// Copyright 2020 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_HEAP_NEW_SPACES_INL_H_ #define V8_HEAP_NEW_SPACES_INL_H_ #include "src/heap/new-spaces.h" #include "src/heap/spaces-inl.h" #include "src/objects/tagged-impl.h" #include "src/sanitizer/msan.h" namespace v8 { namespace internal { // ----------------------------------------------------------------------------- // SemiSpace bool SemiSpace::Contains(HeapObject o) const { BasicMemoryChunk* memory_chunk = BasicMemoryChunk::FromHeapObject(o); if (memory_chunk->IsLargePage()) return false; return id_ == kToSpace ? memory_chunk->IsToPage() : memory_chunk->IsFromPage(); } bool SemiSpace::Contains(Object o) const { return o.IsHeapObject() && Contains(HeapObject::cast(o)); } bool SemiSpace::ContainsSlow(Address a) const { for (const Page* p : *this) { if (p == BasicMemoryChunk::FromAddress(a)) return true; } return false; } // -------------------------------------------------------------------------- // NewSpace bool NewSpace::Contains(Object o) const { return o.IsHeapObject() && Contains(HeapObject::cast(o)); } bool NewSpace::Contains(HeapObject o) const { return BasicMemoryChunk::FromHeapObject(o)->InNewSpace(); } bool NewSpace::ContainsSlow(Address a) const { return from_space_.ContainsSlow(a) || to_space_.ContainsSlow(a); } bool NewSpace::ToSpaceContainsSlow(Address a) const { return to_space_.ContainsSlow(a); } bool NewSpace::ToSpaceContains(Object o) const { return to_space_.Contains(o); } bool NewSpace::FromSpaceContains(Object o) const { return from_space_.Contains(o); } // ----------------------------------------------------------------------------- // SemiSpaceObjectIterator HeapObject SemiSpaceObjectIterator::Next() { while (current_ != limit_) { if (Page::IsAlignedToPageSize(current_)) { Page* page = Page::FromAllocationAreaAddress(current_); page = page->next_page(); DCHECK(page); current_ = page->area_start(); if (current_ == limit_) return HeapObject(); } HeapObject object = HeapObject::FromAddress(current_); current_ += object.Size(); if (!object.IsFreeSpaceOrFiller()) { return object; } } return HeapObject(); } // ----------------------------------------------------------------------------- // NewSpace AllocationResult NewSpace::AllocateRawAligned(int size_in_bytes, AllocationAlignment alignment, AllocationOrigin origin) { Address top = allocation_info_.top(); int filler_size = Heap::GetFillToAlign(top, alignment); int aligned_size_in_bytes = size_in_bytes + filler_size; if (allocation_info_.limit() - top < static_cast(aligned_size_in_bytes)) { // See if we can create room. if (!EnsureAllocation(size_in_bytes, alignment)) { return AllocationResult::Retry(); } top = allocation_info_.top(); filler_size = Heap::GetFillToAlign(top, alignment); aligned_size_in_bytes = size_in_bytes + filler_size; } HeapObject obj = HeapObject::FromAddress(top); allocation_info_.set_top(top + aligned_size_in_bytes); DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); if (filler_size > 0) { obj = Heap::PrecedeWithFiller(ReadOnlyRoots(heap()), obj, filler_size); } MSAN_ALLOCATED_UNINITIALIZED_MEMORY(obj.address(), size_in_bytes); if (FLAG_trace_allocations_origins) { UpdateAllocationOrigins(origin); } return obj; } AllocationResult NewSpace::AllocateRawUnaligned(int size_in_bytes, AllocationOrigin origin) { Address top = allocation_info_.top(); if (allocation_info_.limit() < top + size_in_bytes) { // See if we can create room. if (!EnsureAllocation(size_in_bytes, kWordAligned)) { return AllocationResult::Retry(); } top = allocation_info_.top(); } HeapObject obj = HeapObject::FromAddress(top); allocation_info_.set_top(top + size_in_bytes); DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); MSAN_ALLOCATED_UNINITIALIZED_MEMORY(obj.address(), size_in_bytes); if (FLAG_trace_allocations_origins) { UpdateAllocationOrigins(origin); } return obj; } AllocationResult NewSpace::AllocateRaw(int size_in_bytes, AllocationAlignment alignment, AllocationOrigin origin) { if (top() < top_on_previous_step_) { // Generated code decreased the top() pointer to do folded allocations DCHECK_EQ(Page::FromAllocationAreaAddress(top()), Page::FromAllocationAreaAddress(top_on_previous_step_)); top_on_previous_step_ = top(); } #ifdef V8_HOST_ARCH_32_BIT return alignment != kWordAligned ? AllocateRawAligned(size_in_bytes, alignment, origin) : AllocateRawUnaligned(size_in_bytes, origin); #else #ifdef V8_COMPRESS_POINTERS // TODO(ishell, v8:8875): Consider using aligned allocations once the // allocation alignment inconsistency is fixed. For now we keep using // unaligned access since both x64 and arm64 architectures (where pointer // compression is supported) allow unaligned access to doubles and full words. #endif // V8_COMPRESS_POINTERS return AllocateRawUnaligned(size_in_bytes, origin); #endif } V8_WARN_UNUSED_RESULT inline AllocationResult NewSpace::AllocateRawSynchronized( int size_in_bytes, AllocationAlignment alignment, AllocationOrigin origin) { base::MutexGuard guard(&mutex_); return AllocateRaw(size_in_bytes, alignment, origin); } } // namespace internal } // namespace v8 #endif // V8_HEAP_NEW_SPACES_INL_H_