybeObject* maybe_obj = AllocateMap(FIXED_DOUBLE_ARRAY_TYPE, kVariableSizeSentinel); if (!maybe_obj->ToObject(&obj)) return false; } set_fixed_double_array_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(CONSTANT_POOL_ARRAY_TYPE, kVariableSizeSentinel); if (!maybe_obj->ToObject(&obj)) return false; } set_constant_pool_array_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(BYTE_ARRAY_TYPE, kVariableSizeSentinel); if (!maybe_obj->ToObject(&obj)) return false; } set_byte_array_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(FREE_SPACE_TYPE, kVariableSizeSentinel); if (!maybe_obj->ToObject(&obj)) return false; } set_free_space_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateByteArray(0, TENURED); if (!maybe_obj->ToObject(&obj)) return false; } set_empty_byte_array(ByteArray::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_PIXEL_ARRAY_TYPE, ExternalArray::kAlignedSize); if (!maybe_obj->ToObject(&obj)) return false; } set_external_pixel_array_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_BYTE_ARRAY_TYPE, ExternalArray::kAlignedSize); if (!maybe_obj->ToObject(&obj)) return false; } set_external_byte_array_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE, ExternalArray::kAlignedSize); if (!maybe_obj->ToObject(&obj)) return false; } set_external_unsigned_byte_array_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_SHORT_ARRAY_TYPE, ExternalArray::kAlignedSize); if (!maybe_obj->ToObject(&obj)) return false; } set_external_short_array_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE, ExternalArray::kAlignedSize); if (!maybe_obj->ToObject(&obj)) return false; } set_external_unsigned_short_array_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_INT_ARRAY_TYPE, ExternalArray::kAlignedSize); if (!maybe_obj->ToObject(&obj)) return false; } set_external_int_array_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_UNSIGNED_INT_ARRAY_TYPE, ExternalArray::kAlignedSize); if (!maybe_obj->ToObject(&obj)) return false; } set_external_unsigned_int_array_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_FLOAT_ARRAY_TYPE, ExternalArray::kAlignedSize); if (!maybe_obj->ToObject(&obj)) return false; } set_external_float_array_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel); if (!maybe_obj->ToObject(&obj)) return false; } set_non_strict_arguments_elements_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_DOUBLE_ARRAY_TYPE, ExternalArray::kAlignedSize); if (!maybe_obj->ToObject(&obj)) return false; } set_external_double_array_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateEmptyExternalArray(kExternalByteArray); if (!maybe_obj->ToObject(&obj)) return false; } set_empty_external_byte_array(ExternalArray::cast(obj)); { MaybeObject* maybe_obj = AllocateEmptyExternalArray(kExternalUnsignedByteArray); if (!maybe_obj->ToObject(&obj)) return false; } set_empty_external_unsigned_byte_array(ExternalArray::cast(obj)); { MaybeObject* maybe_obj = AllocateEmptyExternalArray(kExternalShortArray); if (!maybe_obj->ToObject(&obj)) return false; } set_empty_external_short_array(ExternalArray::cast(obj)); { MaybeObject* maybe_obj = AllocateEmptyExternalArray( kExternalUnsignedShortArray); if (!maybe_obj->ToObject(&obj)) return false; } set_empty_external_unsigned_short_array(ExternalArray::cast(obj)); { MaybeObject* maybe_obj = AllocateEmptyExternalArray(kExternalIntArray); if (!maybe_obj->ToObject(&obj)) return false; } set_empty_external_int_array(ExternalArray::cast(obj)); { MaybeObject* maybe_obj = AllocateEmptyExternalArray(kExternalUnsignedIntArray); if (!maybe_obj->ToObject(&obj)) return false; } set_empty_external_unsigned_int_array(ExternalArray::cast(obj)); { MaybeObject* maybe_obj = AllocateEmptyExternalArray(kExternalFloatArray); if (!maybe_obj->ToObject(&obj)) return false; } set_empty_external_float_array(ExternalArray::cast(obj)); { MaybeObject* maybe_obj = AllocateEmptyExternalArray(kExternalDoubleArray); if (!maybe_obj->ToObject(&obj)) return false; } set_empty_external_double_array(ExternalArray::cast(obj)); { MaybeObject* maybe_obj = AllocateEmptyExternalArray(kExternalPixelArray); if (!maybe_obj->ToObject(&obj)) return false; } set_empty_external_pixel_array(ExternalArray::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(CODE_TYPE, kVariableSizeSentinel); if (!maybe_obj->ToObject(&obj)) return false; } set_code_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(CELL_TYPE, Cell::kSize); if (!maybe_obj->ToObject(&obj)) return false; } set_cell_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(PROPERTY_CELL_TYPE, PropertyCell::kSize); if (!maybe_obj->ToObject(&obj)) return false; } set_global_property_cell_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(FILLER_TYPE, kPointerSize); if (!maybe_obj->ToObject(&obj)) return false; } set_one_pointer_filler_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(FILLER_TYPE, 2 * kPointerSize); if (!maybe_obj->ToObject(&obj)) return false; } set_two_pointer_filler_map(Map::cast(obj)); for (unsigned i = 0; i < ARRAY_SIZE(struct_table); i++) { const StructTable& entry = struct_table[i]; { MaybeObject* maybe_obj = AllocateMap(entry.type, entry.size); if (!maybe_obj->ToObject(&obj)) return false; } roots_[entry.index] = Map::cast(obj); } { MaybeObject* maybe_obj = AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel); if (!maybe_obj->ToObject(&obj)) return false; } set_hash_table_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel); if (!maybe_obj->ToObject(&obj)) return false; } set_function_context_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel); if (!maybe_obj->ToObject(&obj)) return false; } set_catch_context_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel); if (!maybe_obj->ToObject(&obj)) return false; } set_with_context_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel); if (!maybe_obj->ToObject(&obj)) return false; } set_block_context_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel); if (!maybe_obj->ToObject(&obj)) return false; } set_module_context_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel); if (!maybe_obj->ToObject(&obj)) return false; } set_global_context_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel); if (!maybe_obj->ToObject(&obj)) return false; } Map* native_context_map = Map::cast(obj); native_context_map->set_dictionary_map(true); native_context_map->set_visitor_id(StaticVisitorBase::kVisitNativeContext); set_native_context_map(native_context_map); { MaybeObject* maybe_obj = AllocateMap(SHARED_FUNCTION_INFO_TYPE, SharedFunctionInfo::kAlignedSize); if (!maybe_obj->ToObject(&obj)) return false; } set_shared_function_info_map(Map::cast(obj)); { MaybeObject* maybe_obj = AllocateMap(JS_MESSAGE_OBJECT_TYPE, JSMessageObject::kSize); if (!maybe_obj->ToObject(&obj)) return false; } set_message_object_map(Map::cast(obj)); Map* external_map; { MaybeObject* maybe_obj = AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize + kPointerSize); if (!maybe_obj->To(&external_map)) return false; } external_map->set_is_extensible(false); set_external_map(external_map); ASSERT(!InNewSpace(empty_fixed_array())); return true; } MaybeObject* Heap::AllocateHeapNumber(double value, PretenureFlag pretenure) { // Statically ensure that it is safe to allocate heap numbers in paged // spaces. int size = HeapNumber::kSize; STATIC_ASSERT(HeapNumber::kSize <= Page::kNonCodeObjectAreaSize); AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure); Object* result; { MaybeObject* maybe_result = AllocateRaw(size, space, OLD_DATA_SPACE); if (!maybe_result->ToObject(&result)) return maybe_result; } HeapObject::cast(result)->set_map_no_write_barrier(heap_number_map()); HeapNumber::cast(result)->set_value(value); return result; } MaybeObject* Heap::AllocateCell(Object* value) { int size = Cell::kSize; STATIC_ASSERT(Cell::kSize <= Page::kNonCodeObjectAreaSize); Object* result; { MaybeObject* maybe_result = AllocateRaw(size, CELL_SPACE, CELL_SPACE); if (!maybe_result->ToObject(&result)) return maybe_result; } HeapObject::cast(result)->set_map_no_write_barrier(cell_map()); Cell::cast(result)->set_value(value); return result; } MaybeObject* Heap::AllocatePropertyCell() { int size = PropertyCell::kSize; STATIC_ASSERT(PropertyCell::kSize <= Page::kNonCodeObjectAreaSize); Object* result; MaybeObject* maybe_result = AllocateRaw(size, PROPERTY_CELL_SPACE, PROPERTY_CELL_SPACE); if (!maybe_result->ToObject(&result)) return maybe_result; HeapObject::cast(result)->set_map_no_write_barrier( global_property_cell_map()); PropertyCell* cell = PropertyCell::cast(result); cell->set_dependent_code(DependentCode::cast(empty_fixed_array()), SKIP_WRITE_BARRIER); cell->set_value(the_hole_value()); cell->set_type(Type::None()); return result; } MaybeObject* Heap::AllocateBox(Object* value, PretenureFlag pretenure) { Box* result; MaybeObject* maybe_result = AllocateStruct(BOX_TYPE); if (!maybe_result->To(&result)) return maybe_result; result->set_value(value); return result; } MaybeObject* Heap::AllocateAllocationSite() { AllocationSite* site; MaybeObject* maybe_result = Allocate(allocation_site_map(), OLD_POINTER_SPACE); if (!maybe_result->To(&site)) return maybe_result; site->Initialize(); // Link the site site->set_weak_next(allocation_sites_list()); set_allocation_sites_list(site); return site; } MaybeObject* Heap::CreateOddball(const char* to_string, Object* to_number, byte kind) { Object* result; { MaybeObject* maybe_result = Allocate(oddball_map(), OLD_POINTER_SPACE); if (!maybe_result->ToObject(&result)) return maybe_result; } return Oddball::cast(result)->Initialize(this, to_string, to_number, kind); } bool Heap::CreateApiObjects() { Object* obj; { MaybeObject* maybe_obj = AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize); if (!maybe_obj->ToObject(&obj)) return false; } // Don't use Smi-only elements optimizations for objects with the neander // map. There are too many cases where element values are set directly with a // bottleneck to trap the Smi-only -> fast elements transition, and there // appears to be no benefit for optimize this case. Map* new_neander_map = Map::cast(obj); new_neander_map->set_elements_kind(TERMINAL_FAST_ELEMENTS_KIND); set_neander_map(new_neander_map); { MaybeObject* maybe_obj = AllocateJSObjectFromMap(neander_map()); if (!maybe_obj->ToObject(&obj)) return false; } Object* elements; { MaybeObject* maybe_elements = AllocateFixedArray(2); if (!maybe_elements->ToObject(&elements)) return false; } FixedArray::cast(elements)->set(0, Smi::FromInt(0)); JSObject::cast(obj)->set_elements(FixedArray::cast(elements)); set_message_listeners(JSObject::cast(obj)); return true; } void Heap::CreateJSEntryStub() { JSEntryStub stub; set_js_entry_code(*stub.GetCode(isolate())); } void Heap::CreateJSConstructEntryStub() { JSConstructEntryStub stub; set_js_construct_entry_code(*stub.GetCode(isolate())); } void Heap::CreateFixedStubs() { // Here we create roots for fixed stubs. They are needed at GC // for cooking and uncooking (check out frames.cc). // The eliminates the need for doing dictionary lookup in the // stub cache for these stubs. HandleScope scope(isolate()); // gcc-4.4 has problem generating correct code of following snippet: // { JSEntryStub stub; // js_entry_code_ = *stub.GetCode(); // } // { JSConstructEntryStub stub; // js_construct_entry_code_ = *stub.GetCode(); // } // To workaround the problem, make separate functions without inlining. Heap::CreateJSEntryStub(); Heap::CreateJSConstructEntryStub(); // Create stubs that should be there, so we don't unexpectedly have to // create them if we need them during the creation of another stub. // Stub creation mixes raw pointers and handles in an unsafe manner so // we cannot create stubs while we are creating stubs. CodeStub::GenerateStubsAheadOfTime(isolate()); } void Heap::CreateStubsRequiringBuiltins() { HandleScope scope(isolate()); CodeStub::GenerateStubsRequiringBuiltinsAheadOfTime(isolate()); } bool Heap::CreateInitialObjects() { Object* obj; // The -0 value must be set before NumberFromDouble works. { MaybeObject* maybe_obj = AllocateHeapNumber(-0.0, TENURED); if (!maybe_obj->ToObject(&obj)) return false; } set_minus_zero_value(HeapNumber::cast(obj)); ASSERT(std::signbit(minus_zero_value()->Number()) != 0); { MaybeObject* maybe_obj = AllocateHeapNumber(OS::nan_value(), TENURED); if (!maybe_obj->ToObject(&obj)) return false; } set_nan_value(HeapNumber::cast(obj)); { MaybeObject* maybe_obj = AllocateHeapNumber(V8_INFINITY, TENURED); if (!maybe_obj->ToObject(&obj)) return false; } set_infinity_value(HeapNumber::cast(obj)); // The hole has not been created yet, but we want to put something // predictable in the gaps in the string table, so lets make that Smi zero. set_the_hole_value(reinterpret_cast(Smi::FromInt(0))); // Allocate initial string table. { MaybeObject* maybe_obj = StringTable::Allocate(this, kInitialStringTableSize); if (!maybe_obj->ToObject(&obj)) return false; } // Don't use set_string_table() due to asserts. roots_[kStringTableRootIndex] = obj; // Finish initializing oddballs after creating the string table. { MaybeObject* maybe_obj = undefined_value()->Initialize(this, "undefined", nan_value(), Oddball::kUndefined); if (!maybe_obj->ToObject(&obj)) return false; } // Initialize the null_value. { MaybeObject* maybe_obj = null_value()->Initialize( this, "null", Smi::FromInt(0), Oddball::kNull); if (!maybe_obj->ToObject(&obj)) return false; } { MaybeObject* maybe_obj = CreateOddball("true", Smi::FromInt(1), Oddball::kTrue); if (!maybe_obj->ToObject(&obj)) return false; } set_true_value(Oddball::cast(obj)); { MaybeObject* maybe_obj = CreateOddball("false", Smi::FromInt(0), Oddball::kFalse); if (!maybe_obj->ToObject(&obj)) return false; } set_false_value(Oddball::cast(obj)); { MaybeObject* maybe_obj = CreateOddball("hole", Smi::FromInt(-1), Oddball::kTheHole); if (!maybe_obj->ToObject(&obj)) return false; } set_the_hole_value(Oddball::cast(obj)); { MaybeObject* maybe_obj = CreateOddball("uninitialized", Smi::FromInt(-1), Oddball::kUninitialized); if (!maybe_obj->ToObject(&obj)) return false; } set_uninitialized_value(Oddball::cast(obj)); { MaybeObject* maybe_obj = CreateOddball("arguments_marker", Smi::FromInt(-4), Oddball::kArgumentMarker); if (!maybe_obj->ToObject(&obj)) return false; } set_arguments_marker(Oddball::cast(obj)); { MaybeObject* maybe_obj = CreateOddball("no_interceptor_result_sentinel", Smi::FromInt(-2), Oddball::kOther); if (!maybe_obj->ToObject(&obj)) return false; } set_no_interceptor_result_sentinel(obj); { MaybeObject* maybe_obj = CreateOddball("termination_exception", Smi::FromInt(-3), Oddball::kOther); if (!maybe_obj->ToObject(&obj)) return false; } set_termination_exception(obj); for (unsigned i = 0; i < ARRAY_SIZE(constant_string_table); i++) { { MaybeObject* maybe_obj = InternalizeUtf8String(constant_string_table[i].contents); if (!maybe_obj->ToObject(&obj)) return false; } roots_[constant_string_table[i].index] = String::cast(obj); } // Allocate the hidden string which is used to identify the hidden properties // in JSObjects. The hash code has a special value so that it will not match // the empty string when searching for the property. It cannot be part of the // loop above because it needs to be allocated manually with the special // hash code in place. The hash code for the hidden_string is zero to ensure // that it will always be at the first entry in property descriptors. { MaybeObject* maybe_obj = AllocateOneByteInternalizedString( OneByteVector("", 0), String::kEmptyStringHash); if (!maybe_obj->ToObject(&obj)) return false; } hidden_string_ = String::cast(obj); // Allocate the code_stubs dictionary. The initial size is set to avoid // expanding the dictionary during bootstrapping. { MaybeObject* maybe_obj = UnseededNumberDictionary::Allocate(this, 128); if (!maybe_obj->ToObject(&obj)) return false; } set_code_stubs(UnseededNumberDictionary::cast(obj)); // Allocate the non_monomorphic_cache used in stub-cache.cc. The initial size // is set to avoid expanding the dictionary during bootstrapping. { MaybeObject* maybe_obj = UnseededNumberDictionary::Allocate(this, 64); if (!maybe_obj->ToObject(&obj)) return false; } set_non_monomorphic_cache(UnseededNumberDictionary::cast(obj)); { MaybeObject* maybe_obj = AllocatePolymorphicCodeCache(); if (!maybe_obj->ToObject(&obj)) return false; } set_polymorphic_code_cache(PolymorphicCodeCache::cast(obj)); set_instanceof_cache_function(Smi::FromInt(0)); set_instanceof_cache_map(Smi::FromInt(0)); set_instanceof_cache_answer(Smi::FromInt(0)); CreateFixedStubs(); // Allocate the dictionary of intrinsic function names. { MaybeObject* maybe_obj = NameDictionary::Allocate(this, Runtime::kNumFunctions); if (!maybe_obj->ToObject(&obj)) return false; } { MaybeObject* maybe_obj = Runtime::InitializeIntrinsicFunctionNames(this, obj); if (!maybe_obj->ToObject(&obj)) return false; } set_intrinsic_function_names(NameDictionary::cast(obj)); { MaybeObject* maybe_obj = AllocateInitialNumberStringCache(); if (!maybe_obj->ToObject(&obj)) return false; } set_number_string_cache(FixedArray::cast(obj)); // Allocate cache for single character one byte strings. { MaybeObject* maybe_obj = AllocateFixedArray(String::kMaxOneByteCharCode + 1, TENURED); if (!maybe_obj->ToObject(&obj)) return false; } set_single_character_string_cache(FixedArray::cast(obj)); // Allocate cache for string split. { MaybeObject* maybe_obj = AllocateFixedArray( RegExpResultsCache::kRegExpResultsCacheSize, TENURED); if (!maybe_obj->ToObject(&obj)) return false; } set_string_split_cache(FixedArray::cast(obj)); { MaybeObject* maybe_obj = AllocateFixedArray( RegExpResultsCache::kRegExpResultsCacheSize, TENURED); if (!maybe_obj->ToObject(&obj)) return false; } set_regexp_multiple_cache(FixedArray::cast(obj)); // Allocate cache for external strings pointing to native source code. { MaybeObject* maybe_obj = AllocateFixedArray(Natives::GetBuiltinsCount()); if (!maybe_obj->ToObject(&obj)) return false; } set_natives_source_cache(FixedArray::cast(obj)); // Allocate object to hold object observation state. { MaybeObject* maybe_obj = AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize); if (!maybe_obj->ToObject(&obj)) return false; } { MaybeObject* maybe_obj = AllocateJSObjectFromMap(Map::cast(obj)); if (!maybe_obj->ToObject(&obj)) return false; } set_observation_state(JSObject::cast(obj)); { MaybeObject* maybe_obj = AllocateSymbol(); if (!maybe_obj->ToObject(&obj)) return false; } Symbol::cast(obj)->set_is_private(true); set_frozen_symbol(Symbol::cast(obj)); { MaybeObject* maybe_obj = AllocateSymbol(); if (!maybe_obj->ToObject(&obj)) return false; } Symbol::cast(obj)->set_is_private(true); set_elements_transition_symbol(Symbol::cast(obj)); { MaybeObject* maybe_obj = SeededNumberDictionary::Allocate(this, 0, TENURED); if (!maybe_obj->ToObject(&obj)) return false; } SeededNumberDictionary::cast(obj)->set_requires_slow_elements(); set_empty_slow_element_dictionary(SeededNumberDictionary::cast(obj)); { MaybeObject* maybe_obj = AllocateSymbol(); if (!maybe_obj->ToObject(&obj)) return false; } Symbol::cast(obj)->set_is_private(true); set_observed_symbol(Symbol::cast(obj)); // Handling of script id generation is in Factory::NewScript. set_last_script_id(Smi::FromInt(v8::Script::kNoScriptId)); // Initialize keyed lookup cache. isolate_->keyed_lookup_cache()->Clear(); // Initialize context slot cache. isolate_->context_slot_cache()->Clear(); // Initialize descriptor cache. isolate_->descriptor_lookup_cache()->Clear(); // Initialize compilation cache. isolate_->compilation_cache()->Clear(); return true; } bool Heap::RootCanBeWrittenAfterInitialization(Heap::RootListIndex root_index) { RootListIndex writable_roots[] = { kStoreBufferTopRootIndex, kStackLimitRootIndex, kNumberStringCacheRootIndex, kInstanceofCacheFunctionRootIndex, kInstanceofCacheMapRootIndex, kInstanceofCacheAnswerRootIndex, kCodeStubsRootIndex, kNonMonomorphicCacheRootIndex, kPolymorphicCodeCacheRootIndex, kLastScriptIdRootIndex, kEmptyScriptRootIndex, kRealStackLimitRootIndex, kArgumentsAdaptorDeoptPCOffsetRootIndex, kConstructStubDeoptPCOffsetRootIndex, kGetterStubDeoptPCOffsetRootIndex, kSetterStubDeoptPCOffsetRootIndex, kStringTableRootIndex, }; for (unsigned int i = 0; i < ARRAY_SIZE(writable_roots); i++) { if (root_index == writable_roots[i]) return true; } return false; } bool Heap::RootCanBeTreatedAsConstant(RootListIndex root_index) { return !RootCanBeWrittenAfterInitialization(root_index) && !InNewSpace(roots_array_start()[root_index]); } Object* RegExpResultsCache::Lookup(Heap* heap, String* key_string, Object* key_pattern, ResultsCacheType type) { FixedArray* cache; if (!key_string->IsInternalizedString()) return Smi::FromInt(0); if (type == STRING_SPLIT_SUBSTRINGS) { ASSERT(key_pattern->IsString()); if (!key_pattern->IsInternalizedString()) return Smi::FromInt(0); cache = heap->string_split_cache(); } else { ASSERT(type == REGEXP_MULTIPLE_INDICES); ASSERT(key_pattern->IsFixedArray()); cache = heap->regexp_multiple_cache(); } uint32_t hash = key_string->Hash(); uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) & ~(kArrayEntriesPerCacheEntry - 1)); if (cache->get(index + kStringOffset) == key_string && cache->get(index + kPatternOffset) == key_pattern) { return cache->get(index + kArrayOffset); } index = ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1)); if (cache->get(index + kStringOffset) == key_string && cache->get(index + kPatternOffset) == key_pattern) { return cache->get(index + kArrayOffset); } return Smi::FromInt(0); } void RegExpResultsCache::Enter(Heap* heap, String* key_string, Object* key_pattern, FixedArray* value_array, ResultsCacheType type) { FixedArray* cache; if (!key_string->IsInternalizedString()) return; if (type == STRING_SPLIT_SUBSTRINGS) { ASSERT(key_pattern->IsString()); if (!key_pattern->IsInternalizedString()) return; cache = heap->string_split_cache(); } else { ASSERT(type == REGEXP_MULTIPLE_INDICES); ASSERT(key_pattern->IsFixedArray()); cache = heap->regexp_multiple_cache(); } uint32_t hash = key_string->Hash(); uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) & ~(kArrayEntriesPerCacheEntry - 1)); if (cache->get(index + kStringOffset) == Smi::FromInt(0)) { cache->set(index + kStringOffset, key_string); cache->set(index + kPatternOffset, key_pattern); cache->set(index + kArrayOffset, value_array); } else { uint32_t index2 = ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1)); if (cache->get(index2 + kStringOffset) == Smi::FromInt(0)) { cache->set(index2 + kStringOffset, key_string); cache->set(index2 + kPatternOffset, key_pattern); cache->set(index2 + kArrayOffset, value_array); } else { cache->set(index2 + kStringOffset, Smi::FromInt(0)); cache->set(index2 + kPatternOffset, Smi::FromInt(0)); cache->set(index2 + kArrayOffset, Smi::FromInt(0)); cache->set(index + kStringOffset, key_string); cache->set(index + kPatternOffset, key_pattern); cache->set(index + kArrayOffset, value_array); } } // If the array is a reasonably short list of substrings, convert it into a // list of internalized strings. if (type == STRING_SPLIT_SUBSTRINGS && value_array->length() < 100) { for (int i = 0; i < value_array->length(); i++) { String* str = String::cast(value_array->get(i)); Object* internalized_str; MaybeObject* maybe_string = heap->InternalizeString(str); if (maybe_string->ToObject(&internalized_str)) { value_array->set(i, internalized_str); } } } // Convert backing store to a copy-on-write array. value_array->set_map_no_write_barrier(heap->fixed_cow_array_map()); } void RegExpResultsCache::Clear(FixedArray* cache) { for (int i = 0; i < kRegExpResultsCacheSize; i++) { cache->set(i, Smi::FromInt(0)); } } MaybeObject* Heap::AllocateInitialNumberStringCache() { MaybeObject* maybe_obj = AllocateFixedArray(kInitialNumberStringCacheSize * 2, TENURED); return maybe_obj; } int Heap::FullSizeNumberStringCacheLength() { // Compute the size of the number string cache based on the max newspace size. // The number string cache has a minimum size based on twice the initial cache // size to ensure that it is bigger after being made 'full size'. int number_string_cache_size = max_semispace_size_ / 512; number_string_cache_size = Max(kInitialNumberStringCacheSize * 2, Min(0x4000, number_string_cache_size)); // There is a string and a number per entry so the length is twice the number // of entries. return number_string_cache_size * 2; } void Heap::AllocateFullSizeNumberStringCache() { // The idea is to have a small number string cache in the snapshot to keep // boot-time memory usage down. If we expand the number string cache already // while creating the snapshot then that didn't work out. ASSERT(!Serializer::enabled() || FLAG_extra_code != NULL); MaybeObject* maybe_obj = AllocateFixedArray(FullSizeNumberStringCacheLength(), TENURED); Object* new_cache; if (maybe_obj->ToObject(&new_cache)) { // We don't bother to repopulate the cache with entries from the old cache. // It will be repopulated soon enough with new strings. set_number_string_cache(FixedArray::cast(new_cache)); } // If allocation fails then we just return without doing anything. It is only // a cache, so best effort is OK here. } void Heap::FlushNumberStringCache() { // Flush the number to string cache. int len = number_string_cache()->length(); for (int i = 0; i < len; i++) { number_string_cache()->set_undefined(i); } } static inline int double_get_hash(double d) { DoubleRepresentation rep(d); return static_cast(rep.bits) ^ static_cast(rep.bits >> 32); } static inline int smi_get_hash(Smi* smi) { return smi->value(); } Object* Heap::GetNumberStringCache(Object* number) { int hash; int mask = (number_string_cache()->length() >> 1) - 1; if (number->IsSmi()) { hash = smi_get_hash(Smi::cast(number)) & mask; } else { hash = double_get_hash(number->Number()) & mask; } Object* key = number_string_cache()->get(hash * 2); if (key == number) { return String::cast(number_string_cache()->get(hash * 2 + 1)); } else if (key->IsHeapNumber() && number->IsHeapNumber() && key->Number() == number->Number()) { return String::cast(number_string_cache()->get(hash * 2 + 1)); } return undefined_value(); } void Heap::SetNumberStringCache(Object* number, String* string) { int hash; int mask = (number_string_cache()->length() >> 1) - 1; if (number->IsSmi()) { hash = smi_get_hash(Smi::cast(number)) & mask; } else { hash = double_get_hash(number->Number()) & mask; } if (number_string_cache()->get(hash * 2) != undefined_value() && number_string_cache()->length() != FullSizeNumberStringCacheLength()) { // The first time we have a hash collision, we move to the full sized // number string cache. AllocateFullSizeNumberStringCache(); return; } number_string_cache()->set(hash * 2, number); number_string_cache()->set(hash * 2 + 1, string); } MaybeObject* Heap::NumberToString(Object* number, bool check_number_string_cache, PretenureFlag pretenure) { isolate_->counters()->number_to_string_runtime()->Increment(); if (check_number_string_cache) { Object* cached = GetNumberStringCache(number); if (cached != undefined_value()) { return cached; } } char arr[100]; Vector buffer(arr, ARRAY_SIZE(arr)); const char* str; if (number->IsSmi()) { int num = Smi::cast(number)->value(); str = IntToCString(num, buffer); } else { double num = HeapNumber::cast(number)->value(); str = DoubleToCString(num, buffer); } Object* js_string; MaybeObject* maybe_js_string = AllocateStringFromOneByte(CStrVector(str), pretenure); if (maybe_js_string->ToObject(&js_string)) { SetNumberStringCache(number, String::cast(js_string)); } return maybe_js_string; } MaybeObject* Heap::Uint32ToString(uint32_t value, bool check_number_string_cache) { Object* number; MaybeObject* maybe = NumberFromUint32(value); if (!maybe->To(&number)) return maybe; return NumberToString(number, check_number_string_cache); } Map* Heap::MapForExternalArrayType(ExternalArrayType array_type) { return Map::cast(roots_[RootIndexForExternalArrayType(array_type)]); } Heap::RootListIndex Heap::RootIndexForExternalArrayType( ExternalArrayType array_type) { switch (array_type) { case kExternalByteArray: return kExternalByteArrayMapRootIndex; case kExternalUnsignedByteArray: return kExternalUnsignedByteArrayMapRootIndex; case kExternalShortArray: return kExternalShortArrayMapRootIndex; case kExternalUnsignedShortArray: return kExternalUnsignedShortArrayMapRootIndex; case kExternalIntArray: return kExternalIntArrayMapRootIndex; case kExternalUnsignedIntArray: return kExternalUnsignedIntArrayMapRootIndex; case kExternalFloatArray: return kExternalFloatArrayMapRootIndex; case kExternalDoubleArray: return kExternalDoubleArrayMapRootIndex; case kExternalPixelArray: return kExternalPixelArrayMapRootIndex; default: UNREACHABLE(); return kUndefinedValueRootIndex; } } Heap::RootListIndex Heap::RootIndexForEmptyExternalArray( ElementsKind elementsKind) { switch (elementsKind) { case EXTERNAL_BYTE_ELEMENTS: return kEmptyExternalByteArrayRootIndex; case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: return kEmptyExternalUnsignedByteArrayRootIndex; case EXTERNAL_SHORT_ELEMENTS: return kEmptyExternalShortArrayRootIndex; case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: return kEmptyExternalUnsignedShortArrayRootIndex; case EXTERNAL_INT_ELEMENTS: return kEmptyExternalIntArrayRootIndex; case EXTERNAL_UNSIGNED_INT_ELEMENTS: return kEmptyExternalUnsignedIntArrayRootIndex; case EXTERNAL_FLOAT_ELEMENTS: return kEmptyExternalFloatArrayRootIndex; case EXTERNAL_DOUBLE_ELEMENTS: return kEmptyExternalDoubleArrayRootIndex; case EXTERNAL_PIXEL_ELEMENTS: return kEmptyExternalPixelArrayRootIndex; default: UNREACHABLE(); return kUndefinedValueRootIndex; } } ExternalArray* Heap::EmptyExternalArrayForMap(Map* map) { return ExternalArray::cast( roots_[RootIndexForEmptyExternalArray(map->elements_kind())]); } MaybeObject* Heap::NumberFromDouble(double value, PretenureFlag pretenure) { // We need to distinguish the minus zero value and this cannot be // done after conversion to int. Doing this by comparing bit // patterns is faster than using fpclassify() et al. static const DoubleRepresentation minus_zero(-0.0); DoubleRepresentation rep(value); if (rep.bits == minus_zero.bits) { return AllocateHeapNumber(-0.0, pretenure); } int int_value = FastD2I(value); if (value == int_value && Smi::IsValid(int_value)) { return Smi::FromInt(int_value); } // Materialize the value in the heap. return AllocateHeapNumber(value, pretenure); } MaybeObject* Heap::AllocateForeign(Address address, PretenureFlag pretenure) { // Statically ensure that it is safe to allocate foreigns in paged spaces. STATIC_ASSERT(Foreign::kSize <= Page::kMaxNonCodeHeapObjectSize); AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE; Foreign* result; MaybeObject* maybe_result = Allocate(foreign_map(), space); if (!maybe_result->To(&result)) return maybe_result; result->set_foreign_address(address); return result; } MaybeObject* Heap::AllocateSharedFunctionInfo(Object* name) { SharedFunctionInfo* share; MaybeObject* maybe = Allocate(shared_function_info_map(), OLD_POINTER_SPACE); if (!maybe->To(&share)) return maybe; // Set pointer fields. share->set_name(name); Code* illegal = isolate_->builtins()->builtin(Builtins::kIllegal); share->set_code(illegal); share->set_optimized_code_map(Smi::FromInt(0)); share->set_scope_info(ScopeInfo::Empty(isolate_)); Code* construct_stub = isolate_->builtins()->builtin(Builtins::kJSConstructStubGeneric); share->set_construct_stub(construct_stub); share->set_instance_class_name(Object_string()); share->set_function_data(undefined_value(), SKIP_WRITE_BARRIER); share->set_script(undefined_value(), SKIP_WRITE_BARRIER); share->set_debug_info(undefined_value(), SKIP_WRITE_BARRIER); share->set_inferred_name(empty_string(), SKIP_WRITE_BARRIER); share->set_initial_map(undefined_value(), SKIP_WRITE_BARRIER); share->set_ast_node_count(0); share->set_counters(0); // Set integer fields (smi or int, depending on the architecture). share->set_length(0); share->set_formal_parameter_count(0); share->set_expected_nof_properties(0); share->set_num_literals(0); share->set_start_position_and_type(0); share->set_end_position(0); share->set_function_token_position(0); // All compiler hints default to false or 0. share->set_compiler_hints(0); share->set_opt_count_and_bailout_reason(0); return share; } MaybeObject* Heap::AllocateJSMessageObject(String* type, JSArray* arguments, int start_position, int end_position, Object* script, Object* stack_trace, Object* stack_frames) { Object* result; { MaybeObject* maybe_result = Allocate(message_object_map(), NEW_SPACE); if (!maybe_result->ToObject(&result)) return maybe_result; } JSMessageObject* message = JSMessageObject::cast(result); message->set_properties(Heap::empty_fixed_array(), SKIP_WRITE_BARRIER); message->initialize_elements(); message->set_elements(Heap::empty_fixed_array(), SKIP_WRITE_BARRIER); message->set_type(type); message->set_arguments(arguments); message->set_start_position(start_position); message->set_end_position(end_position); message->set_script(script); message->set_stack_trace(stack_trace); message->set_stack_frames(stack_frames); return result; } // Returns true for a character in a range. Both limits are inclusive. static inline bool Between(uint32_t character, uint32_t from, uint32_t to) { // This makes uses of the the unsigned wraparound. return character - from <= to - from; } MUST_USE_RESULT static inline MaybeObject* MakeOrFindTwoCharacterString( Heap* heap, uint16_t c1, uint16_t c2) { String* result; // Numeric strings have a different hash algorithm not known by // LookupTwoCharsStringIfExists, so we skip this step for such strings. if ((!Between(c1, '0', '9') || !Between(c2, '0', '9')) && heap->string_table()->LookupTwoCharsStringIfExists(c1, c2, &result)) { return result; // Now we know the length is 2, we might as well make use of that fact // when building the new string. } else if (static_cast(c1 | c2) <= String::kMaxOneByteCharCodeU) { // We can do this. ASSERT(IsPowerOf2(String::kMaxOneByteCharCodeU + 1)); // because of this. Object* result; { MaybeObject* maybe_result = heap->AllocateRawOneByteString(2); if (!maybe_result->ToObject(&result)) return maybe_result; } uint8_t* dest = SeqOneByteString::cast(result)->GetChars(); dest[0] = static_cast(c1); dest[1] = static_cast(c2); return result; } else { Object* result; { MaybeObject* maybe_result = heap->AllocateRawTwoByteString(2); if (!maybe_result->ToObject(&result)) return maybe_result; } uc16* dest = SeqTwoByteString::cast(result)->GetChars(); dest[0] = c1; dest[1] = c2; return result; } } MaybeObject* Heap::AllocateConsString(String* first, String* second) { int first_length = first->length(); if (first_length == 0) { return second; } int second_length = second->length(); if (second_length == 0) { return first; } int length = first_length + second_length; // Optimization for 2-byte strings often used as keys in a decompression // dictionary. Check whether we already have the string in the string // table to prevent creation of many unneccesary strings. if (length == 2) { uint16_t c1 = first->Get(0); uint16_t c2 = second->Get(0); return MakeOrFindTwoCharacterString(this, c1, c2); } bool first_is_one_byte = first->IsOneByteRepresentation(); bool second_is_one_byte = second->IsOneByteRepresentation(); bool is_one_byte = first_is_one_byte && second_is_one_byte; // Make sure that an out of memory exception is thrown if the length // of the new cons string is too large. if (length > String::kMaxLength || length < 0) { isolate()->context()->mark_out_of_memory(); return Failure::OutOfMemoryException(0x4); } bool is_one_byte_data_in_two_byte_string = false; if (!is_one_byte) { // At least one of the strings uses two-byte representation so we // can't use the fast case code for short ASCII strings below, but // we can try to save memory if all chars actually fit in ASCII. is_one_byte_data_in_two_byte_string = first->HasOnlyOneByteChars() && second->HasOnlyOneByteChars(); if (is_one_byte_data_in_two_byte_string) { isolate_->counters()->string_add_runtime_ext_to_ascii()->Increment(); } } // If the resulting string is small make a flat string. if (length < ConsString::kMinLength) { // Note that neither of the two inputs can be a slice because: STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength); ASSERT(first->IsFlat()); ASSERT(second->IsFlat()); if (is_one_byte) { Object* result; { MaybeObject* maybe_result = AllocateRawOneByteString(length); if (!maybe_result->ToObject(&result)) return maybe_result; } // Copy the characters into the new object. uint8_t* dest = SeqOneByteString::cast(result)->GetChars(); // Copy first part. const uint8_t* src; if (first->IsExternalString()) { src = ExternalAsciiString::cast(first)->GetChars(); } else { src = SeqOneByteString::cast(first)->GetChars(); } for (int i = 0; i < first_length; i++) *dest++ = src[i]; // Copy second part. if (second->IsExternalString()) { src = ExternalAsciiString::cast(second)->GetChars(); } else { src = SeqOneByteString::cast(second)->GetChars(); } for (int i = 0; i < second_length; i++) *dest++ = src[i]; return result; } else { if (is_one_byte_data_in_two_byte_string) { Object* result; { MaybeObject* maybe_result = AllocateRawOneByteString(length); if (!maybe_result->ToObject(&result)) return maybe_result; } // Copy the characters into the new object. uint8_t* dest = SeqOneByteString::cast(result)->GetChars(); String::WriteToFlat(first, dest, 0, first_length); String::WriteToFlat(second, dest + first_length, 0, second_length); isolate_->counters()->string_add_runtime_ext_to_ascii()->Increment(); return result; } Object* result; { MaybeObject* maybe_result = AllocateRawTwoByteString(length); if (!maybe_result->ToObject(&result)) return maybe_result; } // Copy the characters into the new object. uc16* dest = SeqTwoByteString::cast(result)->GetChars(); String::WriteToFlat(first, dest, 0, first_length); String::WriteToFlat(second, dest + first_length, 0, second_length); return result; } } Map* map = (is_one_byte || is_one_byte_data_in_two_byte_string) ? cons_ascii_string_map() : cons_string_map(); Object* result; { MaybeObject* maybe_result = Allocate(map, NEW_SPACE); if (!maybe_result->ToObject(&result)) return maybe_result; } DisallowHeapAllocation no_gc; ConsString* cons_string = ConsString::cast(result); WriteBarrierMode mode = cons_string->GetWriteBarrierMode(no_gc); cons_string->set_length(length); cons_string->set_hash_field(String::kEmptyHashField); cons_string->set_first(first, mode); cons_string->set_second(second, mode); return result; } MaybeObject* Heap::AllocateSubString(String* buffer, int start, int end, PretenureFlag pretenure) { int length = end - start; if (length <= 0) { return empty_string(); } // Make an attempt to flatten the buffer to reduce access time. buffer = buffer->TryFlattenGetString(); if (length == 1) { return LookupSingleCharacterStringFromCode(buffer->Get(start)); } else if (length == 2) { // Optimization for 2-byte strings often used as keys in a decompression // dictionary. Check whether we already have the string in the string // table to prevent creation of many unnecessary strings. uint16_t c1 = buffer->Get(start); uint16_t c2 = buffer->Get(start + 1); return MakeOrFindTwoCharacterString(this, c1, c2); } if (!FLAG_string_slices || !buffer->IsFlat() || length < SlicedString::kMinLength || pretenure == TENURED) { Object* result; // WriteToFlat takes care of the case when an indirect string has a // different encoding from its underlying string. These encodings may // differ because of externalization. bool is_one_byte = buffer->IsOneByteRepresentation(); { MaybeObject* maybe_result = is_one_byte ? AllocateRawOneByteString(length, pretenure) : AllocateRawTwoByteString(length, pretenure); if (!maybe_result->ToObject(&result)) return maybe_result; } String* string_result = String::cast(result); // Copy the characters into the new object. if (is_one_byte) { ASSERT(string_result->IsOneByteRepresentation()); uint8_t* dest = SeqOneByteString::cast(string_result)->GetChars(); String::WriteToFlat(buffer, dest, start, end); } else { ASSERT(string_result->IsTwoByteRepresentation()); uc16* dest = SeqTwoByteString::cast(string_result)->GetChars(); String::WriteToFlat(buffer, dest, start, end); } return result; } ASSERT(buffer->IsFlat()); #if VERIFY_HEAP if (FLAG_verify_heap) { buffer->StringVerify(); } #endif Object* result; // When slicing an indirect string we use its encoding for a newly created // slice and don't check the encoding of the underlying string. This is safe // even if the encodings are different because of externalization. If an // indirect ASCII string is pointing to a two-byte string, the two-byte char // codes of the underlying string must still fit into ASCII (because // externalization must not change char codes). { Map* map = buffer->IsOneByteRepresentation() ? sliced_ascii_string_map() : sliced_string_map(); MaybeObject* maybe_result = Allocate(map, NEW_SPACE); if (!maybe_result->ToObject(&result)) return maybe_result; } DisallowHeapAllocation no_gc; SlicedString* sliced_string = SlicedString::cast(result); sliced_string->set_length(length); sliced_string->set_hash_field(String::kEmptyHashField); if (buffer->IsConsString()) { ConsString* cons = ConsString::cast(buffer); ASSERT(cons->second()->length() == 0); sliced_string->set_parent(cons->first()); sliced_string->set_offset(start); } else if (buffer->IsSlicedString()) { // Prevent nesting sliced strings. SlicedString* parent_slice = SlicedString::cast(buffer); sliced_string->set_parent(parent_slice->parent()); sliced_string->set_offset(start + parent_slice->offset()); } else { sliced_string->set_parent(buffer); sliced_string->set_offset(start); } ASSERT(sliced_string->parent()->IsSeqString() || sliced_string->parent()->IsExternalString()); return result; } MaybeObject* Heap::AllocateExternalStringFromAscii( const ExternalAsciiString::Resource* resource) { size_t length = resource->length(); if (length > static_cast(String::kMaxLength)) { isolate()->context()->mark_out_of_memory(); return Failure::OutOfMemoryException(0x5); } Map* map = external_ascii_string_map(); Object* result; { MaybeObject* maybe_result = Allocate(map, NEW_SPACE); if (!maybe_result->ToObject(&result)) return maybe_result; } ExternalAsciiString* external_string = ExternalAsciiString::cast(result); external_string->set_length(static_cast(length)); external_string->set_hash_field(String::kEmptyHashField); external_string->set_resource(resource); return result; } MaybeObject* Heap::AllocateExternalStringFromTwoByte( const ExternalTwoByteString::Resource* resource) { size_t length = resource->length(); if (length > static_cast(String::kMaxLength)) { isolate()->context()->mark_out_of_memory(); return Failure::OutOfMemoryException(0x6); } // For small strings we check whether the resource contains only // one byte characters. If yes, we use a different string map. static const size_t kOneByteCheckLengthLimit = 32; bool is_one_byte = length <= kOneByteCheckLengthLimit && String::IsOneByte(resource->data(), static_cast(length)); Map* map = is_one_byte ? external_string_with_one_byte_data_map() : external_string_map(); Object* result; { MaybeObject* maybe_result = Allocate(map, NEW_SPACE); if (!maybe_result->ToObject(&result)) return maybe_result; } ExternalTwoByteString* external_string = ExternalTwoByteString::cast(result); external_string->set_length(static_cast(length)); external_string->set_hash_field(String::kEmptyHashField); external_string->set_resource(resource); return result; } MaybeObject* Heap::LookupSingleCharacterStringFromCode(uint16_t code) { if (code <= String::kMaxOneByteCharCode) { Object* value = single_character_string_cache()->get(code); if (value != undefined_value()) return value; uint8_t buffer[1]; buffer[0] = static_cast(code); Object* result; MaybeObject* maybe_result = InternalizeOneByteString(Vector(buffer, 1)); if (!maybe_result->ToObject(&result)) return maybe_result; single_character_string_cache()->set(code, result); return result; } SeqTwoByteString* result; { MaybeObject* maybe_result = AllocateRawTwoByteString(1); if (!maybe_result->To(&result)) return maybe_result; } result->SeqTwoByteStringSet(0, code); return result; } MaybeObject* Heap::AllocateByteArray(int length, PretenureFlag pretenure) { if (length < 0 || length > ByteArray::kMaxLength) { return Failure::OutOfMemoryException(0x7); } int size = ByteArray::SizeFor(length); AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure); Object* result; { MaybeObject* maybe_result = AllocateRaw(size, space, OLD_DATA_SPACE); if (!maybe_result->ToObject(&result)) return maybe_result; } reinterpret_cast(result)->set_map_no_write_barrier( byte_array_map()); reinterpret_cast(result)->set_length(length); return result; } void Heap::CreateFillerObjectAt(Address addr, int size) { if (size == 0) return; HeapObject* filler = HeapObject::FromAddress(addr); if (size == kPointerSize) { filler->set_map_no_write_barrier(one_pointer_filler_map()); } else if (size == 2 * kPointerSize) { filler->set_map_no_write_barrier(two_pointer_filler_map()); } else { filler->set_map_no_write_barrier(free_space_map()); FreeSpace::cast(filler)->set_size(size); } } MaybeObject* Heap::AllocateExternalArray(int length, ExternalArrayType array_type, void* external_pointer, PretenureFlag pretenure) { int size = ExternalArray::kAlignedSize; AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure); Object* result; { MaybeObject* maybe_result = AllocateRaw(size, space, OLD_DATA_SPACE); if (!maybe_result->ToObject(&result)) return maybe_result; } reinterpret_cast(result)->set_map_no_write_barrier( MapForExternalArrayType(array_type)); reinterpret_cast(result)->set_length(length); reinterpret_cast(result)->set_external_pointer( external_pointer); return result; } MaybeObject* Heap::CreateCode(const CodeDesc& desc, Code::Flags flags, Handle self_reference, bool immovable, bool crankshafted, int prologue_offset) { // Allocate ByteArray before the Code object, so that we do not risk // leaving uninitialized Code object (and breaking the heap). ByteArray* reloc_info; MaybeObject* maybe_reloc_info = AllocateByteArray(desc.reloc_size, TENURED); if (!maybe_reloc_info->To(&reloc_info)) return maybe_reloc_info; // Compute size. int body_size = RoundUp(desc.instr_size, kObjectAlignment); int obj_size = Code::SizeFor(body_size); ASSERT(IsAligned(static_cast(obj_size), kCodeAlignment)); MaybeObject* maybe_result; // Large code objects and code objects which should stay at a fixed address // are allocated in large object space. HeapObject* result; bool force_lo_space = obj_size > code_space()->AreaSize(); if (force_lo_space) { maybe_result = lo_space_->AllocateRaw(obj_size, EXECUTABLE); } else { maybe_result = AllocateRaw(obj_size, CODE_SPACE, CODE_SPACE); } if (!maybe_result->To(&result)) return maybe_result; if (immovable && !force_lo_space && // Objects on the first page of each space are never moved. !code_space_->FirstPage()->Contains(result->address())) { // Discard the first code allocation, which was on a page where it could be // moved. CreateFillerObjectAt(result->address(), obj_size); maybe_result = lo_space_->AllocateRaw(obj_size, EXECUTABLE); if (!maybe_result->To(&result)) return maybe_result; } // Initialize the object result->set_map_no_write_barrier(code_map()); Code* code = Code::cast(result); ASSERT(!isolate_->code_range()->exists() || isolate_->code_range()->contains(code->address())); code->set_instruction_size(desc.instr_size); code->set_relocation_info(reloc_info); code->set_flags(flags); code->set_raw_kind_specific_flags1(0); code->set_raw_kind_specific_flags2(0); if (code->is_call_stub() || code->is_keyed_call_stub()) { code->set_check_type(RECEIVER_MAP_CHECK); } code->set_is_crankshafted(crankshafted); code->set_deoptimization_data(empty_fixed_array(), SKIP_WRITE_BARRIER); code->set_raw_type_feedback_info(undefined_value()); code->set_handler_table(empty_fixed_array(), SKIP_WRITE_BARRIER); code->set_gc_metadata(Smi::FromInt(0)); code->set_ic_age(global_ic_age_); code->set_prologue_offset(prologue_offset); if (code->kind() == Code::OPTIMIZED_FUNCTION) { code->set_marked_for_deoptimization(false); } #ifdef ENABLE_DEBUGGER_SUPPORT if (code->kind() == Code::FUNCTION) { code->set_has_debug_break_slots( isolate_->debugger()->IsDebuggerActive()); } #endif // Allow self references to created code object by patching the handle to // point to the newly allocated Code object. if (!self_reference.is_null()) { *(self_reference.location()) = code; } // Migrate generated code. // The generated code can contain Object** values (typically from handles) // that are dereferenced during the copy to point directly to the actual heap // objects. These pointers can include references to the code object itself, // through the self_reference parameter. code->CopyFrom(desc); #ifdef VERIFY_HEAP if (FLAG_verify_heap) { code->Verify(); } #endif return code; } MaybeObject* Heap::CopyCode(Code* code) { // Allocate an object the same size as the code object. int obj_size = code->Size(); MaybeObject* maybe_result; if (obj_size > code_space()->AreaSize()) { maybe_result = lo_space_->AllocateRaw(obj_size, EXECUTABLE); } else { maybe_result = AllocateRaw(obj_size, CODE_SPACE, CODE_SPACE); } Object* result; if (!maybe_result->ToObject(&result)) return maybe_result; // Copy code object. Address old_addr = code->address(); Address new_addr = reinterpret_cast(result)->address(); CopyBlock(new_addr, old_addr, obj_size); // Relocate the copy. Code* new_code = Code::cast(result); ASSERT(!isolate_->code_range()->exists() || isolate_->code_range()->contains(code->address())); new_code->Relocate(new_addr - old_addr); return new_code; } MaybeObject* Heap::CopyCode(Code* code, Vector reloc_info) { // Allocate ByteArray before the Code object, so that we do not risk // leaving uninitialized Code object (and breaking the heap). Object* reloc_info_array; { MaybeObject* maybe_reloc_info_array = AllocateByteArray(reloc_info.length(), TENURED); if (!maybe_reloc_info_array->ToObject(&reloc_info_array)) { return maybe_reloc_info_array; } } int new_body_size = RoundUp(code->instruction_size(), kObjectAlignment); int new_obj_size = Code::SizeFor(new_body_size); Address old_addr = code->address(); size_t relocation_offset = static_cast(code->instruction_end() - old_addr); MaybeObject* maybe_result; if (new_obj_size > code_space()->AreaSize()) { maybe_result = lo_space_->AllocateRaw(new_obj_size, EXECUTABLE); } else { maybe_result = AllocateRaw(new_obj_size, CODE_SPACE, CODE_SPACE); } Object* result; if (!maybe_result->ToObject(&result)) return maybe_result; // Copy code object. Address new_addr = reinterpret_cast(result)->address(); // Copy header and instructions. CopyBytes(new_addr, old_addr, relocation_offset); Code* new_code = Code::cast(result); new_code->set_relocation_info(ByteArray::cast(reloc_info_array)); // Copy patched rinfo. CopyBytes(new_code->relocation_start(), reloc_info.start(), static_cast(reloc_info.length())); // Relocate the copy. ASSERT(!isolate_->code_range()->exists() || isolate_->code_range()->contains(code->address())); new_code->Relocate(new_addr - old_addr); #ifdef VERIFY_HEAP if (FLAG_verify_heap) { code->Verify(); } #endif return new_code; } void Heap::InitializeAllocationMemento(AllocationMemento* memento, AllocationSite* allocation_site) { memento->set_map_no_write_barrier(allocation_memento_map()); ASSERT(allocation_site->map() == allocation_site_map()); memento->set_allocation_site(allocation_site, SKIP_WRITE_BARRIER); if (FLAG_allocation_site_pretenuring) { allocation_site->IncrementMementoCreateCount(); } } MaybeObject* Heap::AllocateWithAllocationSite(Map* map, AllocationSpace space, Handle allocation_site) { ASSERT(gc_state_ == NOT_IN_GC); ASSERT(map->instance_type() != MAP_TYPE); // If allocation failures are disallowed, we may allocate in a different // space when new space is full and the object is not a large object. AllocationSpace retry_space = (space != NEW_SPACE) ? space : TargetSpaceId(map->instance_type()); int size = map->instance_size() + AllocationMemento::kSize; Object* result; MaybeObject* maybe_result = AllocateRaw(size, space, retry_space); if (!maybe_result->ToObject(&result)) return maybe_result; // No need for write barrier since object is white and map is in old space. HeapObject::cast(result)->set_map_no_write_barrier(map); AllocationMemento* alloc_memento = reinterpret_cast( reinterpret_cast
(result) + map->instance_size()); InitializeAllocationMemento(alloc_memento, *allocation_site); return result; } MaybeObject* Heap::Allocate(Map* map, AllocationSpace space) { ASSERT(gc_state_ == NOT_IN_GC); ASSERT(map->instance_type() != MAP_TYPE); // If allocation failures are disallowed, we may allocate in a different // space when new space is full and the object is not a large object. AllocationSpace retry_space = (space != NEW_SPACE) ? space : TargetSpaceId(map->instance_type()); int size = map->instance_size(); Object* result; MaybeObject* maybe_result = AllocateRaw(size, space, retry_space); if (!maybe_result->ToObject(&result)) return maybe_result; // No need for write barrier since object is white and map is in old space. HeapObject::cast(result)->set_map_no_write_barrier(map); return result; } void Heap::InitializeFunction(JSFunction* function, SharedFunctionInfo* shared, Object* prototype) { ASSERT(!prototype->IsMap()); function->initialize_properties(); function->initialize_elements(); function->set_shared(shared); function->set_code(shared->code()); function->set_prototype_or_initial_map(prototype); function->set_context(undefined_value()); function->set_literals_or_bindings(empty_fixed_array()); function->set_next_function_link(undefined_value()); } MaybeObject* Heap::AllocateFunction(Map* function_map, SharedFunctionInfo* shared, Object* prototype, PretenureFlag pretenure) { AllocationSpace space = (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE; Object* result; { MaybeObject* maybe_result = Allocate(function_map, space); if (!maybe_result->ToObject(&result)) return maybe_result; } InitializeFunction(JSFunction::cast(result), shared, prototype); return result; } MaybeObject* Heap::AllocateArgumentsObject(Object* callee, int length) { // To get fast allocation and map sharing for arguments objects we // allocate them based on an arguments boilerplate. JSObject* boilerplate; int arguments_object_size; bool strict_mode_callee = callee->IsJSFunction() && !JSFunction::cast(callee)->shared()->is_classic_mode(); if (strict_mode_callee) { boilerplate = isolate()->context()->native_context()-> strict_mode_arguments_boilerplate(); arguments_object_size = kArgumentsObjectSizeStrict; } else { boilerplate = isolate()->context()->native_context()->arguments_boilerplate(); arguments_object_size = kArgumentsObjectSize; } // Check that the size of the boilerplate matches our // expectations. The ArgumentsAccessStub::GenerateNewObject relies // on the size being a known constant. ASSERT(arguments_object_size == boilerplate->map()->instance_size()); // Do the allocation. Object* result; { MaybeObject* maybe_result = AllocateRaw(arguments_object_size, NEW_SPACE, OLD_POINTER_SPACE); if (!maybe_result->ToObject(&result)) return maybe_result; } // Copy the content. The arguments boilerplate doesn't have any // fields that point to new space so it's safe to skip the write // barrier here. CopyBlock(HeapObject::cast(result)->address(), boilerplate->address(), JSObject::kHeaderSize); // Set the length property. JSObject::cast(result)->InObjectPropertyAtPut(kArgumentsLengthIndex, Smi::FromInt(length), SKIP_WRITE_BARRIER); // Set the callee property for non-strict mode arguments object only. if (!strict_mode_callee) { JSObject::cast(result)->InObjectPropertyAtPut(kArgumentsCalleeIndex, callee); } // Check the state of the object ASSERT(JSObject::cast(result)->HasFastProperties()); ASSERT(JSObject::cast(result)->HasFastObjectElements()); return result; } void Heap::InitializeJSObjectFromMap(JSObject* obj, FixedArray* properties, Map* map) { obj->set_properties(properties); obj->initialize_elements(); // TODO(1240798): Initialize the object's body using valid initial values // according to the object's initial map. For example, if the map's // instance type is JS_ARRAY_TYPE, the length field should be initialized // to a number (e.g. Smi::FromInt(0)) and the elements initialized to a // fixed array (e.g. Heap::empty_fixed_array()). Currently, the object // verification code has to cope with (temporarily) invalid objects. See // for example, JSArray::JSArrayVerify). Object* filler; // We cannot always fill with one_pointer_filler_map because objects // created from API functions expect their internal fields to be initialized // with undefined_value. // Pre-allocated fields need to be initialized with undefined_value as well // so that object accesses before the constructor completes (e.g. in the // debugger) will not cause a crash. if (map->constructor()->IsJSFunction() && JSFunction::cast(map->constructor())->shared()-> IsInobjectSlackTrackingInProgress()) { // We might want to shrink the object later. ASSERT(obj->GetInternalFieldCount() == 0); filler = Heap::one_pointer_filler_map(); } else { filler = Heap::undefined_value(); } obj->InitializeBody(map, Heap::undefined_value(), filler); } MaybeObject* Heap::AllocateJSObjectFromMap( Map* map, PretenureFlag pretenure, bool allocate_properties) { // JSFunctions should be allocated using AllocateFunction to be // properly initialized. ASSERT(map->instance_type() != JS_FUNCTION_TYPE); // Both types of global objects should be allocated using // AllocateGlobalObject to be properly initialized. ASSERT(map->instance_type() != JS_GLOBAL_OBJECT_TYPE); ASSERT(map->instance_type() != JS_BUILTINS_OBJECT_TYPE); // Allocate the backing storage for the properties. FixedArray* properties; if (allocate_properties) { int prop_size = map->InitialPropertiesLength(); ASSERT(prop_size >= 0); { MaybeObject* maybe_properties = AllocateFixedArray(prop_size, pretenure); if (!maybe_properties->To(&properties)) return maybe_properties; } } else { properties = empty_fixed_array(); } // Allocate the JSObject. int size = map->instance_size(); AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, pretenure); Object* obj; MaybeObject* maybe_obj = Allocate(map, space); if (!maybe_obj->To(&obj)) return maybe_obj; // Initialize the JSObject. InitializeJSObjectFromMap(JSObject::cast(obj), properties, map); ASSERT(JSObject::cast(obj)->HasFastElements() || JSObject::cast(obj)->HasExternalArrayElements()); return obj; } MaybeObject* Heap::AllocateJSObjectFromMapWithAllocationSite( Map* map, Handle allocation_site) { // JSFunctions should be allocated using AllocateFunction to be // properly initialized. ASSERT(map->instance_type() != JS_FUNCTION_TYPE); // Both types of global objects should be allocated using // AllocateGlobalObject to be properly initialized. ASSERT(map->instance_type() != JS_GLOBAL_OBJECT_TYPE); ASSERT(map->instance_type() != JS_BUILTINS_OBJECT_TYPE); // Allocate the backing storage for the properties. int prop_size = map->InitialPropertiesLength(); ASSERT(prop_size >= 0); FixedArray* properties; { MaybeObject* maybe_properties = AllocateFixedArray(prop_size); if (!maybe_properties->To(&properties)) return maybe_properties; } // Allocate the JSObject. int size = map->instance_size(); AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, NOT_TENURED); Object* obj; MaybeObject* maybe_obj = AllocateWithAllocationSite(map, space, allocation_site); if (!maybe_obj->To(&obj)) return maybe_obj; // Initialize the JSObject. InitializeJSObjectFromMap(JSObject::cast(obj), properties, map); ASSERT(JSObject::cast(obj)->HasFastElements()); return obj; } MaybeObject* Heap::AllocateJSObject(JSFunction* constructor, PretenureFlag pretenure) { ASSERT(constructor->has_initial_map()); // Allocate the object based on the constructors initial map. MaybeObject* result = AllocateJSObjectFromMap( constructor->initial_map(), pretenure); #ifdef DEBUG // Make sure result is NOT a global object if valid. Object* non_failure; ASSERT(!result->ToObject(&non_failure) || !non_failure->IsGlobalObject()); #endif return result; } MaybeObject* Heap::AllocateJSObjectWithAllocationSite(JSFunction* constructor, Handle allocation_site) { ASSERT(constructor->has_initial_map()); // Allocate the object based on the constructors initial map, or the payload // advice Map* initial_map = constructor->initial_map(); ElementsKind to_kind = allocation_site->GetElementsKind(); AllocationSiteMode mode = TRACK_ALLOCATION_SITE; if (to_kind != initial_map->elements_kind()) { MaybeObject* maybe_new_map = initial_map->AsElementsKind(to_kind); if (!maybe_new_map->To(&initial_map)) return maybe_new_map; // Possibly alter the mode, since we found an updated elements kind // in the type info cell. mode = AllocationSite::GetMode(to_kind); } MaybeObject* result; if (mode == TRACK_ALLOCATION_SITE) { result = AllocateJSObjectFromMapWithAllocationSite(initial_map, allocation_site); } else { result = AllocateJSObjectFromMap(initial_map, NOT_TENURED); } #ifdef DEBUG // Make sure result is NOT a global object if valid. Object* non_failure; ASSERT(!result->ToObject(&non_failure) || !non_failure->IsGlobalObject()); #endif return result; } MaybeObject* Heap::AllocateJSModule(Context* context, ScopeInfo* scope_info) { // Allocate a fresh map. Modules do not have a prototype. Map* map; MaybeObject* maybe_map = AllocateMap(JS_MODULE_TYPE, JSModule::kSize); if (!maybe_map->To(&map)) return maybe_map; // Allocate the object based on the map. JSModule* module; MaybeObject* maybe_module = AllocateJSObjectFromMap(map, TENURED); if (!maybe_module->To(&module)) return maybe_module; module->set_context(context); module->set_scope_info(scope_info); return module; } MaybeObject* Heap::AllocateJSArrayAndStorage( ElementsKind elements_kind, int length, int capacity, ArrayStorageAllocationMode mode, PretenureFlag pretenure) { MaybeObject* maybe_array = AllocateJSArray(elements_kind, pretenure); JSArray* array; if (!maybe_array->To(&array)) return maybe_array; // TODO(mvstanton): this body of code is duplicate with AllocateJSArrayStorage // for performance reasons. ASSERT(capacity >= length); if (capacity == 0) { array->set_length(Smi::FromInt(0)); array->set_elements(empty_fixed_array()); return array; } FixedArrayBase* elms; MaybeObject* maybe_elms = NULL; if (IsFastDoubleElementsKind(elements_kind)) { if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) { maybe_elms = AllocateUninitializedFixedDoubleArray(capacity); } else { ASSERT(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE); maybe_elms = AllocateFixedDoubleArrayWithHoles(capacity); } } else { ASSERT(IsFastSmiOrObjectElementsKind(elements_kind)); if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) { maybe_elms = AllocateUninitializedFixedArray(capacity); } else { ASSERT(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE); maybe_elms = AllocateFixedArrayWithHoles(capacity); } } if (!maybe_elms->To(&elms)) return maybe_elms; array->set_elements(elms); array->set_length(Smi::FromInt(length)); return array; } MaybeObject* Heap::AllocateJSArrayStorage( JSArray* array, int length, int capacity, ArrayStorageAllocationMode mode) { ASSERT(capacity >= length); if (capacity == 0) { array->set_length(Smi::FromInt(0)); array->set_elements(empty_fixed_array()); return array; } FixedArrayBase* elms; MaybeObject* maybe_elms = NULL; ElementsKind elements_kind = array->GetElementsKind(); if (IsFastDoubleElementsKind(elements_kind)) { if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) { maybe_elms = AllocateUninitializedFixedDoubleArray(capacity); } else { ASSERT(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE); maybe_elms = AllocateFixedDoubleArrayWithHoles(capacity); } } else { ASSERT(IsFastSmiOrObjectElementsKind(elements_kind)); if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) { maybe_elms = AllocateUninitializedFixedArray(capacity); } else { ASSERT(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE); maybe_elms = AllocateFixedArrayWithHoles(capacity); } } if (!maybe_elms->To(&elms)) return maybe_elms; array->set_elements(elms); array->set_length(Smi::FromInt(length)); return array; } MaybeObject* Heap::AllocateJSArrayWithElements( FixedArrayBase* elements, ElementsKind elements_kind, int length, PretenureFlag pretenure) { MaybeObject* maybe_array = AllocateJSArray(elements_kind, pretenure); JSArray* array; if (!maybe_array->To(&array)) return maybe_array; array->set_elements(elements); array->set_length(Smi::FromInt(length)); array->ValidateElements(); return array; } MaybeObject* Heap::AllocateJSProxy(Object* handler, Object* prototype) { // Allocate map. // TODO(rossberg): Once we optimize proxies, think about a scheme to share // maps. Will probably depend on the identity of the handler object, too. Map* map; MaybeObject* maybe_map_obj = AllocateMap(JS_PROXY_TYPE, JSProxy::kSize); if (!maybe_map_obj->To(&map)) return maybe_map_obj; map->set_prototype(prototype); // Allocate the proxy object. JSProxy* result; MaybeObject* maybe_result = Allocate(map, NEW_SPACE); if (!maybe_result->To(&result)) return maybe_result; result->InitializeBody(map->instance_size(), Smi::FromInt(0)); result->set_handler(handler); result->set_hash(undefined_value(), SKIP_WRITE_BARRIER); return result; } MaybeObject* Heap::AllocateJSFunctionProxy(Object* handler, Object* call_trap, Object* construct_trap, Object* prototype) { // Allocate map. // TODO(rossberg): Once we optimize proxies, think about a scheme to share // maps. Will probably depend on the identity of the handler object, too. Map* map; MaybeObject* maybe_map_obj = AllocateMap(JS_FUNCTION_PROXY_TYPE, JSFunctionProxy::kSize); if (!maybe_map_obj->To(&map)) return maybe_map_obj; map->set_prototype(prototype); // Allocate the proxy object. JSFunctionProxy* result; MaybeObject* maybe_result = Allocate(map, NEW_SPACE); if (!maybe_result->To(&result)) return maybe_result; result->InitializeBody(map->instance_size(), Smi::FromInt(0)); result->set_handler(handler); result->set_hash(undefined_value(), SKIP_WRITE_BARRIER); result->set_call_trap(call_trap); result->set_construct_trap(construct_trap); return result; } MaybeObject* Heap::CopyJSObject(JSObject* source, AllocationSite* site) { // Never used to copy functions. If functions need to be copied we // have to be careful to clear the literals array. SLOW_ASSERT(!source->IsJSFunction()); // Make the clone. Map* map = source->map(); int object_size = map->instance_size(); Object* clone; ASSERT(site == NULL || AllocationSite::CanTrack(map->instance_type())); WriteBarrierMode wb_mode = UPDATE_WRITE_BARRIER; // If we're forced to always allocate, we use the general allocation // functions which may leave us with an object in old space. if (always_allocate()) { { MaybeObject* maybe_clone = AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE); if (!maybe_clone->ToObject(&clone)) return maybe_clone; } Address clone_address = HeapObject::cast(clone)->address(); CopyBlock(clone_address, source->address(), object_size); // Update write barrier for all fields that lie beyond the header. RecordWrites(clone_address, JSObject::kHeaderSize, (object_size - JSObject::kHeaderSize) / kPointerSize); } else { wb_mode = SKIP_WRITE_BARRIER; { int adjusted_object_size = site != NULL ? object_size + AllocationMemento::kSize : object_size; MaybeObject* maybe_clone = AllocateRaw(adjusted_object_size, NEW_SPACE, NEW_SPACE); if (!maybe_clone->ToObject(&clone)) return maybe_clone; } SLOW_ASSERT(InNewSpace(clone)); // Since we know the clone is allocated in new space, we can copy // the contents without worrying about updating the write barrier. CopyBlock(HeapObject::cast(clone)->address(), source->address(), object_size); if (site != NULL) { AllocationMemento* alloc_memento = reinterpret_cast( reinterpret_cast
(clone) + object_size); InitializeAllocationMemento(alloc_memento, site); } } SLOW_ASSERT( JSObject::cast(clone)->GetElementsKind() == source->GetElementsKind()); FixedArrayBase* elements = FixedArrayBase::cast(source->elements()); FixedArray* properties = FixedArray::cast(source->properties()); // Update elements if necessary. if (elements->length() > 0) { Object* elem; { MaybeObject* maybe_elem; if (elements->map() == fixed_cow_array_map()) { maybe_elem = FixedArray::cast(elements); } else if (source->HasFastDoubleElements()) { maybe_elem = CopyFixedDoubleArray(FixedDoubleArray::cast(elements)); } else { maybe_elem = CopyFixedArray(FixedArray::cast(elements)); } if (!maybe_elem->ToObject(&elem)) return maybe_elem; } JSObject::cast(clone)->set_elements(FixedArrayBase::cast(elem), wb_mode); } // Update properties if necessary. if (properties->length() > 0) { Object* prop; { MaybeObject* maybe_prop = CopyFixedArray(properties); if (!maybe_prop->ToObject(&prop)) return maybe_prop; } JSObject::cast(clone)->set_properties(FixedArray::cast(prop), wb_mode); } // Return the new clone. return clone; } MaybeObject* Heap::ReinitializeJSReceiver( JSReceiver* object, InstanceType type, int size) { ASSERT(type >= FIRST_JS_OBJECT_TYPE); // Allocate fresh map. // TODO(rossberg): Once we optimize proxies, cache these maps. Map* map; MaybeObject* maybe = AllocateMap(type, size); if (!maybe->To(&map)) return maybe; // Check that the receiver has at least the size of the fresh object. int size_difference = object->map()->instance_size() - map->instance_size(); ASSERT(size_difference >= 0); map->set_prototype(object->map()->prototype()); // Allocate the backing storage for the properties. int prop_size = map->unused_property_fields() - map->inobject_properties(); Object* properties; maybe = AllocateFixedArray(prop_size, TENURED); if (!maybe->ToObject(&properties)) return maybe; // Functions require some allocation, which might fail here. SharedFunctionInfo* shared = NULL; if (type == JS_FUNCTION_TYPE) { String* name; maybe = InternalizeOneByteString(STATIC_ASCII_VECTOR("")); if (!maybe->To(&name)) return maybe; maybe = AllocateSharedFunctionInfo(name); if (!maybe->To(&shared)) return maybe; } // Because of possible retries of this function after failure, // we must NOT fail after this point, where we have changed the type! // Reset the map for the object. object->set_map(map); JSObject* jsobj = JSObject::cast(object); // Reinitialize the object from the constructor map. InitializeJSObjectFromMap(jsobj, FixedArray::cast(properties), map); // Functions require some minimal initialization. if (type == JS_FUNCTION_TYPE) { map->set_function_with_prototype(true); InitializeFunction(JSFunction::cast(object), shared, the_hole_value()); JSFunction::cast(object)->set_context( isolate()->context()->native_context()); } // Put in filler if the new object is smaller than the old. if (size_difference > 0) { CreateFillerObjectAt( object->address() + map->instance_size(), size_difference); } return object; } MaybeObject* Heap::ReinitializeJSGlobalProxy(JSFunction* constructor, JSGlobalProxy* object) { ASSERT(constructor->has_initial_map()); Map* map = constructor->initial_map(); // Check that the already allocated object has the same size and type as // objects allocated using the constructor. ASSERT(map->instance_size() == object->map()->instance_size()); ASSERT(map->instance_type() == object->map()->instance_type()); // Allocate the backing storage for the properties. int prop_size = map->unused_property_fields() - map->inobject_properties(); Object* properties; { MaybeObject* maybe_properties = AllocateFixedArray(prop_size, TENURED); if (!maybe_properties->ToObject(&properties)) return maybe_properties; } // Reset the map for the object. object->set_map(constructor->initial_map()); // Reinitialize the object from the constructor map. InitializeJSObjectFromMap(object, FixedArray::cast(properties), map); return object; } MaybeObject* Heap::AllocateStringFromOneByte(Vector string, PretenureFlag pretenure) { int length = string.length(); if (length == 1) { return Heap::LookupSingleCharacterStringFromCode(string[0]); } Object* result; { MaybeObject* maybe_result = AllocateRawOneByteString(string.length(), pretenure); if (!maybe_result->ToObject(&result)) return maybe_result; } // Copy the characters into the new object. CopyChars(SeqOneByteString::cast(result)->GetChars(), string.start(), length); return result; } MaybeObject* Heap::AllocateStringFromUtf8Slow(Vector string, int non_ascii_start, PretenureFlag pretenure) { // Continue counting the number of characters in the UTF-8 string, starting // from the first non-ascii character or word. Access decoder(isolate_->unicode_cache()->utf8_decoder()); decoder->Reset(string.start() + non_ascii_start, string.length() - non_ascii_start); int utf16_length = decoder->Utf16Length(); ASSERT(utf16_length > 0); // Allocate string. Object* result; { int chars = non_ascii_start + utf16_length; MaybeObject* maybe_result = AllocateRawTwoByteString(chars, pretenure); if (!maybe_result->ToObject(&result)) return maybe_result; } // Convert and copy the characters into the new object. SeqTwoByteString* twobyte = SeqTwoByteString::cast(result); // Copy ascii portion. uint16_t* data = twobyte->GetChars(); if (non_ascii_start != 0) { const char* ascii_data = string.start(); for (int i = 0; i < non_ascii_start; i++) { *data++ = *ascii_data++; } } // Now write the remainder. decoder->WriteUtf16(data, utf16_length); return result; } MaybeObject* Heap::AllocateStringFromTwoByte(Vector string, PretenureFlag pretenure) { // Check if the string is an ASCII string. Object* result; int length = string.length(); const uc16* start = string.start(); if (String::IsOneByte(start, length)) { MaybeObject* maybe_result = AllocateRawOneByteString(length, pretenure); if (!maybe_result->ToObject(&result)) return maybe_result; CopyChars(SeqOneByteString::cast(result)->GetChars(), start, length); } else { // It's not a one byte string. MaybeObject* maybe_result = AllocateRawTwoByteString(length, pretenure); if (!maybe_result->ToObject(&result)) return maybe_result; CopyChars(SeqTwoByteString::cast(result)->GetChars(), start, length); } return result; } Map* Heap::InternalizedStringMapForString(String* string) { // If the string is in new space it cannot be used as internalized. if (InNewSpace(string)) return NULL; // Find the corresponding internalized string map for strings. switch (string->map()->instance_type()) { case STRING_TYPE: return internalized_string_map(); case ASCII_STRING_TYPE: return ascii_internalized_string_map(); case CONS_STRING_TYPE: return cons_internalized_string_map(); case CONS_ASCII_STRING_TYPE: return cons_ascii_internalized_string_map(); case EXTERNAL_STRING_TYPE: return external_internalized_string_map(); case EXTERNAL_ASCII_STRING_TYPE: return external_ascii_internalized_string_map(); case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE: return external_internalized_string_with_one_byte_data_map(); case SHORT_EXTERNAL_STRING_TYPE: return short_external_internalized_string_map(); case SHORT_EXTERNAL_ASCII_STRING_TYPE: return short_external_ascii_internalized_string_map(); case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE: return short_external_internalized_string_with_one_byte_data_map(); default: return NULL; // No match found. } } static inline void WriteOneByteData(Vector vector, uint8_t* chars, int len) { // Only works for ascii. ASSERT(vector.length() == len); OS::MemCopy(chars, vector.start(), len); } static inline void WriteTwoByteData(Vector vector, uint16_t* chars, int len) { const uint8_t* stream = reinterpret_cast(vector.start()); unsigned stream_length = vector.length(); while (stream_length != 0) { unsigned consumed = 0; uint32_t c = unibrow::Utf8::ValueOf(stream, stream_length, &consumed); ASSERT(c != unibrow::Utf8::kBadChar); ASSERT(consumed <= stream_length); stream_length -= consumed; stream += consumed; if (c > unibrow::Utf16::kMaxNonSurrogateCharCode) { len -= 2; if (len < 0) break; *chars++ = unibrow::Utf16::LeadSurrogate(c); *chars++ = unibrow::Utf16::TrailSurrogate(c); } else { len -= 1; if (len < 0) break; *chars++ = c; } } ASSERT(stream_length == 0); ASSERT(len == 0); } static inline void WriteOneByteData(String* s, uint8_t* chars, int len) { ASSERT(s->length() == len); String::WriteToFlat(s, chars, 0, len); } static inline void WriteTwoByteData(String* s, uint16_t* chars, int len) { ASSERT(s->length() == len); String::WriteToFlat(s, chars, 0, len); } template MaybeObject* Heap::AllocateInternalizedStringImpl( T t, int chars, uint32_t hash_field) { ASSERT(chars >= 0); // Compute map and object size. int size; Map* map; if (is_one_byte) { if (chars > SeqOneByteString::kMaxLength) { return Failure::OutOfMemoryException(0x9); } map = ascii_internalized_string_map(); size = SeqOneByteString::SizeFor(chars); } else { if (chars > SeqTwoByteString::kMaxLength) { return Failure::OutOfMemoryException(0xa); } map = internalized_string_map(); size = SeqTwoByteString::SizeFor(chars); } AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED); // Allocate string. Object* result; { MaybeObject* maybe_result = AllocateRaw(size, space, OLD_DATA_SPACE); if (!maybe_result->ToObject(&result)) return maybe_result; } reinterpret_cast(result)->set_map_no_write_barrier(map); // Set length and hash fields of the allocated string. String* answer = String::cast(result); answer->set_length(chars); answer->set_hash_field(hash_field); ASSERT_EQ(size, answer->Size()); if (is_one_byte) { WriteOneByteData(t, SeqOneByteString::cast(answer)->GetChars(), chars); } else { WriteTwoByteData(t, SeqTwoByteString::cast(answer)->GetChars(), chars); } return answer; } // Need explicit instantiations. template MaybeObject* Heap::AllocateInternalizedStringImpl(String*, int, uint32_t); template MaybeObject* Heap::AllocateInternalizedStringImpl( String*, int, uint32_t); template MaybeObject* Heap::AllocateInternalizedStringImpl( Vector, int, uint32_t); MaybeObject* Heap::AllocateRawOneByteString(int length, PretenureFlag pretenure) { if (length < 0 || length > SeqOneByteString::kMaxLength) { return Failure::OutOfMemoryException(0xb); } int size = SeqOneByteString::SizeFor(length); ASSERT(size <= SeqOneByteString::kMaxSize); AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure); Object* result; { MaybeObject* maybe_result = AllocateRaw(size, space, OLD_DATA_SPACE); if (!maybe_result->ToObject(&result)) return maybe_result; } // Partially initialize the object. HeapObject::cast(result)->set_map_no_write_barrier(ascii_string_map()); String::cast(result)->set_length(length); String::cast(result)->set_hash_field(String::kEmptyHashField); ASSERT_EQ(size, HeapObject::cast(result)->Size()); return result; } MaybeObject* Heap::AllocateRawTwoByteString(int length, PretenureFlag pretenure) { if (length < 0 || length > SeqTwoByteString::kMaxLength) { return Failure::OutOfMemoryException(0xc); } int size = SeqTwoByteString::SizeFor(length); ASSERT(size <= SeqTwoByteString::kMaxSize); AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure); Object* result; { MaybeObject* maybe_result = AllocateRaw(size, space, OLD_DATA_SPACE); if (!maybe_result->ToObject(&result)) return maybe_result; } // Partially initialize the object. HeapObject::cast(result)->set_map_no_write_barrier(string_map()); String::cast(result)->set_length(length); String::cast(result)->set_hash_field(String::kEmptyHashField); ASSERT_EQ(size, HeapObject::cast(result)->Size()); return result; } MaybeObject* Heap::AllocateJSArray( ElementsKind elements_kind, PretenureFlag pretenure) { Context* native_context = isolate()->context()->native_context(); JSFunction* array_function = native_context->array_function(); Map* map = array_function->initial_map(); Map* transition_map = isolate()->get_initial_js_array_map(elements_kind); if (transition_map != NULL) map = transition_map; return AllocateJSObjectFromMap(map, pretenure); } MaybeObject* Heap::AllocateEmptyFixedArray() { int size = FixedArray::SizeFor(0); Object* result; { MaybeObject* maybe_result = AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE); if (!maybe_result->ToObject(&result)) return maybe_result; } // Initialize the object. reinterpret_cast(result)->set_map_no_write_barrier( fixed_array_map()); reinterpret_cast(result)->set_length(0); return result; } MaybeObject* Heap::AllocateEmptyExternalArray(ExternalArrayType array_type) { return AllocateExternalArray(0, array_type, NULL, TENURED); } MaybeObject* Heap::CopyFixedArrayWithMap(FixedArray* src, Map* map) { int len = src->length(); Object* obj; { MaybeObject* maybe_obj = AllocateRawFixedArray(len, NOT_TENURED); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } if (InNewSpace(obj)) { HeapObject* dst = HeapObject::cast(obj); dst->set_map_no_write_barrier(map); CopyBlock(dst->address() + kPointerSize, src->address() + kPointerSize, FixedArray::SizeFor(len) - kPointerSize); return obj; } HeapObject::cast(obj)->set_map_no_write_barrier(map); FixedArray* result = FixedArray::cast(obj); result->set_length(len); // Copy the content DisallowHeapAllocation no_gc; WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); for (int i = 0; i < len; i++) result->set(i, src->get(i), mode); return result; } MaybeObject* Heap::CopyFixedDoubleArrayWithMap(FixedDoubleArray* src, Map* map) { int len = src->length(); Object* obj; { MaybeObject* maybe_obj = AllocateRawFixedDoubleArray(len, NOT_TENURED); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } HeapObject* dst = HeapObject::cast(obj); dst->set_map_no_write_barrier(map); CopyBlock( dst->address() + FixedDoubleArray::kLengthOffset, src->address() + FixedDoubleArray::kLengthOffset, FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset); return obj; } MaybeObject* Heap::CopyConstantPoolArrayWithMap(ConstantPoolArray* src, Map* map) { int int64_entries = src->count_of_int64_entries(); int ptr_entries = src->count_of_ptr_entries(); int int32_entries = src->count_of_int32_entries(); Object* obj; { MaybeObject* maybe_obj = AllocateConstantPoolArray(int64_entries, ptr_entries, int32_entries); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } HeapObject* dst = HeapObject::cast(obj); dst->set_map_no_write_barrier(map); CopyBlock( dst->address() + ConstantPoolArray::kLengthOffset, src->address() + ConstantPoolArray::kLengthOffset, ConstantPoolArray::SizeFor(int64_entries, ptr_entries, int32_entries) - ConstantPoolArray::kLengthOffset); return obj; } MaybeObject* Heap::AllocateRawFixedArray(int length, PretenureFlag pretenure) { if (length < 0 || length > FixedArray::kMaxLength) { return Failure::OutOfMemoryException(0xe); } int size = FixedArray::SizeFor(length); AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, pretenure); return AllocateRaw(size, space, OLD_POINTER_SPACE); } MaybeObject* Heap::AllocateFixedArrayWithFiller(int length, PretenureFlag pretenure, Object* filler) { ASSERT(length >= 0); ASSERT(empty_fixed_array()->IsFixedArray()); if (length == 0) return empty_fixed_array(); ASSERT(!InNewSpace(filler)); Object* result; { MaybeObject* maybe_result = AllocateRawFixedArray(length, pretenure); if (!maybe_result->ToObject(&result)) return maybe_result; } HeapObject::cast(result)->set_map_no_write_barrier(fixed_array_map()); FixedArray* array = FixedArray::cast(result); array->set_length(length); MemsetPointer(array->data_start(), filler, length); return array; } MaybeObject* Heap::AllocateFixedArray(int length, PretenureFlag pretenure) { return AllocateFixedArrayWithFiller(length, pretenure, undefined_value()); } MaybeObject* Heap::AllocateFixedArrayWithHoles(int length, PretenureFlag pretenure) { return AllocateFixedArrayWithFiller(length, pretenure, the_hole_value()); } MaybeObject* Heap::AllocateUninitializedFixedArray(int length) { if (length == 0) return empty_fixed_array(); Object* obj; { MaybeObject* maybe_obj = AllocateRawFixedArray(length, NOT_TENURED); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } reinterpret_cast(obj)->set_map_no_write_barrier( fixed_array_map()); FixedArray::cast(obj)->set_length(length); return obj; } MaybeObject* Heap::AllocateEmptyFixedDoubleArray() { int size = FixedDoubleArray::SizeFor(0); Object* result; { MaybeObject* maybe_result = AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE); if (!maybe_result->ToObject(&result)) return maybe_result; } // Initialize the object. reinterpret_cast(result)->set_map_no_write_barrier( fixed_double_array_map()); reinterpret_cast(result)->set_length(0); return result; } MaybeObject* Heap::AllocateUninitializedFixedDoubleArray( int length, PretenureFlag pretenure) { if (length == 0) return empty_fixed_array(); Object* elements_object; MaybeObject* maybe_obj = AllocateRawFixedDoubleArray(length, pretenure); if (!maybe_obj->ToObject(&elements_object)) return maybe_obj; FixedDoubleArray* elements = reinterpret_cast(elements_object); elements->set_map_no_write_barrier(fixed_double_array_map()); elements->set_length(length); return elements; } MaybeObject* Heap::AllocateFixedDoubleArrayWithHoles( int length, PretenureFlag pretenure) { if (length == 0) return empty_fixed_array(); Object* elements_object; MaybeObject* maybe_obj = AllocateRawFixedDoubleArray(length, pretenure); if (!maybe_obj->ToObject(&elements_object)) return maybe_obj; FixedDoubleArray* elements = reinterpret_cast(elements_object); for (int i = 0; i < length; ++i) { elements->set_the_hole(i); } elements->set_map_no_write_barrier(fixed_double_array_map()); elements->set_length(length); return elements; } MaybeObject* Heap::AllocateRawFixedDoubleArray(int length, PretenureFlag pretenure) { if (length < 0 || length > FixedDoubleArray::kMaxLength) { return Failure::OutOfMemoryException(0xf); } int size = FixedDoubleArray::SizeFor(length); #ifndef V8_HOST_ARCH_64_BIT size += kPointerSize; #endif AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure); HeapObject* object; { MaybeObject* maybe_object = AllocateRaw(size, space, OLD_DATA_SPACE); if (!maybe_object->To(&object)) return maybe_object; } return EnsureDoubleAligned(this, object, size); } MaybeObject* Heap::AllocateConstantPoolArray(int number_of_int64_entries, int number_of_ptr_entries, int number_of_int32_entries) { ASSERT(number_of_int64_entries > 0 || number_of_ptr_entries > 0 || number_of_int32_entries > 0); int size = ConstantPoolArray::SizeFor(number_of_int64_entries, number_of_ptr_entries, number_of_int32_entries); #ifndef V8_HOST_ARCH_64_BIT size += kPointerSize; #endif AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, TENURED); HeapObject* object; { MaybeObject* maybe_object = AllocateRaw(size, space, OLD_POINTER_SPACE); if (!maybe_object->To(&object)) return maybe_object; } object = EnsureDoubleAligned(this, object, size); HeapObject::cast(object)->set_map_no_write_barrier(constant_pool_array_map()); ConstantPoolArray* constant_pool = reinterpret_cast(object); constant_pool->SetEntryCounts(number_of_int64_entries, number_of_ptr_entries, number_of_int32_entries); MemsetPointer( HeapObject::RawField( constant_pool, constant_pool->OffsetOfElementAt(constant_pool->first_ptr_index())), undefined_value(), number_of_ptr_entries); return constant_pool; } MaybeObject* Heap::AllocateHashTable(int length, PretenureFlag pretenure) { Object* result; { MaybeObject* maybe_result = AllocateFixedArray(length, pretenure); if (!maybe_result->ToObject(&result)) return maybe_result; } reinterpret_cast(result)->set_map_no_write_barrier( hash_table_map()); ASSERT(result->IsHashTable()); return result; } MaybeObject* Heap::AllocateSymbol() { // Statically ensure that it is safe to allocate symbols in paged spaces. STATIC_ASSERT(Symbol::kSize <= Page::kNonCodeObjectAreaSize); Object* result; MaybeObject* maybe = AllocateRaw(Symbol::kSize, OLD_POINTER_SPACE, OLD_POINTER_SPACE); if (!maybe->ToObject(&result)) return maybe; HeapObject::cast(result)->set_map_no_write_barrier(symbol_map()); // Generate a random hash value. int hash; int attempts = 0; do { hash = isolate()->random_number_generator()->NextInt() & Name::kHashBitMask; attempts++; } while (hash == 0 && attempts < 30); if (hash == 0) hash = 1; // never return 0 Symbol::cast(result)->set_hash_field( Name::kIsNotArrayIndexMask | (hash << Name::kHashShift)); Symbol::cast(result)->set_name(undefined_value()); Symbol::cast(result)->set_flags(Smi::FromInt(0)); ASSERT(!Symbol::cast(result)->is_private()); return result; } MaybeObject* Heap::AllocatePrivateSymbol() { MaybeObject* maybe = AllocateSymbol(); Symbol* symbol; if (!maybe->To(&symbol)) return maybe; symbol->set_is_private(true); return symbol; } MaybeObject* Heap::AllocateNativeContext() { Object* result; { MaybeObject* maybe_result = AllocateFixedArray(Context::NATIVE_CONTEXT_SLOTS); if (!maybe_result->ToObject(&result)) return maybe_result; } Context* context = reinterpret_cast(result); context->set_map_no_write_barrier(native_context_map()); context->set_js_array_maps(undefined_value()); ASSERT(context->IsNativeContext()); ASSERT(result->IsContext()); return result; } MaybeObject* Heap::AllocateGlobalContext(JSFunction* function, ScopeInfo* scope_info) { Object* result; { MaybeObject* maybe_result = AllocateFixedArray(scope_info->ContextLength(), TENURED); if (!maybe_result->ToObject(&result)) return maybe_result; } Context* context = reinterpret_cast(result); context->set_map_no_write_barrier(global_context_map()); context->set_closure(function); context->set_previous(function->context()); context->set_extension(scope_info); context->set_global_object(function->context()->global_object()); ASSERT(context->IsGlobalContext()); ASSERT(result->IsContext()); return context; } MaybeObject* Heap::AllocateModuleContext(ScopeInfo* scope_info) { Object* result; { MaybeObject* maybe_result = AllocateFixedArray(scope_info->ContextLength(), TENURED); if (!maybe_result->ToObject(&result)) return maybe_result; } Context* context = reinterpret_cast(result); context->set_map_no_write_barrier(module_context_map()); // Instance link will be set later. context->set_extension(Smi::FromInt(0)); return context; } MaybeObject* Heap::AllocateFunctionContext(int length, JSFunction* function) { ASSERT(length >= Context::MIN_CONTEXT_SLOTS); Object* result; { MaybeObject* maybe_result = AllocateFixedArray(length); if (!maybe_result->ToObject(&result)) return maybe_result; } Context* context = reinterpret_cast(result); context->set_map_no_write_barrier(function_context_map()); context->set_closure(function); context->set_previous(function->context()); context->set_extension(Smi::FromInt(0)); context->set_global_object(function->context()->global_object()); return context; } MaybeObject* Heap::AllocateCatchContext(JSFunction* function, Context* previous, String* name, Object* thrown_object) { STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX); Object* result; { MaybeObject* maybe_result = AllocateFixedArray(Context::MIN_CONTEXT_SLOTS + 1); if (!maybe_result->ToObject(&result)) return maybe_result; } Context* context = reinterpret_cast(result); context->set_map_no_write_barrier(catch_context_map()); context->set_closure(function); context->set_previous(previous); context->set_extension(name); context->set_global_object(previous->global_object()); context->set(Context::THROWN_OBJECT_INDEX, thrown_object); return context; } MaybeObject* Heap::AllocateWithContext(JSFunction* function, Context* previous, JSReceiver* extension) { Object* result; { MaybeObject* maybe_result = AllocateFixedArray(Context::MIN_CONTEXT_SLOTS); if (!maybe_result->ToObject(&result)) return maybe_result; } Context* context = reinterpret_cast(result); context->set_map_no_write_barrier(with_context_map()); context->set_closure(function); context->set_previous(previous); context->set_extension(extension); context->set_global_object(previous->global_object()); return context; } MaybeObject* Heap::AllocateBlockContext(JSFunction* function, Context* previous, ScopeInfo* scope_info) { Object* result; { MaybeObject* maybe_result = AllocateFixedArrayWithHoles(scope_info->ContextLength()); if (!maybe_result->ToObject(&result)) return maybe_result; } Context* context = reinterpret_cast(result); context->set_map_no_write_barrier(block_context_map()); context->set_closure(function); context->set_previous(previous); context->set_extension(scope_info); context->set_global_object(previous->global_object()); return context; } MaybeObject* Heap::AllocateScopeInfo(int length) { FixedArray* scope_info; MaybeObject* maybe_scope_info = AllocateFixedArray(length, TENURED); if (!maybe_scope_info->To(&scope_info)) return maybe_scope_info; scope_info->set_map_no_write_barrier(scope_info_map()); return scope_info; } MaybeObject* Heap::AllocateExternal(void* value) { Foreign* foreign; { MaybeObject* maybe_result = AllocateForeign(static_cast
(value)); if (!maybe_result->To(&foreign)) return maybe_result; } JSObject* external; { MaybeObject* maybe_result = AllocateJSObjectFromMap(external_map()); if (!maybe_result->To(&external)) return maybe_result; } external->SetInternalField(0, foreign); return external; } MaybeObject* Heap::AllocateStruct(InstanceType type) { Map* map; switch (type) { #define MAKE_CASE(NAME, Name, name) \ case NAME##_TYPE: map = name##_map(); break; STRUCT_LIST(MAKE_CASE) #undef MAKE_CASE default: UNREACHABLE(); return Failure::InternalError(); } int size = map->instance_size(); AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, TENURED); Object* result; { MaybeObject* maybe_result = Allocate(map, space); if (!maybe_result->ToObject(&result)) return maybe_result; } Struct::cast(result)->InitializeBody(size); return result; } bool Heap::IsHeapIterable() { return (!old_pointer_space()->was_swept_conservatively() && !old_data_space()->was_swept_conservatively()); } void Heap::EnsureHeapIsIterable() { ASSERT(AllowHeapAllocation::IsAllowed()); if (!IsHeapIterable()) { CollectAllGarbage(kMakeHeapIterableMask, "Heap::EnsureHeapIsIterable"); } ASSERT(IsHeapIterable()); } void Heap::AdvanceIdleIncrementalMarking(intptr_t step_size) { incremental_marking()->Step(step_size, IncrementalMarking::NO_GC_VIA_STACK_GUARD); if (incremental_marking()->IsComplete()) { bool uncommit = false; if (gc_count_at_last_idle_gc_ == gc_count_) { // No GC since the last full GC, the mutator is probably not active. isolate_->compilation_cache()->Clear(); uncommit = true; } CollectAllGarbage(kNoGCFlags, "idle notification: finalize incremental"); mark_sweeps_since_idle_round_started_++; gc_count_at_last_idle_gc_ = gc_count_; if (uncommit) { new_space_.Shrink(); UncommitFromSpace(); } } } bool Heap::IdleNotification(int hint) { // Hints greater than this value indicate that // the embedder is requesting a lot of GC work. const int kMaxHint = 1000; const int kMinHintForIncrementalMarking = 10; // Minimal hint that allows to do full GC. const int kMinHintForFullGC = 100; intptr_t size_factor = Min(Max(hint, 20), kMaxHint) / 4; // The size factor is in range [5..250]. The numbers here are chosen from // experiments. If you changes them, make sure to test with // chrome/performance_ui_tests --gtest_filter="GeneralMixMemoryTest.* intptr_t step_size = size_factor * IncrementalMarking::kAllocatedThreshold; if (contexts_disposed_ > 0) { contexts_disposed_ = 0; int mark_sweep_time = Min(TimeMarkSweepWouldTakeInMs(), 1000); if (hint >= mark_sweep_time && !FLAG_expose_gc && incremental_marking()->IsStopped()) { HistogramTimerScope scope(isolate_->counters()->gc_context()); CollectAllGarbage(kReduceMemoryFootprintMask, "idle notification: contexts disposed"); } else { AdvanceIdleIncrementalMarking(step_size); } // After context disposal there is likely a lot of garbage remaining, reset // the idle notification counters in order to trigger more incremental GCs // on subsequent idle notifications. StartIdleRound(); return false; } if (!FLAG_incremental_marking || FLAG_expose_gc || Serializer::enabled()) { return IdleGlobalGC(); } // By doing small chunks of GC work in each IdleNotification, // perform a round of incremental GCs and after that wait until // the mutator creates enough garbage to justify a new round. // An incremental GC progresses as follows: // 1. many incremental marking steps, // 2. one old space mark-sweep-compact, // 3. many lazy sweep steps. // Use mark-sweep-compact events to count incremental GCs in a round. if (incremental_marking()->IsStopped()) { if (!mark_compact_collector()->AreSweeperThreadsActivated() && !IsSweepingComplete() && !AdvanceSweepers(static_cast(step_size))) { return false; } } if (mark_sweeps_since_idle_round_started_ >= kMaxMarkSweepsInIdleRound) { if (EnoughGarbageSinceLastIdleRound()) { StartIdleRound(); } else { return true; } } int remaining_mark_sweeps = kMaxMarkSweepsInIdleRound - mark_sweeps_since_idle_round_started_; if (incremental_marking()->IsStopped()) { // If there are no more than two GCs left in this idle round and we are // allowed to do a full GC, then make those GCs full in order to compact // the code space. // TODO(ulan): Once we enable code compaction for incremental marking, // we can get rid of this special case and always start incremental marking. if (remaining_mark_sweeps <= 2 && hint >= kMinHintForFullGC) { CollectAllGarbage(kReduceMemoryFootprintMask, "idle notification: finalize idle round"); mark_sweeps_since_idle_round_started_++; } else if (hint > kMinHintForIncrementalMarking) { incremental_marking()->Start(); } } if (!incremental_marking()->IsStopped() && hint > kMinHintForIncrementalMarking) { AdvanceIdleIncrementalMarking(step_size); } if (mark_sweeps_since_idle_round_started_ >= kMaxMarkSweepsInIdleRound) { FinishIdleRound(); return true; } return false; } bool Heap::IdleGlobalGC() { static const int kIdlesBeforeScavenge = 4; static const int kIdlesBeforeMarkSweep = 7; static const int kIdlesBeforeMarkCompact = 8; static const int kMaxIdleCount = kIdlesBeforeMarkCompact + 1; static const unsigned int kGCsBetweenCleanup = 4; if (!last_idle_notification_gc_count_init_) { last_idle_notification_gc_count_ = gc_count_; last_idle_notification_gc_count_init_ = true; } bool uncommit = true; bool finished = false; // Reset the number of idle notifications received when a number of // GCs have taken place. This allows another round of cleanup based // on idle notifications if enough work has been carried out to // provoke a number of garbage collections. if (gc_count_ - last_idle_notification_gc_count_ < kGCsBetweenCleanup) { number_idle_notifications_ = Min(number_idle_notifications_ + 1, kMaxIdleCount); } else { number_idle_notifications_ = 0; last_idle_notification_gc_count_ = gc_count_; } if (number_idle_notifications_ == kIdlesBeforeScavenge) { CollectGarbage(NEW_SPACE, "idle notification"); new_space_.Shrink(); last_idle_notification_gc_count_ = gc_count_; } else if (number_idle_notifications_ == kIdlesBeforeMarkSweep) { // Before doing the mark-sweep collections we clear the // compilation cache to avoid hanging on to source code and // generated code for cached functions. isolate_->compilation_cache()->Clear(); CollectAllGarbage(kReduceMemoryFootprintMask, "idle notification"); new_space_.Shrink(); last_idle_notification_gc_count_ = gc_count_; } else if (number_idle_notifications_ == kIdlesBeforeMarkCompact) { CollectAllGarbage(kReduceMemoryFootprintMask, "idle notification"); new_space_.Shrink(); last_idle_notification_gc_count_ = gc_count_; number_idle_notifications_ = 0; finished = true; } else if (number_idle_notifications_ > kIdlesBeforeMarkCompact) { // If we have received more than kIdlesBeforeMarkCompact idle // notifications we do not perform any cleanup because we don't // expect to gain much by doing so. finished = true; } if (uncommit) UncommitFromSpace(); return finished; } #ifdef DEBUG void Heap::Print() { if (!HasBeenSetUp()) return; isolate()->PrintStack(stdout); AllSpaces spaces(this); for (Space* space = spaces.next(); space != NULL; space = spaces.next()) { space->Print(); } } void Heap::ReportCodeStatistics(const char* title) { PrintF(">>>>>> Code Stats (%s) >>>>>>\n", title); PagedSpace::ResetCodeStatistics(isolate()); // We do not look for code in new space, map space, or old space. If code // somehow ends up in those spaces, we would miss it here. code_space_->CollectCodeStatistics(); lo_space_->CollectCodeStatistics(); PagedSpace::ReportCodeStatistics(isolate()); } // This function expects that NewSpace's allocated objects histogram is // populated (via a call to CollectStatistics or else as a side effect of a // just-completed scavenge collection). void Heap::ReportHeapStatistics(const char* title) { USE(title); PrintF(">>>>>> =============== %s (%d) =============== >>>>>>\n", title, gc_count_); PrintF("old_generation_allocation_limit_ %" V8_PTR_PREFIX "d\n", old_generation_allocation_limit_); PrintF("\n"); PrintF("Number of handles : %d\n", HandleScope::NumberOfHandles(isolate_)); isolate_->global_handles()->PrintStats(); PrintF("\n"); PrintF("Heap statistics : "); isolate_->memory_allocator()->ReportStatistics(); PrintF("To space : "); new_space_.ReportStatistics(); PrintF("Old pointer space : "); old_pointer_space_->ReportStatistics(); PrintF("Old data space : "); old_data_space_->ReportStatistics(); PrintF("Code space : "); code_space_->ReportStatistics(); PrintF("Map space : "); map_space_->ReportStatistics(); PrintF("Cell space : "); cell_space_->ReportStatistics(); PrintF("PropertyCell space : "); property_cell_space_->ReportStatistics(); PrintF("Large object space : "); lo_space_->ReportStatistics(); PrintF(">>>>>> ========================================= >>>>>>\n"); } #endif // DEBUG bool Heap::Contains(HeapObject* value) { return Contains(value->address()); } bool Heap::Contains(Address addr) { if (isolate_->memory_allocator()->IsOutsideAllocatedSpace(addr)) return false; return HasBeenSetUp() && (new_space_.ToSpaceContains(addr) || old_pointer_space_->Contains(addr) || old_data_space_->Contains(addr) || code_space_->Contains(addr) || map_space_->Contains(addr) || cell_space_->Contains(addr) || property_cell_space_->Contains(addr) || lo_space_->SlowContains(addr)); } bool Heap::InSpace(HeapObject* value, AllocationSpace space) { return InSpace(value->address(), space); } bool Heap::InSpace(Address addr, AllocationSpace space) { if (isolate_->memory_allocator()->IsOutsideAllocatedSpace(addr)) return false; if (!HasBeenSetUp()) return false; switch (space) { case NEW_SPACE: return new_space_.ToSpaceContains(addr); case OLD_POINTER_SPACE: return old_pointer_space_->Contains(addr); case OLD_DATA_SPACE: return old_data_space_->Contains(addr); case CODE_SPACE: return code_space_->Contains(addr); case MAP_SPACE: return map_space_->Contains(addr); case CELL_SPACE: return cell_space_->Contains(addr); case PROPERTY_CELL_SPACE: return property_cell_space_->Contains(addr); case LO_SPACE: return lo_space_->SlowContains(addr); } return false; } #ifdef VERIFY_HEAP void Heap::Verify() { CHECK(HasBeenSetUp()); store_buffer()->Verify(); VerifyPointersVisitor visitor; IterateRoots(&visitor, VISIT_ONLY_STRONG); new_space_.Verify(); old_pointer_space_->Verify(&visitor); map_space_->Verify(&visitor); VerifyPointersVisitor no_dirty_regions_visitor; old_data_space_->Verify(&no_dirty_regions_visitor); code_space_->Verify(&no_dirty_regions_visitor); cell_space_->Verify(&no_dirty_regions_visitor); property_cell_space_->Verify(&no_dirty_regions_visitor); lo_space_->Verify(); } #endif MaybeObject* Heap::InternalizeUtf8String(Vector string) { Object* result = NULL; Object* new_table; { MaybeObject* maybe_new_table = string_table()->LookupUtf8String(string, &result); if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table; } // Can't use set_string_table because StringTable::cast knows that // StringTable is a singleton and checks for identity. roots_[kStringTableRootIndex] = new_table; ASSERT(result != NULL); return result; } MaybeObject* Heap::InternalizeOneByteString(Vector string) { Object* result = NULL; Object* new_table; { MaybeObject* maybe_new_table = string_table()->LookupOneByteString(string, &result); if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table; } // Can't use set_string_table because StringTable::cast knows that // StringTable is a singleton and checks for identity. roots_[kStringTableRootIndex] = new_table; ASSERT(result != NULL); return result; } MaybeObject* Heap::InternalizeOneByteString(Handle string, int from, int length) { Object* result = NULL; Object* new_table; { MaybeObject* maybe_new_table = string_table()->LookupSubStringOneByteString(string, from, length, &result); if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table; } // Can't use set_string_table because StringTable::cast knows that // StringTable is a singleton and checks for identity. roots_[kStringTableRootIndex] = new_table; ASSERT(result != NULL); return result; } MaybeObject* Heap::InternalizeTwoByteString(Vector string) { Object* result = NULL; Object* new_table; { MaybeObject* maybe_new_table = string_table()->LookupTwoByteString(string, &result); if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table; } // Can't use set_string_table because StringTable::cast knows that // StringTable is a singleton and checks for identity. roots_[kStringTableRootIndex] = new_table; ASSERT(result != NULL); return result; } MaybeObject* Heap::InternalizeString(String* string) { if (string->IsInternalizedString()) return string; Object* result = NULL; Object* new_table; { MaybeObject* maybe_new_table = string_table()->LookupString(string, &result); if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table; } // Can't use set_string_table because StringTable::cast knows that // StringTable is a singleton and checks for identity. roots_[kStringTableRootIndex] = new_table; ASSERT(result != NULL); return result; } bool Heap::InternalizeStringIfExists(String* string, String** result) { if (string->IsInternalizedString()) { *result = string; return true; } return string_table()->LookupStringIfExists(string, result); } void Heap::ZapFromSpace() { NewSpacePageIterator it(new_space_.FromSpaceStart(), new_space_.FromSpaceEnd()); while (it.has_next()) { NewSpacePage* page = it.next(); for (Address cursor = page->area_start(), limit = page->area_end(); cursor < limit; cursor += kPointerSize) { Memory::Address_at(cursor) = kFromSpaceZapValue; } } } void Heap::IterateAndMarkPointersToFromSpace(Address start, Address end, ObjectSlotCallback callback) { Address slot_address = start; // We are not collecting slots on new space objects during mutation // thus we have to scan for pointers to evacuation candidates when we // promote objects. But we should not record any slots in non-black // objects. Grey object's slots would be rescanned. // White object might not survive until the end of collection // it would be a violation of the invariant to record it's slots. bool record_slots = false; if (incremental_marking()->IsCompacting()) { MarkBit mark_bit = Marking::MarkBitFrom(HeapObject::FromAddress(start)); record_slots = Marking::IsBlack(mark_bit); } while (slot_address < end) { Object** slot = reinterpret_cast(slot_address); Object* object = *slot; // If the store buffer becomes overfull we mark pages as being exempt from // the store buffer. These pages are scanned to find pointers that point // to the new space. In that case we may hit newly promoted objects and // fix the pointers before the promotion queue gets to them. Thus the 'if'. if (object->IsHeapObject()) { if (Heap::InFromSpace(object)) { callback(reinterpret_cast(slot), HeapObject::cast(object)); Object* new_object = *slot; if (InNewSpace(new_object)) { SLOW_ASSERT(Heap::InToSpace(new_object)); SLOW_ASSERT(new_object->IsHeapObject()); store_buffer_.EnterDirectlyIntoStoreBuffer( reinterpret_cast
(slot)); } SLOW_ASSERT(!MarkCompactCollector::IsOnEvacuationCandidate(new_object)); } else if (record_slots && MarkCompactCollector::IsOnEvacuationCandidate(object)) { mark_compact_collector()->RecordSlot(slot, slot, object); } } slot_address += kPointerSize; } } #ifdef DEBUG typedef bool (*CheckStoreBufferFilter)(Object** addr); bool IsAMapPointerAddress(Object** addr) { uintptr_t a = reinterpret_cast(addr); int mod = a % Map::kSize; return mod >= Map::kPointerFieldsBeginOffset && mod < Map::kPointerFieldsEndOffset; } bool EverythingsAPointer(Object** addr) { return true; } static void CheckStoreBuffer(Heap* heap, Object** current, Object** limit, Object**** store_buffer_position, Object*** store_buffer_top, CheckStoreBufferFilter filter, Address special_garbage_start, Address special_garbage_end) { Map* free_space_map = heap->free_space_map(); for ( ; current < limit; current++) { Object* o = *current; Address current_address = reinterpret_cast
(current); // Skip free space. if (o == free_space_map) { Address current_address = reinterpret_cast
(current); FreeSpace* free_space = FreeSpace::cast(HeapObject::FromAddress(current_address)); int skip = free_space->Size(); ASSERT(current_address + skip <= reinterpret_cast
(limit)); ASSERT(skip > 0); current_address += skip - kPointerSize; current = reinterpret_cast(current_address); continue; } // Skip the current linear allocation space between top and limit which is // unmarked with the free space map, but can contain junk. if (current_address == special_garbage_start && special_garbage_end != special_garbage_start) { current_address = special_garbage_end - kPointerSize; current = reinterpret_cast(current_address); continue; } if (!(*filter)(current)) continue; ASSERT(current_address < special_garbage_start || current_address >= special_garbage_end); ASSERT(reinterpret_cast(o) != kFreeListZapValue); // We have to check that the pointer does not point into new space // without trying to cast it to a heap object since the hash field of // a string can contain values like 1 and 3 which are tagged null // pointers. if (!heap->InNewSpace(o)) continue; while (**store_buffer_position < current && *store_buffer_position < store_buffer_top) { (*store_buffer_position)++; } if (**store_buffer_position != current || *store_buffer_position == store_buffer_top) { Object** obj_start = current; while (!(*obj_start)->IsMap()) obj_start--; UNREACHABLE(); } } } // Check that the store buffer contains all intergenerational pointers by // scanning a page and ensuring that all pointers to young space are in the // store buffer. void Heap::OldPointerSpaceCheckStoreBuffer() { OldSpace* space = old_pointer_space(); PageIterator pages(space); store_buffer()->SortUniq(); while (pages.has_next()) { Page* page = pages.next(); Object** current = reinterpret_cast(page->area_start()); Address end = page->area_end(); Object*** store_buffer_position = store_buffer()->Start(); Object*** store_buffer_top = store_buffer()->Top(); Object** limit = reinterpret_cast(end); CheckStoreBuffer(this, current, limit, &store_buffer_position, store_buffer_top, &EverythingsAPointer, space->top(), space->limit()); } } void Heap::MapSpaceCheckStoreBuffer() { MapSpace* space = map_space(); PageIterator pages(space); store_buffer()->SortUniq(); while (pages.has_next()) { Page* page = pages.next(); Object** current = reinterpret_cast(page->area_start()); Address end = page->area_end(); Object*** store_buffer_position = store_buffer()->Start(); Object*** store_buffer_top = store_buffer()->Top(); Object** limit = reinterpret_cast(end); CheckStoreBuffer(this, current, limit, &store_buffer_position, store_buffer_top, &IsAMapPointerAddress, space->top(), space->limit()); } } void Heap::LargeObjectSpaceCheckStoreBuffer() { LargeObjectIterator it(lo_space()); for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) { // We only have code, sequential strings, or fixed arrays in large // object space, and only fixed arrays can possibly contain pointers to // the young generation. if (object->IsFixedArray()) { Object*** store_buffer_position = store_buffer()->Start(); Object*** store_buffer_top = store_buffer()->Top(); Object** current = reinterpret_cast(object->address()); Object** limit = reinterpret_cast(object->address() + object->Size()); CheckStoreBuffer(this, current, limit, &store_buffer_position, store_buffer_top, &EverythingsAPointer, NULL, NULL); } } } #endif void Heap::IterateRoots(ObjectVisitor* v, VisitMode mode) { IterateStrongRoots(v, mode); IterateWeakRoots(v, mode); } void Heap::IterateWeakRoots(ObjectVisitor* v, VisitMode mode) { v->VisitPointer(reinterpret_cast(&roots_[kStringTableRootIndex])); v->Synchronize(VisitorSynchronization::kStringTable); if (mode != VISIT_ALL_IN_SCAVENGE && mode != VISIT_ALL_IN_SWEEP_NEWSPACE) { // Scavenge collections have special processing for this. external_string_table_.Iterate(v); } v->Synchronize(VisitorSynchronization::kExternalStringsTable); } void Heap::IterateStrongRoots(ObjectVisitor* v, VisitMode mode) { v->VisitPointers(&roots_[0], &roots_[kStrongRootListLength]); v->Synchronize(VisitorSynchronization::kStrongRootList); v->VisitPointer(BitCast(&hidden_string_)); v->Synchronize(VisitorSynchronization::kInternalizedString); isolate_->bootstrapper()->Iterate(v); v->Synchronize(VisitorSynchronization::kBootstrapper); isolate_->Iterate(v); v->Synchronize(VisitorSynchronization::kTop); Relocatable::Iterate(isolate_, v); v->Synchronize(VisitorSynchronization::kRelocatable); #ifdef ENABLE_DEBUGGER_SUPPORT isolate_->debug()->Iterate(v); if (isolate_->deoptimizer_data() != NULL) { isolate_->deoptimizer_data()->Iterate(v); } #endif v->Synchronize(VisitorSynchronization::kDebug); isolate_->compilation_cache()->Iterate(v); v->Synchronize(VisitorSynchronization::kCompilationCache); // Iterate over local handles in handle scopes. isolate_->handle_scope_implementer()->Iterate(v); isolate_->IterateDeferredHandles(v); v->Synchronize(VisitorSynchronization::kHandleScope); // Iterate over the builtin code objects and code stubs in the // heap. Note that it is not necessary to iterate over code objects // on scavenge collections. if (mode != VISIT_ALL_IN_SCAVENGE) { isolate_->builtins()->IterateBuiltins(v); } v->Synchronize(VisitorSynchronization::kBuiltins); // Iterate over global handles. switch (mode) { case VISIT_ONLY_STRONG: isolate_->global_handles()->IterateStrongRoots(v); break; case VISIT_ALL_IN_SCAVENGE: isolate_->global_handles()->IterateNewSpaceStrongAndDependentRoots(v); break; case VISIT_ALL_IN_SWEEP_NEWSPACE: case VISIT_ALL: isolate_->global_handles()->IterateAllRoots(v); break; } v->Synchronize(VisitorSynchronization::kGlobalHandles); // Iterate over eternal handles. if (mode == VISIT_ALL_IN_SCAVENGE) { isolate_->eternal_handles()->IterateNewSpaceRoots(v); } else { isolate_->eternal_handles()->IterateAllRoots(v); } v->Synchronize(VisitorSynchronization::kEternalHandles); // Iterate over pointers being held by inactive threads. isolate_->thread_manager()->Iterate(v); v->Synchronize(VisitorSynchronization::kThreadManager); // Iterate over the pointers the Serialization/Deserialization code is // holding. // During garbage collection this keeps the partial snapshot cache alive. // During deserialization of the startup snapshot this creates the partial // snapshot cache and deserializes the objects it refers to. During // serialization this does nothing, since the partial snapshot cache is // empty. However the next thing we do is create the partial snapshot, // filling up the partial snapshot cache with objects it needs as we go. SerializerDeserializer::Iterate(isolate_, v); // We don't do a v->Synchronize call here, because in debug mode that will // output a flag to the snapshot. However at this point the serializer and // deserializer are deliberately a little unsynchronized (see above) so the // checking of the sync flag in the snapshot would fail. } // TODO(1236194): Since the heap size is configurable on the command line // and through the API, we should gracefully handle the case that the heap // size is not big enough to fit all the initial objects. bool Heap::ConfigureHeap(int max_semispace_size, intptr_t max_old_gen_size, intptr_t max_executable_size) { if (HasBeenSetUp()) return false; if (FLAG_stress_compaction) { // This will cause more frequent GCs when stressing. max_semispace_size_ = Page::kPageSize; } if (max_semispace_size > 0) { if (max_semispace_size < Page::kPageSize) { max_semispace_size = Page::kPageSize; if (FLAG_trace_gc) { PrintPID("Max semispace size cannot be less than %dkbytes\n", Page::kPageSize >> 10); } } max_semispace_size_ = max_semispace_size; } if (Snapshot::IsEnabled()) { // If we are using a snapshot we always reserve the default amount // of memory for each semispace because code in the snapshot has // write-barrier code that relies on the size and alignment of new // space. We therefore cannot use a larger max semispace size // than the default reserved semispace size. if (max_semispace_size_ > reserved_semispace_size_) { max_semispace_size_ = reserved_semispace_size_; if (FLAG_trace_gc) { PrintPID("Max semispace size cannot be more than %dkbytes\n", reserved_semispace_size_ >> 10); } } } else { // If we are not using snapshots we reserve space for the actual // max semispace size. reserved_semispace_size_ = max_semispace_size_; } if (max_old_gen_size > 0) max_old_generation_size_ = max_old_gen_size; if (max_executable_size > 0) { max_executable_size_ = RoundUp(max_executable_size, Page::kPageSize); } // The max executable size must be less than or equal to the max old // generation size. if (max_executable_size_ > max_old_generation_size_) { max_executable_size_ = max_old_generation_size_; } // The new space size must be a power of two to support single-bit testing // for containment. max_semispace_size_ = RoundUpToPowerOf2(max_semispace_size_); reserved_semispace_size_ = RoundUpToPowerOf2(reserved_semispace_size_); initial_semispace_size_ = Min(initial_semispace_size_, max_semispace_size_); // The external allocation limit should be below 256 MB on all architectures // to avoid unnecessary low memory notifications, as that is the threshold // for some embedders. external_allocation_limit_ = 12 * max_semispace_size_; ASSERT(external_allocation_limit_ <= 256 * MB); // The old generation is paged and needs at least one page for each space. int paged_space_count = LAST_PAGED_SPACE - FIRST_PAGED_SPACE + 1; max_old_generation_size_ = Max(static_cast(paged_space_count * Page::kPageSize), RoundUp(max_old_generation_size_, Page::kPageSize)); // We rely on being able to allocate new arrays in paged spaces. ASSERT(MaxRegularSpaceAllocationSize() >= (JSArray::kSize + FixedArray::SizeFor(JSObject::kInitialMaxFastElementArray) + AllocationMemento::kSize)); configured_ = true; return true; } bool Heap::ConfigureHeapDefault() { return ConfigureHeap(static_cast(FLAG_max_new_space_size / 2) * KB, static_cast(FLAG_max_old_space_size) * MB, static_cast(FLAG_max_executable_size) * MB); } void Heap::RecordStats(HeapStats* stats, bool take_snapshot) { *stats->start_marker = HeapStats::kStartMarker; *stats->end_marker = HeapStats::kEndMarker; *stats->new_space_size = new_space_.SizeAsInt(); *stats->new_space_capacity = static_cast(new_space_.Capacity()); *stats->old_pointer_space_size = old_pointer_space_->SizeOfObjects(); *stats->old_pointer_space_capacity = old_pointer_space_->Capacity(); *stats->old_data_space_size = old_data_space_->SizeOfObjects(); *stats->old_data_space_capacity = old_data_space_->Capacity(); *stats->code_space_size = code_space_->SizeOfObjects(); *stats->code_space_capacity = code_space_->Capacity(); *stats->map_space_size = map_space_->SizeOfObjects(); *stats->map_space_capacity = map_space_->Capacity(); *stats->cell_space_size = cell_space_->SizeOfObjects(); *stats->cell_space_capacity = cell_space_->Capacity(); *stats->property_cell_space_size = property_cell_space_->SizeOfObjects(); *stats->property_cell_space_capacity = property_cell_space_->Capacity(); *stats->lo_space_size = lo_space_->Size(); isolate_->global_handles()->RecordStats(stats); *stats->memory_allocator_size = isolate()->memory_allocator()->Size(); *stats->memory_allocator_capacity = isolate()->memory_allocator()->Size() + isolate()->memory_allocator()->Available(); *stats->os_error = OS::GetLastError(); isolate()->memory_allocator()->Available(); if (take_snapshot) { HeapIterator iterator(this); for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { InstanceType type = obj->map()->instance_type(); ASSERT(0 <= type && type <= LAST_TYPE); stats->objects_per_type[type]++; stats->size_per_type[type] += obj->Size(); } } } intptr_t Heap::PromotedSpaceSizeOfObjects() { return old_pointer_space_->SizeOfObjects() + old_data_space_->SizeOfObjects() + code_space_->SizeOfObjects() + map_space_->SizeOfObjects() + cell_space_->SizeOfObjects() + property_cell_space_->SizeOfObjects() + lo_space_->SizeOfObjects(); } bool Heap::AdvanceSweepers(int step_size) { ASSERT(isolate()->num_sweeper_threads() == 0); bool sweeping_complete = old_data_space()->AdvanceSweeper(step_size); sweeping_complete &= old_pointer_space()->AdvanceSweeper(step_size); return sweeping_complete; } int64_t Heap::PromotedExternalMemorySize() { if (amount_of_external_allocated_memory_ <= amount_of_external_allocated_memory_at_last_global_gc_) return 0; return amount_of_external_allocated_memory_ - amount_of_external_allocated_memory_at_last_global_gc_; } void Heap::EnableInlineAllocation() { ASSERT(inline_allocation_disabled_); inline_allocation_disabled_ = false; // Update inline allocation limit for new space. new_space()->UpdateInlineAllocationLimit(0); } void Heap::DisableInlineAllocation() { ASSERT(!inline_allocation_disabled_); inline_allocation_disabled_ = true; // Update inline allocation limit for new space. new_space()->UpdateInlineAllocationLimit(0); // Update inline allocation limit for old spaces. PagedSpaces spaces(this); for (PagedSpace* space = spaces.next(); space != NULL; space = spaces.next()) { space->EmptyAllocationInfo(); } } V8_DECLARE_ONCE(initialize_gc_once); static void InitializeGCOnce() { InitializeScavengingVisitorsTables(); NewSpaceScavenger::Initialize(); MarkCompactCollector::Initialize(); } bool Heap::SetUp() { #ifdef DEBUG allocation_timeout_ = FLAG_gc_interval; #endif // Initialize heap spaces and initial maps and objects. Whenever something // goes wrong, just return false. The caller should check the results and // call Heap::TearDown() to release allocated memory. // // If the heap is not yet configured (e.g. through the API), configure it. // Configuration is based on the flags new-space-size (really the semispace // size) and old-space-size if set or the initial values of semispace_size_ // and old_generation_size_ otherwise. if (!configured_) { if (!ConfigureHeapDefault()) return false; } CallOnce(&initialize_gc_once, &InitializeGCOnce); MarkMapPointersAsEncoded(false); // Set up memory allocator. if (!isolate_->memory_allocator()->SetUp(MaxReserved(), MaxExecutableSize())) return false; // Set up new space. if (!new_space_.SetUp(reserved_semispace_size_, max_semispace_size_)) { return false; } // Initialize old pointer space. old_pointer_space_ = new OldSpace(this, max_old_generation_size_, OLD_POINTER_SPACE, NOT_EXECUTABLE); if (old_pointer_space_ == NULL) return false; if (!old_pointer_space_->SetUp()) return false; // Initialize old data space. old_data_space_ = new OldSpace(this, max_old_generation_size_, OLD_DATA_SPACE, NOT_EXECUTABLE); if (old_data_space_ == NULL) return false; if (!old_data_space_->SetUp()) return false; // Initialize the code space, set its maximum capacity to the old // generation size. It needs executable memory. // On 64-bit platform(s), we put all code objects in a 2 GB range of // virtual address space, so that they can call each other with near calls. if (code_range_size_ > 0) { if (!isolate_->code_range()->SetUp(code_range_size_)) { return false; } } code_space_ = new OldSpace(this, max_old_generation_size_, CODE_SPACE, EXECUTABLE); if (code_space_ == NULL) return false; if (!code_space_->SetUp()) return false; // Initialize map space. map_space_ = new MapSpace(this, max_old_generation_size_, MAP_SPACE); if (map_space_ == NULL) return false; if (!map_space_->SetUp()) return false; // Initialize simple cell space. cell_space_ = new CellSpace(this, max_old_generation_size_, CELL_SPACE); if (cell_space_ == NULL) return false; if (!cell_space_->SetUp()) return false; // Initialize global property cell space. property_cell_space_ = new PropertyCellSpace(this, max_old_generation_size_, PROPERTY_CELL_SPACE); if (property_cell_space_ == NULL) return false; if (!property_cell_space_->SetUp()) return false; // The large object code space may contain code or data. We set the memory // to be non-executable here for safety, but this means we need to enable it // explicitly when allocating large code objects. lo_space_ = new LargeObjectSpace(this, max_old_generation_size_, LO_SPACE); if (lo_space_ == NULL) return false; if (!lo_space_->SetUp()) return false; // Set up the seed that is used to randomize the string hash function. ASSERT(hash_seed() == 0); if (FLAG_randomize_hashes) { if (FLAG_hash_seed == 0) { int rnd = isolate()->random_number_generator()->NextInt(); set_hash_seed(Smi::FromInt(rnd & Name::kHashBitMask)); } else { set_hash_seed(Smi::FromInt(FLAG_hash_seed)); } } LOG(isolate_, IntPtrTEvent("heap-capacity", Capacity())); LOG(isolate_, IntPtrTEvent("heap-available", Available())); store_buffer()->SetUp(); if (FLAG_concurrent_recompilation) relocation_mutex_ = new Mutex; return true; } bool Heap::CreateHeapObjects() { // Create initial maps. if (!CreateInitialMaps()) return false; if (!CreateApiObjects()) return false; // Create initial objects if (!CreateInitialObjects()) return false; native_contexts_list_ = undefined_value(); array_buffers_list_ = undefined_value(); allocation_sites_list_ = undefined_value(); weak_object_to_code_table_ = undefined_value(); return true; } void Heap::SetStackLimits() { ASSERT(isolate_ != NULL); ASSERT(isolate_ == isolate()); // On 64 bit machines, pointers are generally out of range of Smis. We write // something that looks like an out of range Smi to the GC. // Set up the special root array entries containing the stack limits. // These are actually addresses, but the tag makes the GC ignore it. roots_[kStackLimitRootIndex] = reinterpret_cast( (isolate_->stack_guard()->jslimit() & ~kSmiTagMask) | kSmiTag); roots_[kRealStackLimitRootIndex] = reinterpret_cast( (isolate_->stack_guard()->real_jslimit() & ~kSmiTagMask) | kSmiTag); } void Heap::TearDown() { #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif UpdateMaximumCommitted(); if (FLAG_print_cumulative_gc_stat) { PrintF("\n"); PrintF("gc_count=%d ", gc_count_); PrintF("mark_sweep_count=%d ", ms_count_); PrintF("max_gc_pause=%.1f ", get_max_gc_pause()); PrintF("total_gc_time=%.1f ", total_gc_time_ms_); PrintF("min_in_mutator=%.1f ", get_min_in_mutator()); PrintF("max_alive_after_gc=%" V8_PTR_PREFIX "d ", get_max_alive_after_gc()); PrintF("total_marking_time=%.1f ", marking_time()); PrintF("total_sweeping_time=%.1f ", sweeping_time()); PrintF("\n\n"); } if (FLAG_print_max_heap_committed) { PrintF("\n"); PrintF("maximum_committed_by_heap=%" V8_PTR_PREFIX "d ", MaximumCommittedMemory()); PrintF("maximum_committed_by_new_space=%" V8_PTR_PREFIX "d ", new_space_.MaximumCommittedMemory()); PrintF("maximum_committed_by_old_pointer_space=%" V8_PTR_PREFIX "d ", old_data_space_->MaximumCommittedMemory()); PrintF("maximum_committed_by_old_data_space=%" V8_PTR_PREFIX "d ", old_pointer_space_->MaximumCommittedMemory()); PrintF("maximum_committed_by_old_data_space=%" V8_PTR_PREFIX "d ", old_pointer_space_->MaximumCommittedMemory()); PrintF("maximum_committed_by_code_space=%" V8_PTR_PREFIX "d ", code_space_->MaximumCommittedMemory()); PrintF("maximum_committed_by_map_space=%" V8_PTR_PREFIX "d ", map_space_->MaximumCommittedMemory()); PrintF("maximum_committed_by_cell_space=%" V8_PTR_PREFIX "d ", cell_space_->MaximumCommittedMemory()); PrintF("maximum_committed_by_property_space=%" V8_PTR_PREFIX "d ", property_cell_space_->MaximumCommittedMemory()); PrintF("maximum_committed_by_lo_space=%" V8_PTR_PREFIX "d ", lo_space_->MaximumCommittedMemory()); PrintF("\n\n"); } TearDownArrayBuffers(); isolate_->global_handles()->TearDown(); external_string_table_.TearDown(); mark_compact_collector()->TearDown(); new_space_.TearDown(); if (old_pointer_space_ != NULL) { old_pointer_space_->TearDown(); delete old_pointer_space_; old_pointer_space_ = NULL; } if (old_data_space_ != NULL) { old_data_space_->TearDown(); delete old_data_space_; old_data_space_ = NULL; } if (code_space_ != NULL) { code_space_->TearDown(); delete code_space_; code_space_ = NULL; } if (map_space_ != NULL) { map_space_->TearDown(); delete map_space_; map_space_ = NULL; } if (cell_space_ != NULL) { cell_space_->TearDown(); delete cell_space_; cell_space_ = NULL; } if (property_cell_space_ != NULL) { property_cell_space_->TearDown(); delete property_cell_space_; property_cell_space_ = NULL; } if (lo_space_ != NULL) { lo_space_->TearDown(); delete lo_space_; lo_space_ = NULL; } store_buffer()->TearDown(); incremental_marking()->TearDown(); isolate_->memory_allocator()->TearDown(); delete relocation_mutex_; relocation_mutex_ = NULL; } void Heap::AddGCPrologueCallback(v8::Isolate::GCPrologueCallback callback, GCType gc_type, bool pass_isolate) { ASSERT(callback != NULL); GCPrologueCallbackPair pair(callback, gc_type, pass_isolate); ASSERT(!gc_prologue_callbacks_.Contains(pair)); return gc_prologue_callbacks_.Add(pair); } void Heap::RemoveGCPrologueCallback(v8::Isolate::GCPrologueCallback callback) { ASSERT(callback != NULL); for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) { if (gc_prologue_callbacks_[i].callback == callback) { gc_prologue_callbacks_.Remove(i); return; } } UNREACHABLE(); } void Heap::AddGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback, GCType gc_type, bool pass_isolate) { ASSERT(callback != NULL); GCEpilogueCallbackPair pair(callback, gc_type, pass_isolate); ASSERT(!gc_epilogue_callbacks_.Contains(pair)); return gc_epilogue_callbacks_.Add(pair); } void Heap::RemoveGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback) { ASSERT(callback != NULL); for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) { if (gc_epilogue_callbacks_[i].callback == callback) { gc_epilogue_callbacks_.Remove(i); return; } } UNREACHABLE(); } MaybeObject* Heap::AddWeakObjectToCodeDependency(Object* obj, DependentCode* dep) { ASSERT(!InNewSpace(obj)); ASSERT(!InNewSpace(dep)); MaybeObject* maybe_obj = WeakHashTable::cast(weak_object_to_code_table_)->Put(obj, dep); WeakHashTable* table; if (!maybe_obj->To(&table)) return maybe_obj; if (ShouldZapGarbage() && weak_object_to_code_table_ != table) { WeakHashTable::cast(weak_object_to_code_table_)->Zap(the_hole_value()); } set_weak_object_to_code_table(table); ASSERT_EQ(dep, WeakHashTable::cast(weak_object_to_code_table_)->Lookup(obj)); return weak_object_to_code_table_; } DependentCode* Heap::LookupWeakObjectToCodeDependency(Object* obj) { Object* dep = WeakHashTable::cast(weak_object_to_code_table_)->Lookup(obj); if (dep->IsDependentCode()) return DependentCode::cast(dep); return DependentCode::cast(empty_fixed_array()); } void Heap::EnsureWeakObjectToCodeTable() { if (!weak_object_to_code_table()->IsHashTable()) { set_weak_object_to_code_table(*isolate()->factory()->NewWeakHashTable(16)); } } #ifdef DEBUG class PrintHandleVisitor: public ObjectVisitor { public: void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) PrintF(" handle %p to %p\n", reinterpret_cast(p), reinterpret_cast(*p)); } }; void Heap::PrintHandles() { PrintF("Handles:\n"); PrintHandleVisitor v; isolate_->handle_scope_implementer()->Iterate(&v); } #endif Space* AllSpaces::next() { switch (counter_++) { case NEW_SPACE: return heap_->new_space(); case OLD_POINTER_SPACE: return heap_->old_pointer_space(); case OLD_DATA_SPACE: return heap_->old_data_space(); case CODE_SPACE: return heap_->code_space(); case MAP_SPACE: return heap_->map_space(); case CELL_SPACE: return heap_->cell_space(); case PROPERTY_CELL_SPACE: return heap_->property_cell_space(); case LO_SPACE: return heap_->lo_space(); default: return NULL; } } PagedSpace* PagedSpaces::next() { switch (counter_++) { case OLD_POINTER_SPACE: return heap_->old_pointer_space(); case OLD_DATA_SPACE: return heap_->old_data_space(); case CODE_SPACE: return heap_->code_space(); case MAP_SPACE: return heap_->map_space(); case CELL_SPACE: return heap_->cell_space(); case PROPERTY_CELL_SPACE: return heap_->property_cell_space(); default: return NULL; } } OldSpace* OldSpaces::next() { switch (counter_++) { case OLD_POINTER_SPACE: return heap_->old_pointer_space(); case OLD_DATA_SPACE: return heap_->old_data_space(); case CODE_SPACE: return heap_->code_space(); default: return NULL; } } SpaceIterator::SpaceIterator(Heap* heap) : heap_(heap), current_space_(FIRST_SPACE), iterator_(NULL), size_func_(NULL) { } SpaceIterator::SpaceIterator(Heap* heap, HeapObjectCallback size_func) : heap_(heap), current_space_(FIRST_SPACE), iterator_(NULL), size_func_(size_func) { } SpaceIterator::~SpaceIterator() { // Delete active iterator if any. delete iterator_; } bool SpaceIterator::has_next() { // Iterate until no more spaces. return current_space_ != LAST_SPACE; } ObjectIterator* SpaceIterator::next() { if (iterator_ != NULL) { delete iterator_; iterator_ = NULL; // Move to the next space current_space_++; if (current_space_ > LAST_SPACE) { return NULL; } } // Return iterator for the new current space. return CreateIterator(); } // Create an iterator for the space to iterate. ObjectIterator* SpaceIterator::CreateIterator() { ASSERT(iterator_ == NULL); switch (current_space_) { case NEW_SPACE: iterator_ = new SemiSpaceIterator(heap_->new_space(), size_func_); break; case OLD_POINTER_SPACE: iterator_ = new HeapObjectIterator(heap_->old_pointer_space(), size_func_); break; case OLD_DATA_SPACE: iterator_ = new HeapObjectIterator(heap_->old_data_space(), size_func_); break; case CODE_SPACE: iterator_ = new HeapObjectIterator(heap_->code_space(), size_func_); break; case MAP_SPACE: iterator_ = new HeapObjectIterator(heap_->map_space(), size_func_); break; case CELL_SPACE: iterator_ = new HeapObjectIterator(heap_->cell_space(), size_func_); break; case PROPERTY_CELL_SPACE: iterator_ = new HeapObjectIterator(heap_->property_cell_space(), size_func_); break; case LO_SPACE: iterator_ = new LargeObjectIterator(heap_->lo_space(), size_func_); break; } // Return the newly allocated iterator; ASSERT(iterator_ != NULL); return iterator_; } class HeapObjectsFilter { public: virtual ~HeapObjectsFilter() {} virtual bool SkipObject(HeapObject* object) = 0; }; class UnreachableObjectsFilter : public HeapObjectsFilter { public: explicit UnreachableObjectsFilter(Heap* heap) : heap_(heap) { MarkReachableObjects(); } ~UnreachableObjectsFilter() { heap_->mark_compact_collector()->ClearMarkbits(); } bool SkipObject(HeapObject* object) { MarkBit mark_bit = Marking::MarkBitFrom(object); return !mark_bit.Get(); } private: class MarkingVisitor : public ObjectVisitor { public: MarkingVisitor() : marking_stack_(10) {} void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) { if (!(*p)->IsHeapObject()) continue; HeapObject* obj = HeapObject::cast(*p); MarkBit mark_bit = Marking::MarkBitFrom(obj); if (!mark_bit.Get()) { mark_bit.Set(); marking_stack_.Add(obj); } } } void TransitiveClosure() { while (!marking_stack_.is_empty()) { HeapObject* obj = marking_stack_.RemoveLast(); obj->Iterate(this); } } private: List marking_stack_; }; void MarkReachableObjects() { MarkingVisitor visitor; heap_->IterateRoots(&visitor, VISIT_ALL); visitor.TransitiveClosure(); } Heap* heap_; DisallowHeapAllocation no_allocation_; }; HeapIterator::HeapIterator(Heap* heap) : heap_(heap), filtering_(HeapIterator::kNoFiltering), filter_(NULL) { Init(); } HeapIterator::HeapIterator(Heap* heap, HeapIterator::HeapObjectsFiltering filtering) : heap_(heap), filtering_(filtering), filter_(NULL) { Init(); } HeapIterator::~HeapIterator() { Shutdown(); } void HeapIterator::Init() { // Start the iteration. space_iterator_ = new SpaceIterator(heap_); switch (filtering_) { case kFilterUnreachable: filter_ = new UnreachableObjectsFilter(heap_); break; default: break; } object_iterator_ = space_iterator_->next(); } void HeapIterator::Shutdown() { #ifdef DEBUG // Assert that in filtering mode we have iterated through all // objects. Otherwise, heap will be left in an inconsistent state. if (filtering_ != kNoFiltering) { ASSERT(object_iterator_ == NULL); } #endif // Make sure the last iterator is deallocated. delete space_iterator_; space_iterator_ = NULL; object_iterator_ = NULL; delete filter_; filter_ = NULL; } HeapObject* HeapIterator::next() { if (filter_ == NULL) return NextObject(); HeapObject* obj = NextObject(); while (obj != NULL && filter_->SkipObject(obj)) obj = NextObject(); return obj; } HeapObject* HeapIterator::NextObject() { // No iterator means we are done. if (object_iterator_ == NULL) return NULL; if (HeapObject* obj = object_iterator_->next_object()) { // If the current iterator has more objects we are fine. return obj; } else { // Go though the spaces looking for one that has objects. while (space_iterator_->has_next()) { object_iterator_ = space_iterator_->next(); if (HeapObject* obj = object_iterator_->next_object()) { return obj; } } } // Done with the last space. object_iterator_ = NULL; return NULL; } void HeapIterator::reset() { // Restart the iterator. Shutdown(); Init(); } #ifdef DEBUG Object* const PathTracer::kAnyGlobalObject = NULL; class PathTracer::MarkVisitor: public ObjectVisitor { public: explicit MarkVisitor(PathTracer* tracer) : tracer_(tracer) {} void VisitPointers(Object** start, Object** end) { // Scan all HeapObject pointers in [start, end) for (Object** p = start; !tracer_->found() && (p < end); p++) { if ((*p)->IsHeapObject()) tracer_->MarkRecursively(p, this); } } private: PathTracer* tracer_; }; class PathTracer::UnmarkVisitor: public ObjectVisitor { public: explicit UnmarkVisitor(PathTracer* tracer) : tracer_(tracer) {} void VisitPointers(Object** start, Object** end) { // Scan all HeapObject pointers in [start, end) for (Object** p = start; p < end; p++) { if ((*p)->IsHeapObject()) tracer_->UnmarkRecursively(p, this); } } private: PathTracer* tracer_; }; void PathTracer::VisitPointers(Object** start, Object** end) { bool done = ((what_to_find_ == FIND_FIRST) && found_target_); // Visit all HeapObject pointers in [start, end) for (Object** p = start; !done && (p < end); p++) { if ((*p)->IsHeapObject()) { TracePathFrom(p); done = ((what_to_find_ == FIND_FIRST) && found_target_); } } } void PathTracer::Reset() { found_target_ = false; object_stack_.Clear(); } void PathTracer::TracePathFrom(Object** root) { ASSERT((search_target_ == kAnyGlobalObject) || search_target_->IsHeapObject()); found_target_in_trace_ = false; Reset(); MarkVisitor mark_visitor(this); MarkRecursively(root, &mark_visitor); UnmarkVisitor unmark_visitor(this); UnmarkRecursively(root, &unmark_visitor); ProcessResults(); } static bool SafeIsNativeContext(HeapObject* obj) { return obj->map() == obj->GetHeap()->raw_unchecked_native_context_map(); } void PathTracer::MarkRecursively(Object** p, MarkVisitor* mark_visitor) { if (!(*p)->IsHeapObject()) return; HeapObject* obj = HeapObject::cast(*p); Object* map = obj->map(); if (!map->IsHeapObject()) return; // visited before if (found_target_in_trace_) return; // stop if target found object_stack_.Add(obj); if (((search_target_ == kAnyGlobalObject) && obj->IsJSGlobalObject()) || (obj == search_target_)) { found_target_in_trace_ = true; found_target_ = true; return; } bool is_native_context = SafeIsNativeContext(obj); // not visited yet Map* map_p = reinterpret_cast(HeapObject::cast(map)); Address map_addr = map_p->address(); obj->set_map_no_write_barrier(reinterpret_cast(map_addr + kMarkTag)); // Scan the object body. if (is_native_context && (visit_mode_ == VISIT_ONLY_STRONG)) { // This is specialized to scan Context's properly. Object** start = reinterpret_cast(obj->address() + Context::kHeaderSize); Object** end = reinterpret_cast(obj->address() + Context::kHeaderSize + Context::FIRST_WEAK_SLOT * kPointerSize); mark_visitor->VisitPointers(start, end); } else { obj->IterateBody(map_p->instance_type(), obj->SizeFromMap(map_p), mark_visitor); } // Scan the map after the body because the body is a lot more interesting // when doing leak detection. MarkRecursively(&map, mark_visitor); if (!found_target_in_trace_) // don't pop if found the target object_stack_.RemoveLast(); } void PathTracer::UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor) { if (!(*p)->IsHeapObject()) return; HeapObject* obj = HeapObject::cast(*p); Object* map = obj->map(); if (map->IsHeapObject()) return; // unmarked already Address map_addr = reinterpret_cast
(map); map_addr -= kMarkTag; ASSERT_TAG_ALIGNED(map_addr); HeapObject* map_p = HeapObject::FromAddress(map_addr); obj->set_map_no_write_barrier(reinterpret_cast(map_p)); UnmarkRecursively(reinterpret_cast(&map_p), unmark_visitor); obj->IterateBody(Map::cast(map_p)->instance_type(), obj->SizeFromMap(Map::cast(map_p)), unmark_visitor); } void PathTracer::ProcessResults() { if (found_target_) { PrintF("=====================================\n"); PrintF("==== Path to object ====\n"); PrintF("=====================================\n\n"); ASSERT(!object_stack_.is_empty()); for (int i = 0; i < object_stack_.length(); i++) { if (i > 0) PrintF("\n |\n |\n V\n\n"); Object* obj = object_stack_[i]; obj->Print(); } PrintF("=====================================\n"); } } // Triggers a depth-first traversal of reachable objects from one // given root object and finds a path to a specific heap object and // prints it. void Heap::TracePathToObjectFrom(Object* target, Object* root) { PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL); tracer.VisitPointer(&root); } // Triggers a depth-first traversal of reachable objects from roots // and finds a path to a specific heap object and prints it. void Heap::TracePathToObject(Object* target) { PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL); IterateRoots(&tracer, VISIT_ONLY_STRONG); } // Triggers a depth-first traversal of reachable objects from roots // and finds a path to any global object and prints it. Useful for // determining the source for leaks of global objects. void Heap::TracePathToGlobal() { PathTracer tracer(PathTracer::kAnyGlobalObject, PathTracer::FIND_ALL, VISIT_ALL); IterateRoots(&tracer, VISIT_ONLY_STRONG); } #endif static intptr_t CountTotalHolesSize(Heap* heap) { intptr_t holes_size = 0; OldSpaces spaces(heap); for (OldSpace* space = spaces.next(); space != NULL; space = spaces.next()) { holes_size += space->Waste() + space->Available(); } return holes_size; } GCTracer::GCTracer(Heap* heap, const char* gc_reason, const char* collector_reason) : start_time_(0.0), start_object_size_(0), start_memory_size_(0), gc_count_(0), full_gc_count_(0), allocated_since_last_gc_(0), spent_in_mutator_(0), promoted_objects_size_(0), nodes_died_in_new_space_(0), nodes_copied_in_new_space_(0), nodes_promoted_(0), heap_(heap), gc_reason_(gc_reason), collector_reason_(collector_reason) { if (!FLAG_trace_gc && !FLAG_print_cumulative_gc_stat) return; start_time_ = OS::TimeCurrentMillis(); start_object_size_ = heap_->SizeOfObjects(); start_memory_size_ = heap_->isolate()->memory_allocator()->Size(); for (int i = 0; i < Scope::kNumberOfScopes; i++) { scopes_[i] = 0; } in_free_list_or_wasted_before_gc_ = CountTotalHolesSize(heap); allocated_since_last_gc_ = heap_->SizeOfObjects() - heap_->alive_after_last_gc_; if (heap_->last_gc_end_timestamp_ > 0) { spent_in_mutator_ = Max(start_time_ - heap_->last_gc_end_timestamp_, 0.0); } steps_count_ = heap_->incremental_marking()->steps_count(); steps_took_ = heap_->incremental_marking()->steps_took(); longest_step_ = heap_->incremental_marking()->longest_step(); steps_count_since_last_gc_ = heap_->incremental_marking()->steps_count_since_last_gc(); steps_took_since_last_gc_ = heap_->incremental_marking()->steps_took_since_last_gc(); } GCTracer::~GCTracer() { // Printf ONE line iff flag is set. if (!FLAG_trace_gc && !FLAG_print_cumulative_gc_stat) return; bool first_gc = (heap_->last_gc_end_timestamp_ == 0); heap_->alive_after_last_gc_ = heap_->SizeOfObjects(); heap_->last_gc_end_timestamp_ = OS::TimeCurrentMillis(); double time = heap_->last_gc_end_timestamp_ - start_time_; // Update cumulative GC statistics if required. if (FLAG_print_cumulative_gc_stat) { heap_->total_gc_time_ms_ += time; heap_->max_gc_pause_ = Max(heap_->max_gc_pause_, time); heap_->max_alive_after_gc_ = Max(heap_->max_alive_after_gc_, heap_->alive_after_last_gc_); if (!first_gc) { heap_->min_in_mutator_ = Min(heap_->min_in_mutator_, spent_in_mutator_); } } else if (FLAG_trace_gc_verbose) { heap_->total_gc_time_ms_ += time; } if (collector_ == SCAVENGER && FLAG_trace_gc_ignore_scavenger) return; heap_->AddMarkingTime(scopes_[Scope::MC_MARK]); if (FLAG_print_cumulative_gc_stat && !FLAG_trace_gc) return; PrintPID("%8.0f ms: ", heap_->isolate()->time_millis_since_init()); if (!FLAG_trace_gc_nvp) { int external_time = static_cast(scopes_[Scope::EXTERNAL]); double end_memory_size_mb = static_cast(heap_->isolate()->memory_allocator()->Size()) / MB; PrintF("%s %.1f (%.1f) -> %.1f (%.1f) MB, ", CollectorString(), static_cast(start_object_size_) / MB, static_cast(start_memory_size_) / MB, SizeOfHeapObjects(), end_memory_size_mb); if (external_time > 0) PrintF("%d / ", external_time); PrintF("%.1f ms", time); if (steps_count_ > 0) { if (collector_ == SCAVENGER) { PrintF(" (+ %.1f ms in %d steps since last GC)", steps_took_since_last_gc_, steps_count_since_last_gc_); } else { PrintF(" (+ %.1f ms in %d steps since start of marking, " "biggest step %.1f ms)", steps_took_, steps_count_, longest_step_); } } if (gc_reason_ != NULL) { PrintF(" [%s]", gc_reason_); } if (collector_reason_ != NULL) { PrintF(" [%s]", collector_reason_); } PrintF(".\n"); } else { PrintF("pause=%.1f ", time); PrintF("mutator=%.1f ", spent_in_mutator_); PrintF("gc="); switch (collector_) { case SCAVENGER: PrintF("s"); break; case MARK_COMPACTOR: PrintF("ms"); break; default: UNREACHABLE(); } PrintF(" "); PrintF("external=%.1f ", scopes_[Scope::EXTERNAL]); PrintF("mark=%.1f ", scopes_[Scope::MC_MARK]); PrintF("sweep=%.1f ", scopes_[Scope::MC_SWEEP]); PrintF("sweepns=%.1f ", scopes_[Scope::MC_SWEEP_NEWSPACE]); PrintF("evacuate=%.1f ", scopes_[Scope::MC_EVACUATE_PAGES]); PrintF("new_new=%.1f ", scopes_[Scope::MC_UPDATE_NEW_TO_NEW_POINTERS]); PrintF("root_new=%.1f ", scopes_[Scope::MC_UPDATE_ROOT_TO_NEW_POINTERS]); PrintF("old_new=%.1f ", scopes_[Scope::MC_UPDATE_OLD_TO_NEW_POINTERS]); PrintF("compaction_ptrs=%.1f ", scopes_[Scope::MC_UPDATE_POINTERS_TO_EVACUATED]); PrintF("intracompaction_ptrs=%.1f ", scopes_[Scope::MC_UPDATE_POINTERS_BETWEEN_EVACUATED]); PrintF("misc_compaction=%.1f ", scopes_[Scope::MC_UPDATE_MISC_POINTERS]); PrintF("weakcollection_process=%.1f ", scopes_[Scope::MC_WEAKCOLLECTION_PROCESS]); PrintF("weakcollection_clear=%.1f ", scopes_[Scope::MC_WEAKCOLLECTION_CLEAR]); PrintF("total_size_before=%" V8_PTR_PREFIX "d ", start_object_size_); PrintF("total_size_after=%" V8_PTR_PREFIX "d ", heap_->SizeOfObjects()); PrintF("holes_size_before=%" V8_PTR_PREFIX "d ", in_free_list_or_wasted_before_gc_); PrintF("holes_size_after=%" V8_PTR_PREFIX "d ", CountTotalHolesSize(heap_)); PrintF("allocated=%" V8_PTR_PREFIX "d ", allocated_since_last_gc_); PrintF("promoted=%" V8_PTR_PREFIX "d ", promoted_objects_size_); PrintF("nodes_died_in_new=%d ", nodes_died_in_new_space_); PrintF("nodes_copied_in_new=%d ", nodes_copied_in_new_space_); PrintF("nodes_promoted=%d ", nodes_promoted_); if (collector_ == SCAVENGER) { PrintF("stepscount=%d ", steps_count_since_last_gc_); PrintF("stepstook=%.1f ", steps_took_since_last_gc_); } else { PrintF("stepscount=%d ", steps_count_); PrintF("stepstook=%.1f ", steps_took_); PrintF("longeststep=%.1f ", longest_step_); } PrintF("\n"); } heap_->PrintShortHeapStatistics(); } const char* GCTracer::CollectorString() { switch (collector_) { case SCAVENGER: return "Scavenge"; case MARK_COMPACTOR: return "Mark-sweep"; } return "Unknown GC"; } int KeyedLookupCache::Hash(Map* map, Name* name) { // Uses only lower 32 bits if pointers are larger. uintptr_t addr_hash = static_cast(reinterpret_cast(map)) >> kMapHashShift; return static_cast((addr_hash ^ name->Hash()) & kCapacityMask); } int KeyedLookupCache::Lookup(Map* map, Name* name) { int index = (Hash(map, name) & kHashMask); for (int i = 0; i < kEntriesPerBucket; i++) { Key& key = keys_[index + i]; if ((key.map == map) && key.name->Equals(name)) { return field_offsets_[index + i]; } } return kNotFound; } void KeyedLookupCache::Update(Map* map, Name* name, int field_offset) { if (!name->IsUniqueName()) { String* internalized_string; if (!map->GetIsolate()->heap()->InternalizeStringIfExists( String::cast(name), &internalized_string)) { return; } name = internalized_string; } // This cache is cleared only between mark compact passes, so we expect the // cache to only contain old space names. ASSERT(!map->GetIsolate()->heap()->InNewSpace(name)); int index = (Hash(map, name) & kHashMask); // After a GC there will be free slots, so we use them in order (this may // help to get the most frequently used one in position 0). for (int i = 0; i< kEntriesPerBucket; i++) { Key& key = keys_[index]; Object* free_entry_indicator = NULL; if (key.map == free_entry_indicator) { key.map = map; key.name = name; field_offsets_[index + i] = field_offset; return; } } // No free entry found in this bucket, so we move them all down one and // put the new entry at position zero. for (int i = kEntriesPerBucket - 1; i > 0; i--) { Key& key = keys_[index + i]; Key& key2 = keys_[index + i - 1]; key = key2; field_offsets_[index + i] = field_offsets_[index + i - 1]; } // Write the new first entry. Key& key = keys_[index]; key.map = map; key.name = name; field_offsets_[index] = field_offset; } void KeyedLookupCache::Clear() { for (int index = 0; index < kLength; index++) keys_[index].map = NULL; } void DescriptorLookupCache::Clear() { for (int index = 0; index < kLength; index++) keys_[index].source = NULL; } #ifdef DEBUG void Heap::GarbageCollectionGreedyCheck() { ASSERT(FLAG_gc_greedy); if (isolate_->bootstrapper()->IsActive()) return; if (disallow_allocation_failure()) return; CollectGarbage(NEW_SPACE); } #endif TranscendentalCache::SubCache::SubCache(Isolate* isolate, Type t) : type_(t), isolate_(isolate) { uint32_t in0 = 0xffffffffu; // Bit-pattern for a NaN that isn't uint32_t in1 = 0xffffffffu; // generated by the FPU. for (int i = 0; i < kCacheSize; i++) { elements_[i].in[0] = in0; elements_[i].in[1] = in1; elements_[i].output = NULL; } } void TranscendentalCache::Clear() { for (int i = 0; i < kNumberOfCaches; i++) { if (caches_[i] != NULL) { delete caches_[i]; caches_[i] = NULL; } } } void ExternalStringTable::CleanUp() { int last = 0; for (int i = 0; i < new_space_strings_.length(); ++i) { if (new_space_strings_[i] == heap_->the_hole_value()) { continue; } ASSERT(new_space_strings_[i]->IsExternalString()); if (heap_->InNewSpace(new_space_strings_[i])) { new_space_strings_[last++] = new_space_strings_[i]; } else { old_space_strings_.Add(new_space_strings_[i]); } } new_space_strings_.Rewind(last); new_space_strings_.Trim(); last = 0; for (int i = 0; i < old_space_strings_.length(); ++i) { if (old_space_strings_[i] == heap_->the_hole_value()) { continue; } ASSERT(old_space_strings_[i]->IsExternalString()); ASSERT(!heap_->InNewSpace(old_space_strings_[i])); old_space_strings_[last++] = old_space_strings_[i]; } old_space_strings_.Rewind(last); old_space_strings_.Trim(); #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif } void ExternalStringTable::TearDown() { for (int i = 0; i < new_space_strings_.length(); ++i) { heap_->FinalizeExternalString(ExternalString::cast(new_space_strings_[i])); } new_space_strings_.Free(); for (int i = 0; i < old_space_strings_.length(); ++i) { heap_->FinalizeExternalString(ExternalString::cast(old_space_strings_[i])); } old_space_strings_.Free(); } void Heap::QueueMemoryChunkForFree(MemoryChunk* chunk) { chunk->set_next_chunk(chunks_queued_for_free_); chunks_queued_for_free_ = chunk; } void Heap::FreeQueuedChunks() { if (chunks_queued_for_free_ == NULL) return; MemoryChunk* next; MemoryChunk* chunk; for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) { next = chunk->next_chunk(); chunk->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED); if (chunk->owner()->identity() == LO_SPACE) { // StoreBuffer::Filter relies on MemoryChunk::FromAnyPointerAddress. // If FromAnyPointerAddress encounters a slot that belongs to a large // chunk queued for deletion it will fail to find the chunk because // it try to perform a search in the list of pages owned by of the large // object space and queued chunks were detached from that list. // To work around this we split large chunk into normal kPageSize aligned // pieces and initialize size, owner and flags field of every piece. // If FromAnyPointerAddress encounters a slot that belongs to one of // these smaller pieces it will treat it as a slot on a normal Page. Address chunk_end = chunk->address() + chunk->size(); MemoryChunk* inner = MemoryChunk::FromAddress( chunk->address() + Page::kPageSize); MemoryChunk* inner_last = MemoryChunk::FromAddress(chunk_end - 1); while (inner <= inner_last) { // Size of a large chunk is always a multiple of // OS::AllocateAlignment() so there is always // enough space for a fake MemoryChunk header. Address area_end = Min(inner->address() + Page::kPageSize, chunk_end); // Guard against overflow. if (area_end < inner->address()) area_end = chunk_end; inner->SetArea(inner->address(), area_end); inner->set_size(Page::kPageSize); inner->set_owner(lo_space()); inner->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED); inner = MemoryChunk::FromAddress( inner->address() + Page::kPageSize); } } } isolate_->heap()->store_buffer()->Compact(); isolate_->heap()->store_buffer()->Filter(MemoryChunk::ABOUT_TO_BE_FREED); for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) { next = chunk->next_chunk(); isolate_->memory_allocator()->Free(chunk); } chunks_queued_for_free_ = NULL; } void Heap::RememberUnmappedPage(Address page, bool compacted) { uintptr_t p = reinterpret_cast(page); // Tag the page pointer to make it findable in the dump file. if (compacted) { p ^= 0xc1ead & (Page::kPageSize - 1); // Cleared. } else { p ^= 0x1d1ed & (Page::kPageSize - 1); // I died. } remembered_unmapped_pages_[remembered_unmapped_pages_index_] = reinterpret_cast
(p); remembered_unmapped_pages_index_++; remembered_unmapped_pages_index_ %= kRememberedUnmappedPages; } void Heap::ClearObjectStats(bool clear_last_time_stats) { memset(object_counts_, 0, sizeof(object_counts_)); memset(object_sizes_, 0, sizeof(object_sizes_)); if (clear_last_time_stats) { memset(object_counts_last_time_, 0, sizeof(object_counts_last_time_)); memset(object_sizes_last_time_, 0, sizeof(object_sizes_last_time_)); } } static LazyMutex checkpoint_object_stats_mutex = LAZY_MUTEX_INITIALIZER; void Heap::CheckpointObjectStats() { LockGuard lock_guard(checkpoint_object_stats_mutex.Pointer()); Counters* counters = isolate()->counters(); #define ADJUST_LAST_TIME_OBJECT_COUNT(name) \ counters->count_of_##name()->Increment( \ static_cast(object_counts_[name])); \ counters->count_of_##name()->Decrement( \ static_cast(object_counts_last_time_[name])); \ counters->size_of_##name()->Increment( \ static_cast(object_sizes_[name])); \ counters->size_of_##name()->Decrement( \ static_cast(object_sizes_last_time_[name])); INSTANCE_TYPE_LIST(ADJUST_LAST_TIME_OBJECT_COUNT) #undef ADJUST_LAST_TIME_OBJECT_COUNT int index; #define ADJUST_LAST_TIME_OBJECT_COUNT(name) \ index = FIRST_CODE_KIND_SUB_TYPE + Code::name; \ counters->count_of_CODE_TYPE_##name()->Increment( \ static_cast(object_counts_[index])); \ counters->count_of_CODE_TYPE_##name()->Decrement( \ static_cast(object_counts_last_time_[index])); \ counters->size_of_CODE_TYPE_##name()->Increment( \ static_cast(object_sizes_[index])); \ counters->size_of_CODE_TYPE_##name()->Decrement( \ static_cast(object_sizes_last_time_[index])); CODE_KIND_LIST(ADJUST_LAST_TIME_OBJECT_COUNT) #undef ADJUST_LAST_TIME_OBJECT_COUNT #define ADJUST_LAST_TIME_OBJECT_COUNT(name) \ index = FIRST_FIXED_ARRAY_SUB_TYPE + name; \ counters->count_of_FIXED_ARRAY_##name()->Increment( \ static_cast(object_counts_[index])); \ counters->count_of_FIXED_ARRAY_##name()->Decrement( \ static_cast(object_counts_last_time_[index])); \ counters->size_of_FIXED_ARRAY_##name()->Increment( \ static_cast(object_sizes_[index])); \ counters->size_of_FIXED_ARRAY_##name()->Decrement( \ static_cast(object_sizes_last_time_[index])); FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(ADJUST_LAST_TIME_OBJECT_COUNT) #undef ADJUST_LAST_TIME_OBJECT_COUNT #define ADJUST_LAST_TIME_OBJECT_COUNT(name) \ index = \ FIRST_CODE_AGE_SUB_TYPE + Code::k##name##CodeAge - Code::kFirstCodeAge; \ counters->count_of_CODE_AGE_##name()->Increment( \ static_cast(object_counts_[index])); \ counters->count_of_CODE_AGE_##name()->Decrement( \ static_cast(object_counts_last_time_[index])); \ counters->size_of_CODE_AGE_##name()->Increment( \ static_cast(object_sizes_[index])); \ counters->size_of_CODE_AGE_##name()->Decrement( \ static_cast(object_sizes_last_time_[index])); CODE_AGE_LIST_COMPLETE(ADJUST_LAST_TIME_OBJECT_COUNT) #undef ADJUST_LAST_TIME_OBJECT_COUNT OS::MemCopy(object_counts_last_time_, object_counts_, sizeof(object_counts_)); OS::MemCopy(object_sizes_last_time_, object_sizes_, sizeof(object_sizes_)); ClearObjectStats(); } } } // namespace v8::internal